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We introduce a novel technique for magnetic reso- 
nance image (MRI) restoration, using a physical model 
(spin equation). We determine a set of three basis 
images (proton density and nuclear relaxation times) 
from the MRI data using a nonlinear optimization 
method, and use those images to obtain restorations 
of the original image. MRIs depend nonlinearly on 
proton density, two nuclear relaxation times, T1 and 
Tz, and two control parameters, echo time (TE) and 
relaxation time (TR). We model images as Markov 
random fields and introduce a maximum a posteriori 
restoration method, based on non•inear optimization, 
which reduces noise while preserving resolution. 
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T HE SPIN E Q U A T I O N  ~ relates the image 
signal strength measured at a particular 

pixel, i, in image c, to three intrinsic properties 
of a pixel, PDi, TI~, and T2j, and to two 
measurement parameters,  echo time (TEc), and 
relaxation time (TRc): 

,~-,,/-~~�91 (-~~~1t Sc'i=PD'exp~ T2i ] ~ l - e x p  ~ TI, ]]" (1) 

In this report we use equation 1 for simplicity, 
but our method is suitable to more accurate 
(and more complex) physical models also. Given 
a set of such measurements taken at a particular 
pixel, but with different TE and TR values, one 
could, in the absence of noise, invert the spin 
equation and solve for PD, T1, and T2. 2 These 
PD, T1, and T2 images can be used to generate 
images equivalent to data images obtainable 
with different TE and TR parameters,  thereby 
minimizing the MR system time. z-4 Because any 
TE and TR can be simulated from PD, T1, and 
T2, we refer to these three images as "basis" 
images. However, the inversion problem is ill 
conditioned unless TE and TR are chosen 
carefully. For arbitrary (but different) choices 
of TE and TR, a numerical method must be 
used for the solution. We develop this method 
by assuming that there exist three unknown 
images, PD, T1, and T2. At pixel i, a measure of 
the difference between a single measurement,  
Gc,i, and the physieal model from equation 1, 

may be written as 

1 
H~,i = ~ (S~,i- Gc,,) 2 (2) 

where ~r c represents the standard deviation of 
(assumed) stationary, signal-independent, isotro- 
pic uncorrelated additive Gaussian noise 5 on 
the cth measurement.  

Summing over the measurements and the 
pixels results in a function 

H~ = E E  He, (3) 
c i 

that represents the total difference between the 
measured data and the images resulting from 
the estimated PD, T1, and T2 values. Thus, if 
we can then find the values of PD, T1, and T2, 
which minimize HN, the "noise-cost" term, we 
will have a good estimate of these values. Such 
minimization may be accomplished by gradient 
descent of other  numerical techniques. 

Minimizing equation 3 over the PD, T1, T2 
domain results in a maximum likelihood (ML) 
restoration. If one has prior knowledge of some 
locally homogeneous characteristic of the sur- 
faces of the PD, T1, and T2 images, this 
knowledge can be applied in a "prior-cost" 
term, and a maximum a posteriori (MAP) 
restoration with greater noise reduction can be 
achieved. We use a measure of the difference 
between neighboring pixels to remove noise 
from the PD, T1, and T2 images because we 
assume that neighboring pixels belonging to the 
same tissue should appear similar, and should 
possess similar noise statistics. Our choice for 
this difference measure is based on our previous 
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Fi9 1, TE, 90; TR, 3,000. Left, Data; Right, MAP restoration. Three millimeter slice with 3-mm spacing, 

experience <7 with several approaches towards 
the nonlinear restoration of images. 

For a single pixel of interest, say pixel i, and 
its surrounding neighborhood, Ni, the prior cost 
for the PD signal may be represented by EpD,i, 
where 

s ( P D i -  PDi+n) 2 
"qCN i 

EpD J = (4) 
I 

2Or~D + ~ ,~~ (PDi - PDi+~0 2 

The value for o'pD ~ a well-chosen estimate of 
noise in the PD image, indicates the emphasis 
of smoothing on the PD image. The parameter  
is a smoothly changing annealing parameter.  At 
infinite "r, the prior term performs simple linear 
smoothing; a low-pass filter. As �9 is decreased, 

the influence of the prior term gives way to 
the noise term, and the restoration takes on the 
appearance of the ML solution as -r + 0. The 
prior energy formulations for T1 and T2 are 
isomorphic to that of PD. 

Summing the prior energy contributions re- 
sults in a function 

He = ~ (EpD,i + ETI,i + ET2,i) (5) 
i 

which represents a degree of smoothness within 
a local region of the PD, TI,  and T2 images. 
Thus, if we can find values for PD, TI,  and T2 
that minimize a cost hmction 

H = [I N + H~, (6) 

at each value of -r, starting at a high value for ~-, 
and hatting the process when T is small enough, 

Fig 2, TE, 17; TR, 500, Left, Data; Right, MAP restoration. Three millimeter slice with 3-mm spacing. 



NOISE REMOVAL FROM MULTIPLE MRI IMAGES 185 

Fig 3. TE, 32; TR, 3,000. Left, Data; Right, MAP restoration. Five 
before study. 

we will obtain a restoration that retains fidelity 
to the data, preserves step edges, and sup- 
presses noise. 

MATERIALS AND METHODS 

We acquired several seis of three images each from a GE 
Signa 5.2 scanner  with a 1.5 Tesla magnet  using spin-echo 
mode, acquiring one Tl-weighted study and one PD/T2-  
weighted multi-echo study f o r a  total of three images per 
set. "FE and TR values set for the presumably healthy brain 
in the left half of Figs 1 and 2 were 90 and 3,000 and 17 and 
51)0, respectively. The data corresponding to the TE and TR  
values of 30 and 3,000, respectively, are not shown. This 
particular image set was obtained from a study using 3-mm 
gaps between adjacent 3-mm slices with a field of view of 
22 cm. 

The brain images that show pathology in the left hall  of 
Figs 3 and 4 were obtained after administrat ion of gadolin- 
ium. The TE and TR values were set at 32 and 3,000 and 90 

millimeter slice with 1-mm spacing. Gadolinium administered 

and 3,000, respectively. The data corresponding to TE and 
TR  values of 17 and 417, respectively, ate not shown. This 
study used 1-mm gaps between 5-mm slices. The field of 
view was set at 22 cm. 

The noisy images of a presumably healthy brain in the left 
half of Figs 5 and 6 used TE and TR  settings of 90 and 900 
and 9(1 and 1,800, respectivety. The  data corresponding to 
TE and TR  values of  30 and 900, respectively, are not 
shown. This study used 0-mm gaps between 3-mm stices. 
Again, the field of view was fixed at 22 cm. 

AII of these data images were processed using both the 
ML and MAP algorithms. The H of equation 6 was 
minimized with respect to PD, TI ,  and T2 using gradient 
descent.  See Garnier  et al 7,s for details. Because only three 
data images were used during each restoration, the ML 
restorations showed no improvement  over the data. Values 
for the (re in the noise term were hand est imated from a 
region of tissue in each acquired image that appeared to 
have ah underlying piecewise-constant value. Values for 
(T~,D, (rTl, and CrT2 were similarly determined from a region of 

Fig 4. TE, 90; TR, 3,000. Left, Data; Right, MAP restoration. Five millimeter slice with 1-mm spacing. Gadolinium administered 
prior to study. 
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Fig 5. TE, 90; TR, 900. Left, Data; Right, MAP restoration. Three millimeter slice with 0-mm spacing. 

tissue in each ML-restored basis image that also appeared 
to have an underlying piecewise-constant value. 

RESULTS 

The images in the right half of Figures l 
through 6 are typical synthetic restorations 
produced by the MAP algorithm. The ~~, (rVD, 
GrT~, and CrT: were all determined from white- 
matter regions. We also used O'aD , O'TI and s re 
determined asa fraction oŸ the mean value from 
their corresponding white-matter signals in an 
effort to mode lan  equivalent degree-of-smooth- 
ness across all basis images, but found the 
restorations to be visually equivalent to those 
presented here. The intent of this work was to 
show the restoration ability of our approach; it 
was not our primary intent to develop a fast 
application tool. We wish to note that we have 

used the simplest possible gradient descent 
scheme, which a modern workstation would 
imptement in ~30 minutes. A factor of 5 or 10 
could be gained by using more efficient numeri- 
cal procedures, <~~ and similar algorithms have 
been accelerated by a factor of 30 to 40 using 
parallel processorsJ ~ 

CONCLUSIONS AND FUTURE WORK 

We have shown two novel results: (1) A 
method of computing PD, TI,  and T2 from any 
set of images with distinct TE and TR values. 
(Al1 previous reported work chose special val- 
ues for TE or TR, which simplified the coupled 
spin equations), and (2) a method for removing 
noise (while still preserving the sharpness of 
edges) from these images, which seems to be 

Fig 6. TE, 90; TR, 1,800. Left, Data; Right, MAP restoration. Three millimeter slice with 0-mm spacing. 
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superior to any method previously reported. 7 
When used in the spin-echo application, the 
method suffers from the requirement that the 
patient must remain motionless between the 
multiple studies that use dissimilar TR values. 
Although shown using readily available spin- 
echo images, the method is readily adaptable to 
other MRI imaging modes by simply changing 
the form of the physical relation equation. 

It may be argued that in conventional spin 
echo images, noise-like artifacts arise primarily 
from metabolic motion and are not (for the 
most part) from true random noise. However, in 
echo planar imaging, acquisition times are so 
short that motion artifacts are dramatically 
reduced and to some extent replaced by random 
noise (with which this algorithm performs best). 
In imaging using an magnetization transfer 
cross-relaxation contrast preparatory pulse, the 
formation equation has a form similar to equa- 
tion 1, and this method should be applicable to 
removing noise from such images. Investiga- 
tions are under way. 
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APPENDIX 

The formulation of Bayes' rule can be found 
in  FukumagaJ 1 Geman and Geman 12 rigorously 
and effectively applied Bayesian techniques to 
the restoration of images that were remodeled 
as Markov random fields. Marroquin, et aP 3 
applied regularization techniques using prior 
knowledge. Hiriyannaiah et al ~4 used determin- 
istic approximations for piecewise-constant res- 
torations. Bilbro and Snyder 15 later applied 
more sophisticated priors. 

Let G be a measured vector set of images, 
G = {gc}c=l,d and gc = [ g c , i ] i = l , n  where d is the 
number of channels in the vector set, and where 
gc,i represents the cth channel value associated 
with the ith pixel. Using similar notation, let 
S(F) represent the undegraded ideal images as 
a deterministic function of F, where F are the 
undegraded ideal basis images, and let N repre- 
sent additive noise such that G = S + N. Note 
that F = {f0}+=l,p and f, = [ f * , i ] i - l , n  where pis the 
number of basis images in the vector set, and 

where f,,i represents the value associated with 
the ith pixel of the 0th basis image. 

In Bayesian restoration, the most acceptable 
result is the estimate with the highest probabil- 
ity of occurrence. Let lb be an estimate of F. 
Bayes' rule gives the posterior distribution 11,12 
of F given the data Gas  

P(Gllb)P(1 b) 
P(I~I G) - P(G) (7) 

We refer to P(G/1 b) as the "noise term" and it 
describes the noise distribution. P(1 b) is called 
the "prior term" and it describes the a priori 
distribution that can be chosen using a priori 
knowledge about F. P(G) is constant and inde- 
pendent of f:, so to maximize the posterior 
distribution, we need only maximize P(G/F)  x 
P(F:). The ML approach does not incorporate a 
prior model, hence the restoration is based 
solely on the noise term. For the ML case, the 
noise that has corrupted S(F) is modeled as 
stationary, signal-independent additive Gauss- 
ian noise, hence P(G/F)  is given by 

exp ( -  1ANTCG1N) 
P(Gl t :  ) = P(N) -= (2Ÿ I1/2 (8) 

where CG denotes the covariance matrix of 
noise N, and [Col denotes the determinant of 
CG. Taking the negative log of p(G/lff) and 
harmlessly ignoring constant contributions, a 
"noise cost" of a cost function is obtained: 

1 
HN(1 ~, G) = ~ 2--5 i~  (Sc, i (~)  -- gc,i) 2' (9) 

2 ~  

for isotropic uncorrelated noise. 
Smoothing requires the use of an additional 

term in the cost function, the prior term, this 
term, P(F'), depends only on F, and should 
reflect some prior knowledge of the nature of F. 
For the case of MR images, the basis images 
should appear to be locally homogeneous in 
some important way. Because it is frequently 
used in similar restoration problems, 12 an expo- 
nential form is chosen for P(F): 

p(~) = exp (-Hp(l~)) (10) 
Zp 

where Zp normalizes P(lb). Hp(1 ~) in this in- 
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s t a n c e  is u s e d  to  m e a s u r e  a n d  r e g u l a t e  t h e  loca l  
h o m o g e n e i t y  o f  s o m e  c h a r a c t e r i s t i c  o f  t h e  basis  

images .  T a k i n g  t h e  n e g a t i v e  log  o f  P(1 ~) resu l t s  
in a " p r i o r  c o s t "  for  a cos t  func t ion .  
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