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Recent dramatic reductions in the cost of computer 
random access memory (RAM) and the ability of newer 
microprocessors and associated personal computer 
operating systems to address large amounts of mem- 
ory make novel strategies for high-speed image pro- 
cessing possible. We developed image processing 
algorithms that use this newly available memory to 
achieve increases in effective processing speed. These 
algorithms rely on the use of precomputed Iookup 
tables to avoid repeated use of relatively expensive 
machine instructions, such as multiplications and divi- 
sions. Programs using this strategy to perform single 
photon emission computer tomography (SPECT) analy- 
sis were written in C and assembly language and 
tested on a Macintosh Quadra 950 (Apple Computer, 
Cupertino, CA) having 64 megabytes of RAM. The 
measured processing times are competitive with most 
dedicated nuclear medicine computers. A general 
implementation of such programs will allow personal 
computers to compete with dedicated imaging sys- 
tems, at a substantial reduction in cost. 
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p ERSONAL COMPUTERS are gaining in- 
creasing acceptance for use in basic acqui- 

sition, display, processing, and telecommunica- 
tion of radiological imaging data. 1,2 However, 
the perception that minicomputers, worksta- 
tions, and/or dedicated hardware are needed 
for advanced or complex processing remains. 
This perception partly derives from the obvious 
hardware-related processing superiority of the 
larger computers (Table 1). Minicomputer cycle 
times are two to three times faster than those of 
the most advanced personal computers; the 
data paths of minicomputers have twice the 
capacity of those in personal computers; and 
the floating-point units of minicomputers are 
faster and more sophisticated than those in 
personal computers. These factors result in 
significant differences in speed between mini- 
computers/workstations and personal comput- 
ers using the standard measures of million 
instructions per second (MIPS) and million 
floating-point operations per second (mega- 
flops), with personal computers suffering a 10- 

fold or more disadvantage in raw computing 
power. 

Our objective was to explore methods of 
improving image processing capabilities of per- 
sonal computers to make them more competi- 
tive with dedicated systems. We focus on the 
processing of single-photon emission computed 
tomography (SPECT) studies because this anal- 
ysis is commonly used in nuclear medicine and 
is among the most time consuming. Addition- 
ally, SPECT analysis uses a number of image 
processing functions that are also useful in 
analysis of other types of radiological images. 

Although dedicated coprocessing boards can 
be used to improve the performance of personal 
computers, the cost of such coprocessors can 
easily exceed that of the host personal com- 
puter. Also, nonportable code must be written 
to support such external hardware. 

Thus our techniques for improving personal 
computer image processing were restricted to 
software enhancements. Specifically, we exam- 
ined the areas of (1) computer memory usage 
and (2) integer arithmetic. 

Computer Mernory Usage 
In the past 5 years, there has been a dramatic 

increase in the amount of random access mem- 
ory (RAM) that can be addressed by personal 
computers. In the same period, the cost of 
RAM has decreased precipitously. Specifically, 
the amount of RAM addressable by personal 
computers has increased from approximately 2 
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Table 1. Comparison of Minicomputers and Personal 
Computers 

Personal 
Minir Computers 

Clock speeds (MHz) 50-100 30-50 
Data paths (bits) 64 32 
Floating point High-speed Single chip 

units specialized 
MIPS 100-300 20-30 
Megaflops 10-30 2-3 

Abbreviations: MHz, Megahertz; MIPS, million instructions 
per second; Megaflops, million floating point operations per 
second. 

megabytes to at least 256 megabytes, whereas 
the cost per megabyte has decreased from $300 
to $30. 

This increased availability of RAM changes 
cost versus time trade-offs in various types of 
image processing. If the result of an involved 
calculation is used more than once, it can be 
stored and recalled as necessary, rather than 
the calculation being repeatedly performed. 
Therefore,  older image processing strategies 
that required recomputations may not be opti- 
mal in situations in which memory usage can be 
increased greatly. 

Trading increased memory usage for reduced 
computing time has in fact been used in specific 
circumstances in image processing with minicom- 
puters and worksta t ionsY Similar solutions 
should apply to the latest personal computers. 
Additionally, a memory-intensive computer code 
that is optimized to the speci¡ microprocessor 
involved should also allow substantial speed 
improvements on even the most basic arith- 
metic operations, such as multiplications and 
divisions. When such improvements are com- 
bined and applied to the steps in complex 
operations, signi¡ increases in effective pro- 
cessing speed might be achieved. 

Integer Arithmetic 

The speed of processing on personal comput- 
ers can also be improved by substituting integer 
arithmetic for floating-point calculations. For 
example, consider the Motorola 68030 micropro- 
cessor (Motorola Inc, Schaomburg, 1L) and the 
compatible 68882 floating-point unit. A system 
incorporating these two devices can perform a 
floating-point addition in 56 clock cycles. 6 How- 

ever, the same system can perform a 32-bit 
integer addition in only 2 cycles. 7 

Conveniently, in most medical imaging, im- 
age pixel values are acquired as integers, and 
usually are returned to that format even after 
floating-point processing. Furthermore, in calcu- 
lations in which one must deal with fractional 
values, it may be possible to use fixed-point 
instead of floating-point arithmetic. With fixed- 
point arithmetic, one retains the speed advan- 
tage of integer arithmetic, while only sacrificing 
the ability to deal with numbers having very 
large or very small magnitudes. 

The use of integers or fixed-point numbers 
has another important advantage over the use 
of floating-point numbers; the range of integer 
values will often be small enough so that direct 
calculations can be replaced by table lookups. 
For example, in an image having an 8-bit depth, 
each pixel has a value ranging from 0 to 255. Ir 
one wanted to multiply every pixel in the image 
by a constant, eg, 0.3, then one could create a 
table of 256 elements enumerating all possible 
integer products. Thus, for each pixel, rather 
than multiplying by 0.3, the pixel value would be 
used as an index into the precomputed product 
table. For the 68030/68882 processors, the sav- 
ings can be illustrated as follows: a floating 
point multiplication requires 76 clock cycles('; an 
integer/fixed-point multiplication requires 28 
cycles7; a table  lookup requires only 8 cycles. 7 

MATERIALS AND METHODS 

For the reasons previously mentioned, we concentrated 
on SPECT analysis in the preliminary development of 
memory-inlensive algorithms. Specifically, we explored three 
image processing functions, ie, convolution, linear interpola- 
tion, and filtered backprojection. 

The algorithms were implemented asa combination of C 
and assembly language using Think C (Symantec Corp, 
Cupertino, CA) as the development environment. The re- 
sulting code was tested on a Macintosh Quadra 950 (Apple 
Computer, Capertino, CA), which contains the Motorola 
68040 microprocessor running at 33 MHz. Sixty-four mega- 
bytes of RAM were used in the system. 

1 ~1"-1 2 1-] 
Fig 1. Linearweighted-smoothing kemel. 
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Fig 2. Planar weighted-smoothing kernel. 

Convolution 
In SPECT analysis, both .linear and planar convolution 

can be used. For example, linear convolution is used to filter 
the projection data before tbey are backprojected. In linear 
convolution, a resulting pixel is computed as the weighted 
sum of neighboring linear pixels. The kernel is a vector of 
the weights used in the convolution. The kernel for a linear 
weighted-smoothing filter is shown in Fig 1. 

Planar convolution is used in two-dimensional prefilter- 
ing of SPECT projection data and postfiltering of the 
reconstructed slices. In planar convolution, a resulting pixel 
is computed as the weighted sum of a square matrix of  
source pixels. The kernel is a matrix of the convolution 
weights. The kernel for a p l a n a r  weighted smooth is shown 
in Fig 2. In this example, a direct computat ion of each 
resulting pixel requires nine muhiplications,  eigbt additions, 
and one division. 

The first step in creating a high-speed convolver is 
stipulating that integer or tLxed-point arithmetic will be used 
throughout.  Kernels can be scaled to accomplish this. 

Lookup rabies are then used to eliminate the multiplica- 
tions. The sizes of the lookup tables can be limited to the 
maximum pixel value in the source image. For example, ir 
the maximum pixel in an image has a value of 2.000, the 
sizes of any lookup tables can be limited to 2,001 elements.  

Finally, any symmetry in the kernel can be exploited to 
minimize the number  of Iookup tables required. This is 
illustrated in Fig 3. The weighted smoothing filter has only 

three unique elements;  therefore, only three multiplicative 
lookup tables ate needed. Each rabie has pro + 1 elements ,  
where Pro is the maximum pixel value in the source image. 

Linear Interpolation 
One-dimensional  linear interpolation of projection vec- 

tots can be used in SPECT analysis to create a more 
accurate backprojection. Two-dimensional linear interpola- 
tion can be used to increase the size of reconstructed images 
without "pLxelation,'" ie, without simply enlarging the source 
pixels. Ah example of this effect is given in Fig 4. 

A model for planar linear interpolation is shown in Fig 5. 
This model is based on the relative position of the center  of  
the destination pixel to the centers of the four source pixels. 
The value of the destination pixel is computed a s a  distance- 
weighted sum of the source pixet values. 

As with convolution, it is desirable to use lookup tables to 
eliminate multiplications. The use of lookup tables may at 
first appear  impractical; if each destination pixel value is 
considered only as the weighted sum of source pixel values, 
then we must  concede that there is usually too much 
variation in source weights among destination pixels to use 
any lookup scheme. However, ir we consider the possibility 
of two tab[e Iookups per source pixel, then the problem is 
approachable.  

Under  these conditions, the worst-case requirement  is 
one lookup table per destination row and one lookup table 
per destination column. Even this is of dubious use, because 
the overhead of constructing all the rabies could easily 
exceed the resulting savings, at least for a single image. 
Fortunately, conditions are usually more favorable. First, ir 
the source and destination images are square, then half as 
many lookup tables are required. Second, ir the interpola- 
tion is mapping each image dimension into an integer 
number  of pixels, then the number  of  Iookup tables per 
dimension simplifies to: 

da 

GCD(dd, d.,) 

where dd is the destination dimension, d~ is the source 
dimension, and GCD indicates the greatest common divisor 
of two numbers .  If the destination dimension is some 

Fig 3. Lookup tables for pla- 
nar weighted smooth kernel. 

Kernel = 

1 2 1 
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Fi9 4. Uninterpolated and interpolated images. 

integer multiple of the source dimension, eg, k, then k is also 
the number of lookup tables needed for that dimension. 

Although implementing this interpolation method is non- 
trivial, the savings make it worthwhile. The interpolation 
equation can be rearranged so that the computation of each 
destination pixel requires only six table lookups and six 
integer additions or subtractions. 

Filtered Backprojection 
Filtered backprojection used in SPECT reconstruction 

consists of two basic steps, filtering, and backprojection. 
The filtering of the data is a linear convolution of the 
projection vectors, which can be accomplished as previously 
described. The backprojection is illustrated in Fig 6. The 
projeetion veetors are the data aequired from a gamma 

camera, optionally prefiltered and interpolated. The recon- 
structed slice is the image matrix into which the projection 
vectors are backprojected. 

Lookup rabies are useful in backprojection because 
several slices ate typically reconstructed at the same time 
from a given data set. Ir is useful to retain the results of 
geometric computations so that it is not necessary to repeat 
the computations for each slice. In the method that we 
implemented, a lookup table is associated with each pixel of 
the slice reconstruction matrix. Each table has as many 
elements as there are projection vectors. Each table ele- 
ment contains an index stating, for the corresponding 
projection vector, which element of the projection vector 
should be backprojected (ie, added) to the slice pixel 
owning the table. A special projection vector index is used 
to handle cases in which no element should be backpro- 

PI' (0,0) 

P~, (x,g 

I w  �9 

P3, (1 ,o) 

P2, (1,0) 

P4, (1,1) 

Source pixel centers 
(unity spacing) 

Destinationpixelcenter 
0 ~ x < l  
0~y<l 

Interpolation equation: 
Pd = P1 (1-x)(1-y) + P2 x(l"y) + P3 (1-x)y + P4 xy Fig 5. Planar linear interpola- 

tion model. 
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Reconstructed slice Each pixel is sum of backprojected vectors 

TI II] ~rojectionVectors 
I:ig 6. Backprojection element. 

jected. This method is v e ~  flexible in that it allows a rb i t r av  
resolutions and relative scaling for the projection vectors 
and reconstructed slice. 

This method is illustrated by the example in Fig 7. The 
lookup tables are redefined for more comprehensible two- 
dimensional viewing. Each table is associated with one of 
the projection vectors. The tables ate two-dimensional 
arrays, and the positions of their entries correspond to the 
locations of pixels in the reconstructed slices. As previously 
mentioned,  the table entries are indices into the projection 
vectors. Thus, every entry in the first column of the 0 ~ table 
points to the first entry in the 0 ~ projection vector, and so on. 
Similarly, in the 90 ~ case, all table entries f o r a  particular 
row point to the projection vector entry adjacent to that row. 

RESULTS 
With the exception of bilinear interpolation, 

the memory requirements for the various image 
analysis functions ranged from 3 to 10 mega- 
bytes when applied to 64 frames of 128 by 128 
pixel, 12-bit data. Bilinear interpolation re- 
quired a maximum of 0.2 megabytes plus the 
memory needed to store the images, typically 
less than 10 megabytes. Twelve megabytes were 

required to perform all of the steps of SPECT 
analysis without reloading or recomputing any 
data. 

The individual tasks were complex enough 
that their execution times could be measured 
accurately. Important examples will follow. 

Planar Convolution (Two-Dimensional 
Prefiltering) 

A 13 x 13 planar kernel was used to spatially 
prefilter a set of 64 frames of 128 x 128 pixel 
images a n d a  set of 32 frames of 64 x 64 pixel 
images. The operation took 60 seconds for the 
128 pixel-wide images and 6 seconds for the 64 
pixel-wŸ images. 

Linear Convolution (Backprojection Filtering) 
A 27 element linear kernel was used to filter a 

set of 64 frames of 128 x 128 pixel images anda  
set of 32 frames of 64 x 64 pixel images. The 
operation took 15 seconds for the 128 pixel- 
wide images and 2 seconds for the 64 pixel-wide 
images. 

Backprojection 
Sixty-four views of 128 x 128 pixel data and 

32 views of 64 x 64 pixel data were backpro- 
jected. The operation took 60 seconds for the 
128 pixel-wide data and 5 seconds for the 64 
pixel-wide data. 

Linear lnterpotation (Bilinear Smoothing) 
A set of 64 slices of 64 x 64 pixel images anda  

set of 32 slices of 32 x 32 pixel images were 
interpolated to 256 x 256. The operation took 4 

LUT for 0 ~ 

pl p2 p3 p4 
pl p2 p3 p4 
pl p2 p3 p4 
pl p2 p3 p4 

Ipllp21p3fp41 -_ 

LUT for 90 ~ 

P51p5 p5 p5 lP5 
p6 p6 p6 p6 p6 
p7 p7 p7 p7 p7 
p8 p8 p8 p8 , p8 

Projections 7 
Fig 7. Backprojection Iookup tables. 



210 PRATT AND LEAR 

seconds for the 64 x 64 pixel slices and less than 
2 seconds for the 32 x 32 pixel slices. 

It is also useful to consider the overall time 
required to process a SPECT data set, starting 
with the raw projections and ending with the 
interpolated transverse images. The complete 
procedure could be performed in approximately 
2 minutes for 128 slices of 128 pixel-wide 
projections. The time drops to 15 seconds for 64 
slices of 64 pixel-wide projections. 

Therefore, the speeds of performing both the 
constituent operations and the overall SPECT 
processing are rapid. In fact, they are compa- 
rable to those of many dedicated commercial 
systems. For example, using the reconstruction 
of 64 frames of 128 x 128 pixel data as a 
benchmark, we found that a speed of approxi- 
mately 1 second per slice could be achieved on 
the Quadra 950. This compares to values of 1 
second per slice on the hardware-supported 
Siemens ICON (Siemens Medical Systems Inc, 
Iselin, NJ) of 1 second per slice on the worksta- 
tion-based ADAC Pegasys (ADAC Laborato- 
ries, Milpitas, CA), and of 0.3 seconds per slice 
on the supercomputer-based Picker Odyssey 
(Picker International Inc, Cleveland, OH). 

DISCUSSION 

Integer arithmetic and lookup tables clearly 
are useful tools for improving the image process- 
ing performance of the latest generation of 
personal computers (Intel 80486-based [Intel 
Corp, Santa Clara, CA] or Motorola 68040- 
based). The memory requirements (approxi- 
mately 12 megabytes in our tests) are modest 
relative to the amounts of memory that personal 
computers can now use, and the cost for this 
amount of RAM is less than $1000. When 
extrapolating the requirements for other types 
of radiological imaging that use 512 x 512 pixel 
images as opposed to 128 x 128 pixel images, 
memory requirements are increased, but esti- 
mated requirements of 64 to 128 megabytes still 
are achieved easily with advanced personal 
computers. 

Importantly, we have shown that effective 
processing speeds can be achieved on advanced 
personal computers that are compatible with 
most current dedicated computers. The Quadra 
950 achieved benchmark speeds equal to work- 

station-based and hardware-assisted systems and 
speeds within a factor of three of a supercom- 
puter-based system. In other words, clinicaIly 
useful image processing can be performed with 
a relatively low hardware cost. 

Disadvantages of this memory-intensive ap- 
proach are primarily implementation issues and 
not end-user problems. As we have shown, 
implementation of time-saving algorithms can 
be complex compared with a straightforward 
use of the relevant equations. Additionally, 
better results are obtained when one gets 
"closer" to the underlying hardware. This means 
that one must worry about underflows and 
overflows in arithmetic operations. Also, the 
fastest routines are written in assembly lan- 
guage, which substantially reduces the portabil- 
ity of the code. However, as personal computers 
tend to evolve by using new processors (eg, 
Motorola 68040) whose microcode is compat- 
ible with that of previous processors (eg, Mo- 
torola 68030), code portability within a particu- 
lar line of computers is supported. 

Beyond the SPECT analysis examined in this 
study, lookup table-based algorithms have other 
important uses in two- and three-dimensional 
radiological imaging. For example, in gamma 
camera, ultrasound, and magnetic resonance 
imaging (MRI) data acquisition, tables can be 
used for fast image framing. Also, lookup table- 
based algorithms should be useful in applica- 
tions in which SPECT, position emission tomog- 
raphy (PET), computed tomography (CT), and 
MRI images are correlated, eg, volume rota- 
tions or reorientations, when interpolation of 
the data cube is desired. 

We conclude that the general implementa- 
tion of these new memory intensive algorithms 
will dramatically change the types of applica- 
tions in digital imaging for which personal 
computers are appropriate. The implementa- 
tion is straightforward for programmers, once 
the concept of trading memory for speed is fully 
appreciated (see Appendix A for examples). 
The resulting improvement in performance 
achieved by personal computers, combined with 
their low cost and high flexibility, will result in 
their increasingly being used as the main com- 
puters in medical image acquisition and process- 
ing systems. 
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APPENDIX A. SAMPLE 68040 CODE FOR LINEAR INTERPOLATION 
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This code fragment illustrates how calculating a linearly interpolated pixel can be performed 
with a few assembly language statements. This code is primarly intended for high speed screen 
display; overflow and roundoff issues make it less suitable for uses when high accuracy is required. 

The code fragment scans two adjacent rows of a source image to generate a destination row with 
more pixels than either of the source rows. The data registers pl,  p2, p3, and p4 contain source 
pixels with this geometry: 

pl p2 
p3 p4 

That is, pl  and p2 are from the upper row, and p3 and p4 are from the lower row. kl and k2 are 
scratch registers. 

The code is driven by a state table, which contains pointers to fraction lookup tables and jump 
vectors for each destination pixel. The fraction lookup tables are used to avoid multiplications in 
the calculation. Each table is 256 bytes long, and contains all possible results of multiplying a pixel 
value byte a fraction f, 0 < f < 1. The four jump vectors for row calculations are: 

Start-of-row--This causes a duplication of the first pixel in each row. It is the first entry in the row 
state table. 
End-of-row--This causes a duplication of the last pixel in each row. It is the last entry in the row 
state table. 
Horizontal-souree-incrementmThis entry point is used to advance the pixel values of the source 
image. To illustrate, suppose the result image has twice the width of source image. Then the source 
pixels are incremented horizontally once for every two destination pixels. 
No-source-increment--This is the entry point for the inner loop. This is where the computation of 
every destination pixel takes place. 

(a Start_of_row 
Move.B (upper_row_pointer) +, p2 
Move.B (lower_row_pointer) +, p4 

(o: End_of_row 
Move.B p2, pl  
Move.B p4, p3 
Bra.S ~No_source_increment 

(a Horizontal_source_increment 
Move.B p2, pl  
Move.B p4, p3 
Move.B (upper_row_pointer) +, p2 
Move.B (lower_row_pointer) +, p4 

~No_source_increment 
Move.B pl,  kl 
Move.B p3, k2 
Sub.B (horizontal_fraction_table, pl.W), kl  
Sub.B (horizontaLfraction_table, p3.W), k2 
Add.B (horizontal_fraction_table, p2.W), kl 
Add.B (horizontal_fraction_table, p4.W), k2 
Sub.B (vertical_fraction_table, kl.W), kl 
Add.B (vertical_fraction_table, k2.W), kl 
Move.B (final_transform, kl), (dstination_pointer) + 
MoveA.L (row_state_table)+, horizontal_fraction_table 
Move.L (row_state_table) +, DO 
Jmp (D0.L) ; Jump to next entry point 
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