
Vector  Q u a n t i z a t i o n  D i s t o r t i o n  of  M e d i c a l  
U l t r a s o u n d  Fea tures  

Brian Krasner, Shih-Chung B. Lo, and Seong Ki Mun 

Pruned-tree structured vectored quantization (PTSVQ) 
was applied to the Iower five gray scale remapped bits 
of normal and fatty ultrasound liver images. The upper 
bits were compressed reversibly. This combination of 
techniques is termed PTSVQ with splitting. The effect 
of the compression on the difference in texture be- 
tween normal and fatty liver images was studied at 
different compression rates and distortions. The 
changes in texture were measured by changes in the 
principal components of the covariance matrix of 
image vectors. The vectors were the same size as 
those used in the compression technique. There were 
clear differences in the components of normal and 
fatty liver images. These differences were largely 
removed by the PTSVQ with splitting technique even 
at average single pixel distortions several times smaller 
than the image noise. These results suggest that the 
effect of compression on second order statistics should 
be measured when evaluating algorithms in addition 
to the first order average distortion. 
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S MALL VECTOR quantization errors could 
cause degradation in features derived from 

and used to classify medical ultrasound images 
of normal and fatty livers, according to an 
earlier report5 The quantization errors were 
small relative to the noise present in the images. 
Preprocessing of the images that reduced the 
vector quantization (vq) error  actually in- 
creased the degradation. ~ The data thus posed 
the problem of finding the component of error 
that causes feature degradation given the non- 
monotonic relationship between the average 
quantization error and the feature degradation. 
Related to this problem, the component  of the 
overall average error that leads to feature degra- 
dation may be relatively small. This may due to 
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either spatial or statistical localization of error 
that leads to the following questions: 1) Can 
edge regions be found in ultrasound images at 
which a disproportionately large vq error oc- 
curs? If so, what is their frequency of occur- 
rence? and 2) Alternatively, is there a small 
component in the covariance relationship be- 
tween neighboring pixels that is disproportion- 
ately distorted by vq? In each question, it is 
assumed that the small component is responsi- 
ble for the feature used in classification. 

This study concentrated on statistieal localiza- 
tion of the error. The following experiment, 
designed to find statistical localization, pro- 
vided interesting results. The covariance matrix 
is estimated for pixels in an encoding bloek. The 
principal components ate calculated. The rela- 
tionship of different components to feature 
classification is measured. The selective effect 
of vq errors on components is determine& 

The following results and conclusions were 
determined: There are principal component 
(pc) statistics that are related to previously used 
classification features. More importantly, the pc 
statistics can be used as classification features. 
The principal components generating these fea- 
tutes are in fact small relative to the main 
components and are selectively degraded by vq, 
even with small overall normalized mean 
squared errors. 

These results indicate that vq effectively rep- 
resents the major correlations between pixels in 
a block but not the minor components. The 
major correlations are enough to represent 
significant classification information that is 
stored in pixels in different blocks. However, 
useful classification information within a block 
is lost. A vq method that explieitly encodes pixel 
statistical components instead of values may be 
a useful method of resolving this problem. 

METHODS 

The methodology in this article can be summa- 
rized as follows: 

1. An ultrasound radiologist collected ultra- 
sound images of normal and fatty livers; 

2. The ultrasound radiologist selected re- 
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gions of interest (ROIs) on the liver for 
analysis; 

3, The images were compressed /decom-  
pressed at varying bit rates with pruned- 
tree s t ructured vectored quant izat ion 
(PTSVQ) with splitting; 

4. Features were measured from each im- 
age's ROl; 

5. For each class of liver images at different 
compression rates, eigen matrices and val- 
ues were calculated for the covariance 
matrix of the ROl  vectors of that class and 
compression rate; 

6. Additional features based on the eigen 
matrices and values were calculated; and 

7. For each compression level for each tech- 
nique, the ability of a statistical discrimina- 
tor to distinguish fatty and normal liver 
images was tested. 

Note that the general approach in the methods 
discussed below is to simulate the design and 
use of a compression technique in a realistic 
environment, and then test the effects of this 
technique with a tissue characterizer experi- 
ment designed to reveal any significant statisti- 
cal effects of the compression. These steps are 
described in more detail below. 

Irnage Acquisition and Description 
Volunteers provided the normal liver images. 

Fatty livers were selected retrospectively from 
previously diagnosed cases. For the purposes of 
this initial study, only obviously fatty livers were 
selected. Ultrasound images were acquired on 
three ultrasound machines, ah ATL Ultra- 
Mark-9, an ATL UltraMark-8, and an ATL 
UltraMark-9 HDI (Advanced Techn Labora- 
tory, Bothel, WA). Details are described in a 
previous study. ~ The video output from the 
ultrasound machines was digitized and acquired 
using a CommView medical imaging network 
(Philips, Shelton, CT). 

For the data compression codebook design 
(see below), 14 normal liver images, four fatty 
liver images and two hepatitis images were 
chosen in approximate proportion to their occur- 
rence in the radiology department examina- 
tions. This selection sampling followed the goal 
of trying to simulate the use of compression in a 
realistic setting. The normal liver images were 
taken from five subjects, the fatty liver images 

from two subjects, and the hepatitis liver images 
from two subjects. Images taken with both 17- 
and 12-cm fields of view were included. 

To facilitate statistical analysis of the effect of 
the compression technique on the tissue charac- 
terizer, this study used approximately equal 
numbers of fatty and normal liver images taken 
at one field of view, 17 cm. Twenty-two normal 
images from nine subjects and 24 fatty liver 
images from seven subjects were used. One 
ROl  was taken from each image giving 22 
normal liver ROIs and 24 fatty liver ROIs. The 
ROIs were 1- to 2-cm square regions taken from 
as near as possible to the center of the liver 
image and chosen to avoid any deterministic 
structures such as blood vessels. 

Vector Quantization Technique 
Vector quantization is a technique for repre- 

senting a block of image values or vector, by the 
vector in a codebook that is closest to the 
original vector. Splitting is a technique for 
decomposing image pixel values into the high 
and low values. The high values are compressed 
reversibly while the low values are compressed 
via PTSVQ. 2 

The use of PTSVQ to compress medical 
magnetic resonance images has been described 
in detail. 3 Briefly, there are two stages of 
PTSVQ, a codebook design step and the image 
compression step. The codebook design takes as 
input a series of input images and uses these to 
construct a tree structure coder. Coding is 
accomplished by comparing an input vector to 
both the left and right node vectors of a binary 
tree and going to the node whose vector is 
closest to the input vector. This continues until 
a leaf of the tree is reached, at which point a 
code is assigned equal to the binary representa- 
tion of the path used to reach the leaf. Initially a 
complete tree is obtained, which codes a vector 
with the number of bits equal to the number of 
levels in the tree. If branches are removed from 
this tree (pruned), when a leaf is reached fewer 
bits are needed to describe the traversal but at a 
cost of more distortion in the final representa- 
tion. Test images are encoded by the complete 
tree to gain statistics on the average number of 
times a node is used and the distortion that 
would be produced if the node's vector was used 
to represent the image vector. A series of 
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subtrees are then generated by successively 
removing the node that produces the least 
added distortion per reduction in bits needed to 
represent the image. 

The vector size used in this study was 4, 
corresponding to 2 x 2 blocks of pixels. 

Compression rates and distortion were varied 
by choosing successively smaller size trees pro- 
duced by the PTSVQ technique. 

The error metric used to quantify the error 
produced by the compression technique was the 
normalized mean squared error (NMSE). The 
NMSE is calculated by dividing the average 
squared difference between the original pixel 
vatues and the processed pixel values by the 
sample variance of the pixel values. The average 
and sample variance are taken over the whole 
image. 

Generation and Use of Whitening Matr& 

A matrix was generated so that a 2 x 2 block 
of pixels transformed with this matrix would 
have 0 estimated non-diagonal covariance val- 
ues. Such a matrix is referred to a s a  whitening 
matrix. The values of a vector transformed by 
this matrix are called components.  The process 
of generating this matrix is shown in Fig 1. The 
eigenvectors and eigenvalues were determined 
by the Jacobi method. 4 The eigenvector corre- 
sponding to the largest eigenvalue is termed the 
first eigenvector and so on. The eigenvectors 
were ordered according to the size of the 
eigenvalue. Therefore,  the first component  re- 
fers to the dot product of a vector with the first 
eigenvector and so on (Fig 1). 

Feature Extraction 

Three  commonly used features in ultrasound 
tissue characterization can be derived from co- 
occurrence matrix, fractal dimension, and run 
length statistics. 1,5 Of those features, this article 
will use the long run Iength emphasis, lrem, for 
comparison purposes with the principal compo- 
nent statistics, since lrem was found to be the 
most powerful feature for distinguishing fatty 
and normal livers, irem is defined: a histogram of 
run length frequencies is determined and then 
the long run length emphasis is determined by 

lrem = ( l / N )  * E Iength 2 * histogram (length) 

where Irem is the long run length emphasis, 
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Fig 1. Generation of whitening matrix. 

length is the run length, histogram (length) is 
a count of the run of the given length and N 
is the total number of pixels. By multiplying 
the histogram value by the length squared, a 
nonconstant re]ationship between lrem and 
(length*frequency) is established where the 
joining of several shorting runs into one longer 
run will increase the long run length emphasis. 
Runs were taken in the vertical direction after 
dividing the pixel values by four. 

Features were also derived from the covari- 
ance matrices of the ROl  vectors. A whitening 
matrix was calculated from the combined nor- 
mal ROl  vectors as discussed earlier. When 
classifying a normal ROl,  the whitening matrix 
was recalculated with that ROI's vectors left 
out. Each ROI's  vectors were transformed by 
the whitening matrix, the resulting components 
squared, and, finally, the average squared com- 
ponents were calculated. The average squared 
second component,  evar2, and average squared 
fourth component,  evar4, were used as features. 
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Each ROI's covariance matrix and corre- 
sponding eigenmatrix and eigenvalues were also 
calculated. The first eigenvector of the covari- 
ance matrix was selected. Similarly the first 
eigenvector of the combined normal ROl  covari- 
ance matrix was selected. The angle between 
these two vectors, eangl,  was used as a feature. 

Statistical Analysis Using Hotelling Trace 

The Hotelling Trace Criterion, symbolized by 
J in this section andas  thefeature distance in the 
rest of this article is used as a measure of the 
ability of a set of features to distinguish between 
classes. It is a mu[tivariate genera[ization of the 
univariate Student t test statistic. The sample 
covariance matrix for a class i is defined as 

Si = E [(x - u ) ( x  - u F ]  

where E stands for the expected value, u is the 
sample mean feature vector and x is the ob- 
served feature vector value. Then the Hotelling 
trace criterion, J, is defined as: 

J = tr {Sw 1Sb} 

where L i s  the number of classes, Sw is the 
within-class scatter matrix, 

L 

Sw = E P(wi) Si, 
i=l 

and Sb is the between-class scatter matrix, 

L 
S~, = ~ P ( w i ) ( u i  - u o ) ( u i  - u o )  T. 

i-1 

uo is the sample mean for the mixture of all 
classes. P(wi) is the a prior probability for class 
wi and ui is the sample mean for class wi. In this 
study, the number of fatty and normal livers 
tested for diagnostic accuracy was artifieially 
kept equal so that P(wi) can be left out of the 
above equations. An important property of J, or 
the "feature distance," is that for normal distri- 
butions it predicts the total diagnostic accuracy 
for a receiver operating characteristic curve 
based on the use of those features, where 
diagnostic accuracy is defined as the percentage 
of correct choices on a two-alternative (disease, 
no disease) forced-choice test. The relationship 
is: 

Az = f~~5 exp(_ t2 /2 )d t  

where Az represents the total diagnostic accu- 
racy. To give an idea of this relationship over 
the range of feature distances seen in this 
article, a feature distance of 1 gives an Az of 
0.91, whereas a feature distance of 0.4 gives an 
Az of only 0.82. 6 

RESULTS 

Difference Between Overall and ROl NMSE 

The NMSE value, as stated earlier, is calcu- 
lated from the whole image. Ir the distortion 
and image variance is calculated just for the 
ROI regions themselves, the NMSE is much 
higher. For example, when the overall NMSE is 
0.0004, the NMSE for the ROIs is 0.004 for 
normal liver images and 0.19 for fatty liver 
images. However, given that a large percentage 
of the variance is due to noise, the compression 
distortion even for the ROIs is still several times 
less than the noise. For comparison with previ- 
ous articles, the results will be given using the 
overall NMSE. 

Differences in Eigenvectors and Eigenvalues 
of Normal and Fatty Livers at Different 
Compression Rates 

The eigenvectors and eigenvalues of the co- 
variance matrices for normal and fatty liver 
ROI vectors are shown in the Table 1 with the 
eigenvectors shown in order of decreasing size 
of their corresponding eigenvalues. Table 2 
shows similar eigenvectors and eigenvalues for 

Table 1. Eigenvalues and Eigenvectors for Uncompressed 
Fatty and Normal Liver Images 

C1 C2 C3 C4 

Normal Liver 

Eigenvalues 811.4 113.9 28.2 12.0 
0.50 0.43 -0.57 0.49 
0.49 0.57 0.43 -0,49 

Eigenvectors 
0.50 0.55 0.42 -0.52 
0.51 0.42 0.55 0.50 
Fatty Liver 

Eigenvalues 860.7 75.6 56.5 35.1 
0.50 0.40 0.52 0.57 

Eigenvectors 0.50 -0.56 0.28 0.59 
0,49 0.63 0.45 0.39 
0.50 0.49 0.67 0.42 

I Angle I between 
eigenvectors 0.02 0.12 0.21 0.20 

C1-C4, components 1 through 4, 
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Table 2. Eigenvalues, Eigenvectors for Fatty and Normal 
Liver Images at NMSE, 0.0004 

C1 C2 C3 C4 

Normal Liver 

Eigenvalues 810.6 113.4 29,0 12.7 
0.50 -0.43 0.57 0.49 

Eigenvectors 0.49 0.57 0.44 -0.50 
0.50 0.55 0.42 -0.52 
0.51 0.43 0.55 0.50 
Fatty Liver 

Eigenvalues 915.4 76.9 25.1 10.6 
0.50 -0.46 0.53 0.49 
0.50 -0.52 -0.48 0.49 

Eigenvectors 
0,50 0.52 0.46 -0.51 
0.50 0.48 -0.52 0.50 

I Angle I between 
eigenvctors 0.02 0.08 0.08 0.01 

C1-4, components 1 throu9h 4. 
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Fig 2. Plot of smallest eigenvalue of covariance matrix 
versus normalized mean squared error. ( - - N - - ,  normal liver; 
- - F - - ,  fatty liver). 

images compressed by 
with a NMSE of 0.0004. 

The tables show that 
ences in uncompressed 
ROl  eigen vectors and 
amount  of compression 
these differences. 

PTSVQ with splitting 

there are large differ- 
normal and fatty liver 
values. Even a small 
error greatly reduces 

Using the principle component  transforma- 
tion (whitening matrix) derived from the com- 
bined normal ROIs,  the average squared compo- 
nents of the combined fatty liver ROIs  were 
determined. These component  values for uncom- 
pressed images were 1.06, 0.67, 2.00, and 3.06. 
Only the first average squared component  value 
was close to the expected value of 1.0 for a 
normal ROl  vector. 

Vector  quantization even at the lowest disto> 
tion and highest bit rates removes this differ- 
ence in principal components.  The average 
squared component  values with this small error 
are 1.13, 0.68, 0.88, and 0.87, so that the third 
and fourth components  are now much closer to 
the expected values for normal ROl  vectors. 

This elimination of differences in the smallest 
components  is maintained at higher compres-  
sion rates. 

In addition to these immediate  effects of even 
a small amount of vector quantization compres-  
sion, there ate changes that occur as the com- 
pression rate increases as can be seen in Figs 2 
and 3. For normal ROIs  the smallest eigenvalue 
increases and the largest decreases. There  is 
also an increase in the variance along the 
direction specified by the smallest component  of 

the uncompressed,  normal whitening matrix. 
Similar changes occur for fatty ROIs.  

Use of Cornponents and Eigenvector Angles 
as Features 

Table 3 shows the values of the evar4, evar2, 
and eangl  features for normal and fatty liver 
images at different compression errors. At 0 
compression error, the differences between nor- 
mal and fatty livers in the evar4 and evar2 
features are statistically significant (P < .05 
using a standard t test). The difference in eangl 
is not statistically significant. The eangl  feature 
is included because even though by itself it 
could not distinguish between normal and fatty 
liver, in combination with the other two features 
it increases the classification accuracy. With 
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Fig 3. PIot of smallest average squared component of 
covariance matrix versus normalized mean squared error, 
( - -N - - ,  normal liver; - - F - - ,  fatty liver) 
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Table 3. Effect of PTSVQ With Splitting on Component 
Features 

evar4 evar2 eang 1 
NMSE Hotellin 9 

(bits/pixel) Fat Normal Fat Normal Fat Normal Trace 

0.0/8.0 3.13 1.00 0 .64  1.00 0,22 0.07 1.52 
(1.99) (0.38) (0.28) (0.40) (0,20) (0.04) 

0.0004/3.8 0.85 1.00 0 .65  1.00 0,06 0.07 0.34 
(0.32) (0.35)(0.27)(0.39)(0,05) (0.03) 

0.005/1.8 0 .82 1.00 0 .64  0.99 0,06 0.09 0.32 
(0.44) (0.39)(0.27) (0.43)(0,05) (0.06) 

NMSEs of 0.0004 and 0.005, the difference in 
evar4 is no longer statistically significant, whi[e 
the difference in evar2 remains statistically 
significant (P < .05). The differences in eangl  
are not statistically significant at any compres- 
sion level tested. 

As can also be seen in Table 3 the combina- 
tion of evar4, evar2, and eangl is a powerful 
classifier of fatty and normal livers with an 
estimated accuracy of 96%. The table shows 
that even a small amount of compression pro- 
duces an immediate large reduction of classifica- 
tion accuracy, though the residual accuracy is 
maintained at higher compression rates. 

The usefulness of the principal components 
in distinguishing fatty and normal liver ROls 
can be better visualized by examining a scatter 
diagram of the second and fourth components 
(Fig 4). Figure 4 shows that only 4 of 24 liver 
images would be misclassified by a simple linear 
classifier. However, the scatter diagram in Fig 5 
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Fig 4. Scatter diagram of normal versus fat liver ROl 
components for uncompressed images. (A, normal; 0 ,  fat) 
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Fig 5. Scatter diagram of normal versus fat liver ROl 
components for images compressed using PTSVQ with split- 
ting at a normalized mean squared error of 0.0004. (A, normal; 
0 ,  fat) 

shows that even a small amount of compression 
error produces a large amount of overlap be- 
tween the fatty and normal liver ROl  compo- 
nents, which greatly reduces their value as 
diagnostic features. 

CONC/USlON 

Relationship of PTSVO With Splitting 
to Covariance Components 

PTSVQ with splitting did not represent accu- 
ratefy the minor components of the covariance 
matrix of fatty liver images. Because there is no 
inherent reason why vector quantization can not 
represent such patterns, the reason for this 
failure was probably the relative absence of 
fatty liver images in the training sets. The minor 
components of the normal liver images were 
accurately represented. 

Practically, the need to include large number 
of images of every class in the training set to 
represent minor components is a serious flaw. 
The important classes of images may not be 
known or available during the design phase. 
Also, representing less frequently occurring but 
important classes equally well will degrade the 
overall average performance of the compres- 
sion technique. 

A possible solution would be to code the 
components directly rather than the pixels. For 
instance, the image could be divided into 64 x 
64 blocks. For each block, the covariance matrix 
and mean vector for each block would be stored 
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requiring 56 bytes fo ra  2 x 2 image. From the 
covariance matrix in both the compressor and 
decompressor, a transformation matrix could be 
determined, which would allow determination 
of components in the compressor and retrieval 
of pixel values in the decompressor. The minor 
components would be compressed at low bit 
rates, but the direction and overall magnitude 
would be recovered from the covariance matrix. 

Relationship of Cornponent Values, Features 
With Previous Feature Results 

Comparing Fig 6 with Figs 2 and 3, increases 
in compression error lead to similar increases in 
vertical long run length emphasis and the small- 
est eigenvalue of normal liver images. In addi- 
tion, there is a small, parallel decrease in the 
second largest eigenvalue, The increase in verti- 
cal long run length emphasis reflects a smooth- 
ing of the image in the vertical direction (longer 
vertical runs). The changes in the eigenvalues 
reflect a similar smoothing in the vertical direc- 
tion. The e•genvectors corresponding to the 
smallest and second [argest eigenva[ues can be 
rewritten in two-dimensional form (Table 4). 

The second largest eigenvalue eigenvector 
clearly corresponds to high frequency variations 
(or edges) in the vertical direction, while the 
smallest eigenvalue eigenvector corresponds to 
high frequency variations in a diagonal direc- 
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Fig 6. Plot of the Iong run len9th emphasis feature versus 
normalized mean squared error using PTSVQ with splitting. 
( - - ,  normal liver; - - m  I ,  fat ty  liver) 

Table 4. Two-Dimensional Representation of Eigenvectors 

Smallest Eigenvalue Second Largest 
Eigenvector Eigenvalue Eigenvector 

0.49 0.49 Q,43 -0,57 
0.52 0.50 0,55 0.42 

tion. The decrease in the second largest eigen- 
value with an increase in the smallest eigen- 
value reflects a shift from vertical high frequency 
components to diagonal high frequency compo- 
nents. The decrease in vertical high frequency 
components reflects a smoothing in the vertical 
direction, which parallels the change indicated 
by the increase in vertical long run length 
emphasis. 

However, the agreement in changes is not 
complete-- the changes in long run length em- 
phasis start before the changes in the eigenval- 
ues. This may be due to a change in the covariance 
between vectors earlier than the change in 
covariance within vectors. A component anaiy- 
sis could also be done to studv this possibi[ity. 

Use asa Feature 

The components seem to be useful for distin- 
guishing fatty and normal liver, but given the 
directionality of ultrasound images, rotation in 
invariance is ah issue. It might be necessary to 
determine normal components at different liver 
orientations, determine the orientation of test 
liver ROIs, and then apply the closest oriented 
set of component transformations to achieve 
good results. 

Error Metrics for Evaluating Compression 
Techniques 

The global, first order error metric, NMSE, is 
not ah adequate measure for evaluating the 
effect of compression techniques on medical 
images. The error in medically significant ROIs 
cou[d be much higher than the overall error. 
Additionally, components of the covariance be- 
tween neigbboring pi• cou]d be significantly 
distorted even though the first order error is 
small relative to the first order variance. The 
following alternative method of measuring error 
is suggested: 1) divide the image into small 
blocks (eg, 64 x 64); 2) calculate image vector 
principal components for each block; and 3) 
measure and report on percentage error in each 
component for each block. 
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