
Portable Image-Manipulation Software: What Is the Extra
Development Cost?

Yves Ligier, Osman Ratib, Matthieu Funk, Ren› Perrier, Christian Girard, and Marianne Logean

A hospital-wide picture archiving and communication
system (PACS) project is currently under development
at the University Hospital of Geneva. The visualization
and manipulation of images provided by different
imaging modalities constitutes one of the most chal-
lenging component of a PACS. It was necessary to
provide this visualization software on a number of
types of workstations because of the varying require-
ments imposed by the range of clinical uses it must
serve. The user interface must be the same, indepen-
dent of the underlying workstation. In addition to a
standard set of image-manipulation and processing
tools, there is a need for more specific clinical tools
that can be easily adapted to specific medical require-
ments. To achieve this goal, it was elected to develop a
modular and portable software called OSIRIS. This
software is available on two different operating sys-
tems (the UNIX standard X-11 / OSF-Motif based work-
stations and the Macintosh family) and can be easily
ported to other systems. The extra effort required to
design such software in a modular and portable way
was worthwhile because it resulted in a platform that
can be easily expanded and adapted to a variety of
specific clinical applications. Its portability allows us-
ers to benefit from the rapidly evolving workstation
technology and to adapt the performance to suit their
needs.

KEY WORDS: digital imaging, workstation, image-
manipulation software, portable software, PACS.

O NE OF THE MOST challenging problems
of picture archiving and communications

system (PACS) development is the design of
appropriate image-display manipulation tools
adapted to medically oriented users. Because
there ate different requirements that depend on
the clinical usage and the imaging modalities, it
is necessary to provide different types of work-
stations in different sectors of a PACS. Report-
ing stations require a very high-speed display of
a large number of images, whereas manipula-
tion workstations need high processing perfor-

From the Digital Imaging Unit, Center of Medical lnformat-
ics, University Hospital of Geneva, Geneva, Switzerland.

Address reprint requests to Yves Ligier, PhD, Digital lmaging
Unir, Center of Medical lnformatics, 24 Micheli du Crest,
University Hospital of Geneva, 1211 Geneva 4, Swit2erland.

Reprinted with permission from Medical lmaging VI: Picture
Archiving and Communications Systems, Society of Photo-
Optical Instrumentation Engineers, 1992.

0897-1889 / 92/0503-0008503. O0 / 0

mance. However, the aim is to provide a com-
mon user interface on the different hardware
platforms to minimize the need for user training
and support. The users should only need to be
trained once to use this variety of workstations.

To achieve such a goal, we decided to develop
a modular and portable software called OSIRIS ~
for the display and manipulation of medical
images provided by the different imaging modal-
ities. It is designed to handle images from
different imaging modalities as individual im-
ages or in sets of images. This development is
part of a hospital-wide PACS 2 under develop-
ment at the University Hospital of Geneva.
OSIRIS was developed using object oriented
programming language C+ + and its user inter-
face is based on a graphic, window-based envi-
ronment. Two different windowing environ-
ments are currently supported: the standard
X-11/OSF-Motif and the Macintosh system
(Apple Computer, Cupertino, CA). Our selec-
tion of windowing environment was based on
the criterion of availability, manufacturer inde-
pendence, and official support. We opted for
Unix-based workstations with an X l l window-
ing system because it can be considered a
standard. We also chose the Macintosh system
because it is a widely available desktop system
in the hospital (at least in Geneva) and many
users have requested the ability to use it also as
a medical imaging station. The choice of the
Xl l windowing system was made to insure
portability over a large range of Unix-based
workstations. Furthermore, development on the
Macintosh platform was carried out with a
common core showing portability to non-Unix/
X11-based platforms.

The software is designed to allow easy custom-
ization and expansion of the image manipula-
tion and analysis tools while maintaining a
uniform user interface with the same basic
functions accessible on all platforms. It must be
adaptable to specific needs. For example, radiol-
ogists and clinicians do not analyze images in
the same way; consequently, they require differ-
ent processing tools. The system must also be
easily expandable to accommodate new analysis
tools needed for certain types of images. This

176 JournalofDigitallmaging, Vol 5, No 3 (August), 1992: pp 176-184

PORTABLE IMAGE-MANIPULATION SOFTWARE 177

software is designed as a platform for new
software developments onto which special tools
and extensions can be easily added.

This report describes the OSIRIS software
program and its structure. The different fea-
tures and tools of the program and the software
architecture are described. The cost and extra
effort required for such a development is dis-
cussed further at the end of the report.

OSIRIS DESCRIPTION

General Design

The OSIRIS software is designed asa general
digital medical image-manipulation and -analy-
sis software. It can be used in different clinical
implementations with some degree of customi-
zation while maintaining consistency between
different setups. The user interface, based on
windows, icons, buttons, and menus, is adapted
to the needs of physicians and does not require
extensive skills in operating a computer. An
OSIRIS session can contain several windows,
each of which contains a set of images specific to
a patient examination or study. The basic struc-
ture of the software is designed to be easily
adaptable to different imaging modalities for
radiological and nonradiological images. It is
intended asa software program for interactive
manipulation and analysis of images rather than
a simple viewing tool.

OSIRIS is intended to be used with images
from different imaging modalities, andas such it
should provide a variety of generic processing
tools applicable to different images. The process-
ing and analysis tools ate divided into two
different types: the generic image-processing
and -analysis tools, and the more specific quan-
titative and clinical analysis tools. The latter can
be implemented in a modular fashion according
to the needs of specific users. The first type of
general image manipulation and processing tools
is further divided into the following categories:
(1) image manipulation tools, such as zooming
and panning, contrast and intensity adjustment,
magnifying glass, rotation and flipping, and
reordering images; (2) image processing tools,
such as filters, adaptive histogram equalization,
isocontours, image combinations, display of glo-
bal and regional histogram, and cross-section
histogram; (3) annotation and drawing tools,
such as text annotations and arrows and lines;

and standard analysis tools, such as coordinate,
angle, and local density measurement and re-
gions of interest (ROIs).

OSIRIS offers an intuitive and user-friendly
access to the generic tools such as zoom function-
alities, inverse video mode, magnifying glass,
rotation, flipping, image reordering, and color
manipulation. Figure 1 shows an example of an
OSIRIS window. The most important tools
(zoom, inverse, etc) are directly accessible
through buttons located on the left of the main
window, and the other tools are accessible
through the different menus. All operations can
be executed through the manipulation of a
pointing device such asa mouse or a trackball.

lmage Display Functionalities

Using a conventional graphic window-based
user interface, images are displayed in overlap-
ping resizable windows. Because digital image
modalities tend to provide sets of images (tomo-
graphic images, dynamic images, etc), a window
may contain one or more images.

For the display of sets of images, two different
modes of image presentation are provided: the
stack mode and the tile mode (Fig 2). The tile
mode allows display of all the images of a set
side by side. The stack mode allows browsing
through the images sequentially displaying only
one at a time. A dynamic mode is also provided
in which all the images of a set are displayed
sequentially in a movie mode. This mode is
often used to simulate real-time movements,
such as a beating heart, or for viewing volume
images from different angles. The speed of this
movie mode is adjustable. Several movies can be
run simultaneously in different windows for
comparative evaluation.

Contrast and Intensity Adjustments

Another important basic tool is the manipula-
tion of image contrast, intensity, and color
settings, generally referred to as intensity win-
dow width and level. It is provided by the means
of a dedicated control panel (Fig 3) on which
the user can choose among different color
look-up tables (gray scale or pseudocolors) and
transformation functions (linear, logarithmic,
etc). The adjustment of the range of intensities
is performed through two cursors representing
the lowest and highest intensity values as well as

178 LIGIER ET AL

....................]
x:83 ~:17S ~at: ?SZ

Roi D a t a

M Rg~ 02602 k',~�91 oi- l

(96.~) (]81.1~3) (s6.~8)

Min i 127 Mean : 66~ Max : I14.~
Paea ~921.0 Urdts :[l~X~].~ 2

lo~~it~~

Fig 1. Typical window of the OSIRIS user interface.

by setting the intensity window width and level
values, allowing easy adjustment of the contrast
and intensity of an image interactively in real
time. Also, because images displayed in dif-
ferent windows could be used for comparative
evaluations, the settings of each window are
adjustable separately.

The dynamic range of some images may
largely exceed the range of intensity levels that
can be displayed at one time on a screen. The

software performs an optimal mapping of the
image intensity values into the display range.
Typically, medical images will have ah intrinsic
dynamic range of up to 12 of 16 bits deep (4,000
and 65,000 intensity levels, respectively), whereas
most of the common display systems support
8-bit displays that will allow only 256 levels to be
displayed at one time. Interactive adjustment is
made in real time on the available dynamic
range of the display (typically 256 levels), and

PORTABLE IMAGE-MANIPULATION SOFTWARE 179

A B
Jk3" MR47080I,JFV ~ P ' I =

Fig 2. Stack (A) and tile (B) display modes.

Fig3. Color-control dialogue window.

when done the image in its full dynamic range is
remapped to the screen.

Overlays
OSIRIS provides a way of defining and dis-

playing graphic overlays that can be added
directly to an image and manipulated as sepa-
rate objects. Two kinds of overlays are possible:
annotations and regions of interest. Annota-
tions allow the emphasis of certain parts of an
image by attaching a short text to a given point
in the image (Fig 1). With OSIRIS, ah annota-
tion consists of two parts: a short label attached
to a point on the image with an arrow pointing
to it, and an extended text that is displayable in
a "Post-it," a pop-up window that resembles
Post-it brand self-adhesive notes (3M Commer-
cial Office Supply Division, St Paul, MN) where
the user can type comments and descriptive
remarks related to a particular object on the
image.

A second type of overlay is provided for
regional analysis of the images and their con-
tent. Regular and irregular ROIs can be drawn
manually on the images. Regular ROIs consist
of circles, ellipses, and rectangles, and irregular
ROIs can be drawn as polygons or using a pen
tool for free drawing of irregular geometrical
shapes. An ROI can be edited or modified at
any time, allowing the user to further adjust or
adapt the contour to corresponding structures

180 LIGIER ET AL

on the image. An ROl not only is an outline but
also consists of a specific region of the image on
which different measurements and processing
tools can be applied, such as filters. Statistical
data of the contents of the region (maximum,
minimum, and average intensity values, histo-
gram of intensity distribution, etc) can be dis-
played in a separate window. A_ll the overlays
are handled as objects that are separate from
the image itself. They can be moved, modified,
deleted, or saved with the image.

Image-Processing Tools

OSIRIS provides some generic image-manip-
ulation tools such as zoom, image rescaling,
magnifying glass (which allows the enlargement
of just a portion of an image), rotation, flipping,
and reordering of the images. Processing and
analysis tools such as filters, adaptive histogram
equalization, isocontours, image combinations,
cross-section histogram, coordinates, angles, lo-
cal density measurement, and ROIs are also
provided.

These image-processing functions provide a
generic set of tools that can be used by more
specific analysis tools. For example, ROIs can
be generated by automatic or semiautomatic
image segmentation algorithms. These segmen-
tation algorithms can be developed for particu-
lar imaging modalities, and the resulting con-
tour will have the properties of manually defined
ROIs. Conversely, quantitative analysis tools
(using clinically relevant parameters) can be
applied to manually drawn ROIs on an image or
set of images. Typical examples of specific
analysis tools could be the measurement of
vascular stenosis, the evaluation of cardiac wall
motion, or the quantification of the shape of
some bone structures.

SOFTWARE ARCHITECTURE

Design

The two environments selected for the devel-
opment of the OSIRIS software are the Unix-
based workstations with XI1 and OSF/Motif
windowing system and the Macintosh computer
family with its own windowing environment and
the MacApp development library provided by
Apple. These two environments are very dif-
ferent, thus making it impossible to carry out
the development of OSIRIS for one platform

and then install it on the other. We decided to
develop OSIRIS for both platforms simulta-
neously while trying to minimize system-specific
developments. We opted for an object-oriented
approach 3 that allowed us to structure the
software into different modules in a relatively
independent manner. We designed most mod-
ules as abstract data types. An abstract data
type describes a family of data structures not by
an implementation (as an algorithm would) but
by the list of services available on the data
structures. From the outside world, an abstract
data type is viewed asa "black box" providing a
set of services. Such an approach allows us to
specify what a module has to offer to other
modules without exposing what it is and how it
is implemented. Designing each module as ah
abstract data type ensures a high cohesion
inside each module while limiting the coupling
between them. We chose C+ + as the standard
implementation language. Its notion of class
allows the implementation of the concept of
abstract data type.

After choosing the implementation language,
we had to solve the problem of system-depen-
dent libraries. The graphic user interface, includ-
ing the management of the mouse, the key-
board, and the windows, is based on such
libraries. Thus, we have been forced to study the
different system libraries in detail and elaborate
a virtual library that can satisfy our needs and
be implemented on each type of workstation.
This library is not justa tool kit, it also defines
the core of the application structure as the
MacApp library does on the Macintosh plat-
form. There is no such generic structure pro-
vided with X/Motif.

Figure 4 shows the OSIRIS software architec-
ture. The UIN (Unit› d'Imagerie Num›
kernel defines a generic application structure
from which OSIRIS is directly inherited. This
kernel has been implemented on both systems.
Most of its implementation is system specific,
but include common object definition and class
interfaces. The OSIRIS kernel is a second layer
built on top of the UIN kernel that provides the
basic functionality for the management of a set
of digital images. It includes some system-
dependent parts such as the objects composing
the user interface (eg, buttons and menus).
Some other parts are system independent such

PORTABLE IMAGE-MANIPULATION SOFTWARE 181

/
Fig 4. OSIRISsoftware architecture.

as the management of a set of images in a
window (eg, OMedImage, ORealImage, OLay-
outManager, and OMedStudy).

Figure 5 presents the generic application
structure provided by the UIN kernel and the
derived application structure used for OSIRIS.
It is important to note that the UIN kernel is
more than justa tool kit providing some indepen-
dent tools. On the Macintosh side, it has been
implemented with the MacApp library, which
defines a similar application structure. On the
Unix-based workstation, such a library does not
exist and one had to be developed.

The UIN kernel includes a set of classes of
which the most important are the following:
UINApplication (creation/destruction of ah ap-

UIN generic = Osiris
structure inheritance structure

[UINApplication) [Session)
I I [UINDocument) [Medical Study]
I I [UINWindow] [Window]

[UINSysPane] f Layout

[U I N S v s P i x ~ [Medical I m ~
~ ~ s~PixP, a nD~e~~~~ "----~ Ÿ dIm:l~~2a~ge% UINSysPixPane }

[UINSysPane ~ ~
~~_~~SysPane l\
[UINSysPane 1 \

Fig 5. Generic application structure and OSIRIS application
structure.

plication, management of a list of documents),
UINDocument (reading and writing of a docu-
ment in a file), UINWindow (management of
windows), UINPane (management of the dif-
ferent parts, called panes, that constitute a
window), UINPixPane (management of a pix-
map in a pane), and UINDialog (window dia-
logues).

Object Ownership Structure
Figure 6 gives an overview of the object

ownership structure, which is more appropriate
than the class hierarchy structure to give a
different view of the complete software architec-
tute.

The most important objects of this structure
ate the following: the object Medical Study
manages a set of images specific to a patient
examination. The number of images can vary
from one to 100. Each object of this type
corresponds to a window in which images are
displayed. In a normal OSIRIS session, several
windows can coexist. The Layout Manager takes
care of the management of the different display
modes (stack and tile modes). The Medical
Image handles all the information related to an
image such as the image itself, annotations,
ROIs, and the image-related data. The Real
Image deals with the original data read from
disk (image with 8- or 16-bit pixel depth) and
provides some basic image-manipulation facili-

(Session 1

(Input/Outpu~ (M~~ r] I W,ndow I [S:p£ t)

Fig 6. Object ownershipstructure.

182 LIGIER ET AL

ties such as rotation, flipping, and filtering. The
image display is managed by the parent class
UINPixPane of the class Medical Image. The
displayable image pixel depth is system depen-
dent (currently 8 bits on each system) and can
be different from the original image pixel depth
(which is usually 8, 12, or 16 bits). The color
adjustment is realized by the OColorPanel class.

The user interface has also been designed
and implemented using an object-oriented para-
digm. Every component is an object. Tbus
windows, menus, icons, and buttons are indepen-
dent objects capable of handling the basic
display and behavior functions and send a
message to other objects when activated. The
user interface objects are generally inherited
from the system library classes and are system
dependent, but the user interface remains the
same for any workstation. Our virtual library
binds directly into MacApp on the Macintosh
and into OSF/Motif widget library under X-11.

Extensibifity and Portability
OSIRIS has been designed to be used a s a

platform allowing an easy integration of more
specific analysis tools. The object-oriented para-
digm is based on the notion of modularity and
independence between modules. A new tool
can be developed as a separate object, and its
integration requires the modification of the
source code in only a limited number of other
objects.

A new tool will work according to the follow-
ing schema: (1) activation through a menu
command, (2) possible requirement of a dia-
logue window to specify some values or options,
(3) access to different data structures, (4) treat-
ment on these data, and (5) display in a result
window.

Activation through a menu command is the
only task requiring the insertion of some instruc-
tions in the existing code. The dialogue and
result windows can be easily developed from the
UINDialogWindow and the UINDataWindow
provided by the UIN kernel. They are system
independent. A complete schema is provided by
OSIRIS to access the different data structures
such as image pixel values and overlays. The
treatment to apply to the data must be defined
by user specific algorithms.

We decided to develop OSIRIS simulta-

neously for two different types of workstations.
It was therefore important to precisely identify
which objects would be system dependent and
to group them in a basic library. The goal was to
avoid the development of identical software
modules in parallel and to develop only a single
module compatible with both systems. Thus, the
task of porting OSIRIS to another environment
would mainly consist of implementing this basic
library (UIN kernel) with the facilities offered
by any new graphic environment. Furthermore,
the X-11 windowing environment is available on
a large variety of Unix-based workstations on
the market and should allow an easy transfer of
OSIRIS to all of them.

WHAT IS THE DEVELOPMENT COST?

To the generic question of extra development
cost, the simplest answer is that the cost is
higher than that for just one development but
lower than the cost of two separate develop-
ments. To give a more elaborate answer, we
must consider the following questions. Why is
such a development desirable? Is it necessary?
Are there any advantages? What are the poten-
tial long-term savings that can be expected from
such added development costs?

Considering our hospital setup and users'
requirements, it was necessary to provide our
software on the different environments (Sun/
Unix/X-11/OSF-Motif-based workstations and
Macintosh workstations). It was important to
avoid having different development reatas for
each environment working separately. Such an
approach would result in two completely dif-
ferent software programs that would be harder
to update and maintain. We opted to have a
single team developing a single software with
two roots.

The team is composed of four full-time peo-
ple including two designers and two analyst/
programmers. The two designers work jointly to
elaborate the software structure by defining
objects, each working as an expert for each
system to ensure the compatibility of the de-
fined objects with both systems. The two pro-
grammers work independently, one on a Unix-
based workstation and one on a Macintosh.
Designers are also involved in the programming
effort according to the same schema. One part
of the code is system specific (mainly the basic

PORTABLE IMAGE-MANIPULATION SOFTWARE 183

library, the UIN kernel), developed for both
environments, but another part is system inde-
pendent, developed by one person. Such a
software component is then controlled and
integrated by another team member for the
other system. This control by a different person
is very important. It serves a sa quality-control
mechanism because an effort is made to pro-
duce easily understandable codes, and the dis-
covery of bugs at this phase saves a considerable
amount of time. Up to now (July 1992) the
source code is approximately 45,000 lines, of
which two thirds are system independent and
one third is system specific, corresponding to
the implementation of the UIN kernel and the
basic user-interface objects. With the system's
current architecture, an advanced user can
easily develop custom tools (eg, processing fil-
ters or quantitative analysis algorithms). The
code of such specific tools should be based on
the OSIRIS kernel and therefore remain system
independent.

At the beginning of this project (June 1990),
the specifications of the OSIRIS project (user
interface and functionalities) had already been
established as a result of a first prototype
developed on the Macintosh and called the
CALIPSO/Explorer. 4 From that point, we en-
countered different problems because it was our
first real experience in software development
according to the object-oriented paradigm. We
spent a few months trying to elaborate the right
object structure, but none was found to be
satisfactory. We decided to begin implementing
a first version and then to refine our structure as
we progressed. The following development envi-
ronments were also new for the team: a new
programming language C+ + (common to both
environments), new windowing systems X-11/
OSF-Motif, and MacApp. The first months
were spent developing expertise with these
different environments.

We chose the C+ +5 programming language
because it is an emerging standard and is widely
available, but there is no consensus about librar-
ies. The main problem is that there are different
windowing systems on different machines. The
tool kits available for building applications are
also different. The solution adopted in OSIRIS
consists of designing a virtual kernel, the UIN
kernel (Fig 4). Parts of this kernel need to be

implemented for the different host environ-
ments considered (depending on the hardware,
the operating system, and the windowing sys-
tem). Because it has already been implemented
on two different environments, we assume that
it will be easier to port the kernel to a new
environment.

CONCLUSlON

OSIRIS image-manipulation and display soft-
ware is being developed at the Geneva Univer-
sity Hospital to display medical images. It consti-
tutes an essential component of the PACS
system under development. This software is
designed to be portable across a variety of
workstations to satisfy different performance
needs. The present version runs on a Sun
workstation (Sun Microsystems, Inc, Mountain
View, CA) under Unix-X11-OSF/Motif and on
Macintosh workstations. A special effort has
been made to design the user interface and the
software architecture in such a way that is
usable by physicians and non-computer-ori-
ented users and easily adaptable to their needs.
The choice of a window-based graphic user
interface provides the most flexible and conve-
nient environment for the implementation of
complex image-manipulation tools through a
graphic and icon mouse-driven interface. The
use of object-oriented programming allows a
modular and expandable architecture. It also
allows better portability between platforms
through the isolation of hardware-specific func-
tions in generic object classes.

Although the development costs of software,
which is portable across very different worksta-
tion environments, is higher than for a single
environment, the quality of the software pro-
duced is significantly superior. The result is a
product that is both flexible and maintainable
and therefore likely to evolve over time. The
OSIRIS package and its source code are cur-
rently being distributed to universities and re-
search groups to promote the development of
additional processing and analysis tools. Several
groups are also porting this software to different
hardware platforms. It has been ported to IBM
RS-6000 workstations (International Business
Machines, New York, NY), to Hewlett-Packard
HP-APOLLO 9000 (series 720) workstations
(Hewlett Packard Co, Palo Alto, CA), and to

184 LIGIER ET AL

the DEC-5000 family from Digital Equipment
Corporation (Maynard, MA).

Along with the local usage in Geneva, this
platform was also adopted as part of a Euro-
pean teleradiology project called TELEMED,
regrouping 17 partners from 9 different coun-
tries. It is used asa consultation workstation for
long-distance teleradiology using high-speed net-

works over Europe. Further developments are
in progress that will allow cooperative work
between different users who can remotely ma-
niputate images on several workstations simulta-
neously. This extra feature of program synchro-
nization on multiple workstations is a specific
requirement for teleradiology and remote con-
sultation.

REFERENCES

1. Ligier Y, Funk M, Ratib O, et al: The OSIRIS User
Interface for Manipulating Medical Images. Proceedings of
NATO ANSI meeting on Picture Archiving and Communi-
cation System (PACS) in Medicine, • Switzerland,
1990

2. Ratib O, Ligier Y, Hochstrasser D, et al: Hospital
Integrated Picture Archiving and Communication System
(HIPACS) at the University Hospital of Geneva. Proc SPIE
1446:396-404, 1991

3. Booch G: Object Oriented Design with Applications.
Redwood City, CA, Cummings, 1991

4. Ratib O, Huang HK: CALIPSO, an interactive soft-
ware package for multimodality medical image analysis on a
personal computer. J Med Imaging 3:205-216, 1989

5. Ellis M, Stroustrup B: The Annotated C++ Refer-
ence Manual. New York, NY, Addison-Wesley, 1990

