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Lossless image coding is important for medical image 
compression because any information Ioss or error 
caused by the image compression process could affect 
clinical diagnostic decisions. This paper proposes a 
Iossless compression algorithm for application to medi- 
cal images that have high spatial correlation. The 
proposed image compression algorithm uses a multi- 
level decomposition scheme in conjunction with predic- 
tion and classification. In this algorithm, an image is 
divided into four subimages by subsampling. One 
subimage is used as a reference to predict the other 
three subimages. The prediction errors of the three 
subimages are classified into two or three groups by 
the characteristics of the reference subimage, and the 
classified prediction errors are encoded by entropy 
coding with corresponding code words. These subsam- 
pling and classified entropy coding procedures are 
repeated on the reference subimage in each level, and 
the reference subimage in the last repetition is en- 
coded by conventional differential pulse code modula- 
tion and entropy coding. To verify this proposed 
algorithm, it was applied to several chest radiographs 
and computed tomography and magnetic resonance 
images, and the results were compared with those 
from well-known Iossless compression algorithms. 
Copyright �9 1996by W,B, Saunders Company 
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C OMPARED WITH analog radiograph film 
images, digital images have several advan- 

tages, such as flexible image processing, conve- 
nient database access, and errorless image repli- 
cation. However, digital imaging requires a 
large amount of data. Therefore, various data 
compression algorithms have been introduced 
to reduce the amount of data. t 

A common characteristic of digital images, 
including medical images, is that neighboring 
pixels have a high degree of correlation. Most 
data compression methods aim to reduce spatial 
redundancy by using this high-correlation prop- 
erty. Data compression methods ate usually 
classified into irreversible (lossy) and reversible 
(lossless) methods. A lossy scheme can attain 
very high compression ratio, eg, 10:1 or more, 
but does not allow exact recovery of the original 
image. On the other hand, a lossless scheme 
typically achieves a compression ratio of 2:1 to 

4:1, depending on the image characteristics and 
compression algorithms used, but the exact 
recovery of the original image is guaranteed. 2 
For medical applications, a lossless coding 
scheme is necessary because any information 
loss of error during the compression process 
can affect clinical diagnostic decisions. 

In lossless image compression, there are usu- 
ally two distinct steps, decorrelation and coding. 
Decorrelation is applied to remove the spatial 
redundancy from the original image so that the 
entropy of the decorrelated image can be de- 
creased. The amount of data is not decreased in 
the decorrelation step. In the coding step, the 
actual data compression is performed according 
to the entropy reduction by the decorrelation. A 
well-known method for lossless coding is vari- 
able length coding (VLC), which assigns short 
code words for highly probable pixel values and 
longer code words for less probable values. The 
performance of this coding step is limited by the 
entropy of the decorrelated image data; this is 
called Shannon's noiseless coding theorem? 

The efficiency of decorrelation is measured in 
terms of entropy. Let us denote the gray levels 
of the decorrelated image by fl, f2 . . . . .  fk, and 
let the probability of the gray level li be given by 
Pi. The entropy of the decorrelated image is 
defined as 

k 

H = - ~ ,  Pi "log2 Pi. (1) 
i=1 

The entropy H is the lower bound of the average 
code length obtained by using a VLC such as 
Huffman coding or Arithmetic coding? 

Several decorrelation algorithms for lossless 
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compression have been introduced, such as 
differential pulse code modulation (DPCM), 4,5 
hierarchical interpolation (HINT), 6 and predic- 
tion/classification. 7 In the study by Roos et al, s 
HINT was selected as the best decorrelation 
method for lossless compression. However, in 
the paper by Lee et al, 7 the prediction/ 
classification method showed the best decorrela- 
tion performance, especially for computed to- 
mography (CT) images. 

The above three algorithms are commonly 
based on a predictive decorrelation scheme. 
DPCM uses the previous pixels o r a  statistical 
model of the image to predict current pixels, 
whereas HINT uses a hierarchical interpolation 
method to predict pixels. The prediction/ 
classification method uses an interpolation 
method for prediction a n d a  classification 
scheme that divides the prediction error image 
into two groups according to a classification 
criterion, eg, absolute slope change. A common 
idea between the HINT and the prediction/ 
classification methods is the use of a reference 
subimage to predict the other subimages. An- 
other similarity can be found in the decomposi- 
tion of the raw image data. The decomposition 
in the prediction/classification method is very 
much similar to that in the three-level HINT 
method. 

This paper proposes a new lossless coding 
algorithm and compares its performance to 
those of the above three algorithms. The main 
structure of the proposed algorithm is based on 
the prediction/classification algorithm. There- 
fore, the proposed algorithm is mainly com- 
pared with the prediction/classification method. 
The proposed algorithm can be used for medi- 
cal imaging systems, eg, a picture archiving and 
communication system (PACS). 9 

The following sections briefly describe the 
HINT and prediction/classification algorithms 
and introduce the proposed algorithm, which is 
called multilevel decomposition (MLD). See 
Simulation Results and the comparison study to 
verify the high performance of the proposed 
algorithm. 

HINT 

HINT is a predictive decorrelation algorithm 6 
in which the encoding and the decoding pro- 
cesses are progressive. In HINT, ah image is 

subsampled at the locations identified by 1 in 
Fig 1. These pixels are used as reference values 
to predict other pixels. This subsampled image 
is coded by DPCM, which is followed by a VLC 
such as Huffman coding. In the second step, 
each pixel at location 2 is predicted by a 
two-dimensional (2D) linear interpolation of 
the four nearest pixels at loeation 1 as follows: 

P2(i, j) = 1/4[Rl(i, j) + Rl(i,  j + 1) 

+ Rl ( i  + 1, j) + Rl ( i  + 1, j + 1)], (2) 

where P2(i, j) is a predicted value at location 2, 
and Rl(i,  j) is the real pixel value at location 1. 
The difference between the predicted value and 
the real pixel value is encoded by VLC. Eaeh 
pixel at location 3 is predicted by a 2-D linear 
interpolation of the four nearest pixels in the 
horizontal and the vertical directions, ie, two 
pixels from location 1 and the other two pixels 
from location 2. In the case of a five-level HINT 
as shown in Fig lA, pixels at locations 4 and 5 
are processed by the same procedures as pixels 
at loeation 3. The differences between the 
original and the predieted values in the pixels at 
locations 3, 4, and 5 are also encoded by VLC. 

On the decoder side, the reconstruction pro- 
cess is similar to the encoding proeess. First, the 
pixels at location 1 are decoded by VLC, which 
is followed by DPCM. After the pixels at loca- 
tion 1 are reconstructed, each pixel at location 2 
is predicted by a 2D linear interpolation of the 
four nearest pixels at location 1, which were 
previously reconstructed. To recover the origi- 
nal pixel values at location 2, these predicted 
values are added to the corresponding differ- 
enee values at location 2, which were encoded 
by VLC in the eneoder. This process is repeated 

4 5 4 5 4 5 4 1 5  3 2 3 2 3 2 3 2 3  
5 2 5 3 5 2 5 3  1 3 1 3 1 3 1  

5 4 5 4 5 4 5 4 5  ! 2 3 2 3 2 3 2 3 _  
1 5 3 5 1 5 3 5 1  3 1 3 1 3 1 3 1  
5 4 5 4 5 4 5 4 5  2 3 2 3 2 3 2 3  
3 5 2 5 3 5 2 5 1 3  13131313  ~ 
5 4 5 4 5 4 5 J 4 5  3 2 3 2 3 2 3 2  
1 5 3 5 1 5 3 5 1  1 1 3 1 3 1 3 1 3 1  

Fig 1. Pixel classification for five-level HINT (A) and three- 
level HINT (B}. Pixels at Iower numbers are used to predict 
pixels at the next higher number. 
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for the pixel values at locations 3, 4, and 5, 
sequentially. 

PREDICTION/CLASSIFICATION 

The prediction/classification algorithm intro- 
duced by Lee et al, 7 is based on a predictive 
decorrelation method used in conjunction with 
a classification concept. In this algorithm, an 
image is decomposed into four subimages by 
subsampling the pixels at even and odd (both 
row and column) locations as shown in Fig 2, 
which is similar to three-level HINT. The four 
decomposed subimages (called reference [R], 
horizontal [H], vertical [V], and diagonal [D], 
respectively) are strongly correlated with each 
other because most images have very high 
correlation coefficients of around 0.95 between 
adjacent pixels. 1 

By using this high correlation property, the 
three subimages H, V, and D can be predicted 
from the reference subimage R by a one- 
dimensional linear of a one-dimensional third- 
order polynomial interpolation. The prediction 
error between the predicted subimage and the 
original subimage is classified into two groups 
by using the change in the absolute slope of the 
reference subimage, and the classified errors 
are encoded by VLC with corresponding opti- 
mum code words. The remaining reference 
subimage is encoded by DPCM followed by 
VLC. 

MLD is also a predictive coding method 
similar to the HINT and the prediction/ 
classification algorithms. The basic concept of 

MLD is based on the prediction/classification 
algorithm5 

In the MLD algorithm, an image is divided 
into four subimages, ie, R, H, V, and D subim- 
ages, according to their locations as shown in 
Fig 2, which ate the same as in the prediction/ 
classification method. Because the four decom- 
posed subimages ate strongly correlated with 
each other, the three subimages H, V, and D 
can be predicted from the reference subimage, 
R, where the predicted subimages are denoted 
by Hp, Vp, and Dp, respectively. Two different 
predictors ate used for this prediction, le, a 
one-dimensional third-order polynomial interpo- 
lator for the horizontal and the vertical pre- 
dicted subimages, a n d a  2D linear interpolator 
for the diagonal predicted subimage as shown in 
Fig 3, A and B, respectively. The one dimen- 
sional third-order polynomial interpolation pre- 
dictors are 

hp(i,j) = {-r( i , j  - 1) + 9r(i,j) + 9r(i,j + 1) 

- r ( i , j  + 2 ) } / 1 6  (3a)  

for horizontal predicted subimages and 

%0, J) = {-r(i  - 1,j) + 9r(i,j) + 9r(i + 1, j) 

- r(i + 2, j ) } / 1 6  (3b)  

for vertical predicted subimages. The 2D linear 
interpolation predictor is 

dp(i, j) = {h(i, j) + h(i + 1, j) + v(i, j) 

+ v(i,j + 1)}/4 (3c) 
for diagonal predicted subimages. 

Original Image (or reference subimage)  

r(1,1) h(1,1) r(1,2) h(l,2) r(1,3) h(1,3) 

v(1,1) d(1,1) v(1,2) d(1,2) v(1,3) d(1,3) 

r(2,1) h(2,1) r(2,2) h(2,2) r(2,3) h(2,3) 

v(2,1) d(2,1) v(2,2) d(2,2) v(2,3) d(2,3) 

r(3,1) h(3,1) r(3,2) h(3,2) r(3,3) h(3,3) 

v(3,1) d(3,1) v(3,2) d(3,2) v(3,3) d(3,3) 

R: reference subimage  H: hor izontal  subimage 

r(a,1) r(1,2) r(1,3) h(1,1) h(1,2) h(1,3) 

r(2,1) r(2,2) r(2,3) h(2,1) h(2,2) h(2,3) 

Decomposition r(3,1) r(3,2) r(3,3) 

V: vertical  subimage 

v(1,1) v(1,2) v(1,3) 

h(3,1) h(3,2) h(3,3) 

D: diagonal  subimage 

d(1,1) d(1,2) d(1,3) 

v(2,1) v(2,2) v(2,3) d(2,1) d(2,2) d(2,3) 

v(3,1) v(3,2) v(3,3) d(3,1) d(3,2) d(3,3) 

Fig 2. Decomposition by subsampling pixels at even and odd Iocations. Each subimage has one-half resolution in each direction. 
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9/16 

- 1 / ~  1/16 

r(i,j-1) r(i,j) hp(i,]) r(i,j+l) r(i,j+2) 
r(i- 1,j) r(i,j) vp(i,j) r(i+l,j) r(i+2,j) 

�9 

v(i,J b 

1/4 

1 /40h( i j )  

�9 (..)v(i,j+ 1) 

"dp(i'j ~-(/4 

1/4Oh(i+l j) 

Fig 3. Graphical descriptions 
of two interpolation methods for 
prediction. {A) One-dimensional 
third-order polynomial interpola- 
tion for Hp and Vp; (B) 2D linear 
interpolation for Dp. 

These predictions are not perfect, even though 
the image is highly correlated and the predic- 
tion is very intelligent. Therefore, the predic- 
tion error, which is the difference between the 
original subimage and the predicted subimage 
should be encoded for lossless compression. 
The prediction errors for the subimages Hd, Vd, 
and Do are defined as follows: 

hd(i , j) = h(i, j) - hp(i, j), (4a) 

Vd(i , j) = v(i, j) - %0, J), (4b) 

and 

dd(i, j) = d(i, j) - dp(i, j). (4c) 

In most images including medical images, 
these prediction errors will be very small, be- 
cause the four subimages are strongly corre- 
lated. These small errors can make the entropy 
of the prediction error subimages small so that 
compression performance can be improved. 
Although this prediction error is small value 
and less correlated, there is room to reduce 
statistical redundancy. The prediction error is 
expected to be small when the corresponding 
pixel values of the reference subimage, R, 
change smoothly, whereas the prediction error 
may be relatively large when the pixel values of 
R change rapidly. 

By using the above property, each pixel in the 
prediction error subimages is classified into two 
or three groups to get the minimum entropy. 
Two kinds of classification criteria are used. For 
the horizontal and the vertical prediction error 
subimages, the absolute slope change of the 
reference subimage is used. This criterion is the 
same as that of the prediction/classification 
algorithm. The absolute slope change are de- 
fined as 

Sh(i,j) = [Si - Si_li -{- ISj+I -- Sjl ,  (5a) 

where s t = r(i,j + 1) - r(i , j)  for horizontal 
subimages and 

Sv(i,j) = q  Si-li + ISi+l - si[, (5b) 

where si = r(i + 1, j) - r(i, j) for vertical subim- 
ages as shown in Fig 4A. For diagonal subim- 
ages, the maximum difference is used as the 
classification criterion, ie, 

Sd(i, j) = I max (i, j) -- min (i, J) l, (5c) 

where max (i,j) = Max {h(i,j), h(i + 1,j), 
v(i,j),  v(i,j + 1)} and ruin (i , j)  = Min {h(i,j), 
h(i + 1, j), v(i, j), v(i, j +. I)} as shown in Fig 4B. 

The threshold values of these classification 
criteria (Sh, Sv, and Sd) are defined experimen- 
tally according to the characteristics of the 

Fig 4. Classification criteria. 
(A) Definition of the slope param- 
eter s~ for the absolute slope 
change of Sv. (B) Classification 
criterion, Sd, for the diagonal pre- 
dicton error. 

Si+l 

i~s, ,s I 
r(i-1 j) r(i,j) r(i+l j) r(i+2,j) 

@ 
Oh(i j) 

v(ij& ov(ij+1) 

Oh(i+lj) 
max(ij) = Max{ h(ij),h(i+ld),v(ij),v(ij+l) } 
min(id) = Min{ h(ij),h• 1j),v(i,j),v(ij+l) } 
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R2 H2 r H2 
R1 HI  H1 

V2 D2 V2 D2 

VI Dl  Vl DI Vl 

HI  

DI  

Fig 5. Binary tree-structured muIti|evel decomposition pro- 
�9 (A) First-level decomposition; (B) second-level decompo- 
sition; and (C) third-level decomposition. 

reference subimage or the horizontal and the 
vertical subimages, which will be discussed in 
the following section. Finally, the classified 
prediction error subimages are encoded by 
using VLC, eg, a Huffman ~o or an arithmetic 
coding.; ,.~2 

The above procedures are for a first-levei 
MLD process. To get a second-level MLD 
process, the reference subimage, R, is decom- 
posed into four subimages again, and the above 
prediction and classification procedures are re- 
peated for the reference subimage as shown in 

Fig 5. A higher-level MLD process can be 
achieved by the same procedures, but the en- 
tropy reduction performance gets smaller. 
Hence, we only tried up to a three-level MLD in 
the simulation. AII the prediction error subim- 
ages can be directly encoded by VLC, whereas 
the final resulting reference subimage, called 
R3 in a three-level MLD, is decorrelated by 
DPCM and encoded by VLC. 

There are three major differences between 
the MLD and the prediction/classification algo- 
rithms. First, as the name of algorithm indi- 
cates, the prediction and classification pro- 
cesses ate iterated to the reference subimage in 
the MLD. Second, for prediction of the pixel 
values in the diagonal subimage, the MLD 
algorithm uses a different predictor from that 
used in the prediction/classification algorithm. 
In prediction/classification, two (when using 
the linear interpolator) or four (when using the 
third-order polynomial interpolator) pixels, 
which lie on the same diagonal axis in the 
reference subimages, are used for the one- 

Fig 6. Sample images used in 
the simulation. (A) One radio- 
graph CT head image, CT 1; (B) 
MR abdomen image, (C) radio- 
graph chest image; and (D) Lena 
image. 
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A (  A 

C 

B 

.? 

S / /  
�9 - :;2 ~ "~ 

Fig 7. Reference and predir 
error subJmages of a CT image (CT 1). 
The prediction error subimages are 
amplifled by a factor o f  16. (A) Refer- 
ence subimage, R; (B) horizontal pre- 
diction error subimage, H~; (C) ve r t i -  
cal  predicton error subimagen V~; and 
{D) diagonal prediction error subim. 
age, D~. 

dimensional interpolation. However, in the 
MLD algorithm, four neighboring pixels in the 
horizontal and the vertical subimages are used 
for the 2D linear interpolation as shown in Fig 
3B. The prediction procedure for the horizontal 
and the vertical subimages must be done before 
prediction of the diagonal subimage because 
the prediction results for the horizontal and the 
vertical subimages are used for those of the 
diagonal subimage during the decoding process. 
Third, when the MLD algorithm is applied to 
radiograph CT images, two threshoid values are 
used for classification instead of one. In the 
radiograph CT images, there is a large back- 
ground area whose pixel values are zero. Hence, 
it is reasonable to add one more threshold 
whose value is zero. Thereafter, the prediction 
error subimages of the radiograph CT images 
are classified into three groups by these two 
threshold values. These three differences allow 
the improvement in the compression perfor- 
mance, which is described in the following 
section. 

SIMULATION RESULTS 
Computer simulation has been performed to 

verify the proposed compression algorithm 
mainly for medical imaging applications. Sample 
images for simulation include five radiograph 
CT head images with 512- x 512-pixel, 12 
bit/pixel resolution; one magnetic resonance 
(MR) abdomen image with 256- • 256-pixel, 12 
bit/pixel resolution; one.radiograph chest im- 
age with 1,024- x 1,024-pixel, 12 bit/pixel reso- 
lution, and the weli-known Lena image with 
512- • 512-pixel, 8 bit/pixel resolution, as 
shown in Fig 6. The radiograph CT images are 
transverse slices at the forehead ievel, and the 
MR abdomen image is also a transverse slice. 

A three-level MLD algorithm was used to 
compress these images in this simulation. In a 
study by Roos et al, s they showed that HINT 
was the most appropriate Iossless intraframe 
image compression method from among predic- 
tive coding, Laplacian pyramid coding, t3 trans- 
form coding, and HINT. However, for medical 
images, the prediction/classification method 
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Table 1. Total Entropy of Original Sample Images and Their 
Compression Results 

lmage Original HINT Prediction/ MLD 
Name Image (three-level) Classification (three-level) 

CT 1 8.008407 4.457491 3.972192 3.541023 
CT 2 7.564907 4.280935 3.820697 3.373437 
CT 3 7.238710 4.147773 3.715939 3.265292 
CT 4 7.253867 4.139299 3.688210 3.240012 
CT 5 7.266698 4.035304 3.549953 3.106719 
MR 1 8.189445 6.558503 6.413804 6.205520 
Radiograph 1 10.008707 5.211357 5.167589 4.886617 
Lena 7.445071 4.473294 4.349309 4.258264 

showed better performance than HINT in the 
study by Lee et al. 7 Th'erefore, the three-level 
MLD algorithm was compared with the HINT 
and the prediction/classi¡ algorithms. 

The DPCM algorithm, which was recom- 
mended in the Joint Photographic Experts 
Group (JPEG) ~4 was used as the decorrelation 
method for the reference subimage in HINT 
and Prediction/Classi¡ and also for the 
final reference subimage in MLD. Three-level 
HINT was adopted for this comparison because 
the decorrelation process of three-level HINT is 
similar to that of prediction/classification. In 
Lee's prediction/classification algorithm, there 
is just one threshold value for classification of 
all images, including CT images. However, in 
our MLD algorithm, there are two threshold 
values for CT images and one threshold value 
for other images because CT images have a 
large background with zero value, which is a 
characteristic of backprojected images. 

Figure 7 shows the reference subimage and 
the prediction error subimages Hd, Vd, and D~ 
given by equations 4a, 4b, and 4c for first-level 
MLD. The reference subimage of Fig 7A is 
decomposed into four subimages again for the 
next level MLD. These subimages are predicted 
and classified by the same process as that used 
for first-level MLD. 

Table 1 and Fig 8 show the overall entropy of 
the sample images using different lossless com- 
pression algorithms. The second column of 
Table 1 lists the original entropy of each test 
image and the third column lists the entropy of 
the image decorrelated by three-level HINT. 
The fourth column shows the entropy of the 
image decorrelated by a prediction/classifica- 
tion algorithm using a one-dimensional third- 
order polynomial interpolator for prediction. In 

17 

6.5 

5.5 

>, 5 
o 4.5 

4 

3.5 

3 

( , o  / , . '  
/-'7 

Ÿ  

2.5 

CT 3 M R  1 X-ray  1 L e n a  

Fig 8. Entropy comparison of the Iossless compression 
algorithms for the sample images. (~), HINT; (E~), P&C; (A), 
three-level MLD. 

the prediction/classification algorithm, the re- 
sult using the one-dimensional linear interpola- 
tor was poor in comparison with that obtained 
using the one-dimensional third-order polyno- 
mial interpolator. Consequently, the result us- 
ing the one-dimensional third-order polynomial 
interpolator is presented here. The last column 
lists the entropy by three-level MLD. All the 
entropies in this paper were calculated as in 
equation 1. In Table 1, the entropy reduction is 
small for the Lena image, but large for the 
medical images, especially the CT images. Fig- 
ure 8 shows that the entropy of the images 
decorrelated by three-level MLD is lowest. 

In CT images, the entropy differences be- 
tween the results of three-level MLD and those 
of prediction/classification range from 0.431 to 
0.451 as shown in Table 2. These entropy 
differences result from the three maior improve- 
ments that were made by MLD in comparison 
with prediction/classification and described in 
the section entitled "MLD." The first improve- 
ment is caused by the iteration process of MLD. 

Table 2. Entropy Difference Between 
Prediction/Classification and Three-Level MLD for CT Images 

Three-level 
Image Prediction/ MLD ( two  En t ropy  Improvement 
Name Classification thresholds) Difference (%) 

CT 1 3.972192 3.541023 0.431169 10.86 
CT 2 3.820697 3.373437 0.447260 11.71 
CT 3 3.715939 3.265292 0.450647 12.13 
CT 4 3.688210 3.240012 0.448198 12.15 
CT 5 3.549953 3.106719 0.443234 12.49 
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Table 3. Entropy Decrease for Iterated MLD 

Three-Level MLD 
Image Original One-Level Two-Level Three-Level Compression 
Name Entropy MLD Entropy MLD Entropy MLD Entropy Ratio 

CT 1 8.008407 3.756706 3.589275 3.541023 3.388851 
CT 2 7.564907 3.592826 3.423678 3,373437 3.557203 
CT 3 7.238710 3.484069 3.316349 3.265292 3.675016 
CT 4 7.253867 3.463784 3.292239 3.240012 3.703690 
CT 5 7.266698 3.340081 3.159789 3.106719 3.862596 
MR 1 8.189445 6.399594 6.261566 6.205520 1.933762 
Radiograph 1 10.008707 5.003214 4.910637 4.886617 2.455687 
Lena 7.445071 4.340445 4,274824 4.258264 1.878700 

The CT images have two thresho[d values. 

Table 3 shows the trend in entropy decrease 
caused by the iteration process. The final col- 
umn in Table 3 shows the compression ratios, le, 
the ratios of the original bits to the entropies 
from three-level MLD. 

The second improvement is caused by the 
predictor for the diagonal subimages. MLD 
uses the 2D linear interpolation predictor of 
equation 3c, whereas prediction/classi¡ 
uses a one-dimensional third-order polynomial 
interpolation predictor. Table 4 shows the effect 
of different predictors for the diagonal subim- 
ages. Here,  the ¡ MLD method using 
one threshold value is the same as prediction/ 
classi¡ method except for the predictor 
for the diagonal subimages. As shown in Table 
4, the 2D linear interpolator is slightly better  
than the one-dimensional third-order polyno- 
mial interpolator for prediction of diagonal 
subimages, with entropy improvements in the 
range of 0.019 to 0.03. The final improvement 
comes from using two threshold values instead 
of one when the classification error subimages 
of the CT image are classi¡ The third column 
of Table 3 and the second column of Table 4 
show the entropies for MLD using two thresh- 

Table 4. Comparison of the Entropy for Different Predictors 
for Diagonal Subimages 

One-Level 
Image MLD With Prediction/ Entropy 
Name One Threshold Classification Difference 

CT 1 3.953440 3.972192 0.018752 
CT 2 3.794386 3.820697 0.026311 
CT 3 3,685160 3.715939 0.030779 
CT 4 3.658418 3.688210 0.029792 
CT 5 3.519634 3.549953 0.030319 

Oneqevel MLD uses a 2D linear interpolation predictor, 
whereas prediction/classification uses a third-order polynomial 
interpolation predictor. 

old values and MLD using one threshold value, 
respectively, for CT images. The entropy im- 
provement obtained by using two threshold 
values ranges from 0.180 to 0.202. 

In the third CT image (CT 3), eg, the three- 
level iteration MLD procedure results in an 
entropy reduction of 0.219, and use of the 2D 
linear interpolation predictor for the diagonal 
subimages results in an entropy reduction of 
0.031. Finally, the use of two threshold values 
results in an entropy reduction of 0,201. There- 
fore, the total entropy reduction from the predic- 
tion/classification algorithm is 0.451, which cor- 
responds to the value in Tabel 2. 

When the prediction errors of an image are 
classified into two or three groups, the decision 
about threshold values is important. In CT 
images, one threshold value is always zero 
because the large background area has a zero 
value. To find the other threshold value, trend 
of the entropy a s a  function of the threshold 
value is analyzed as shown in Figs 9, 10, 11, and 
12. This analysis shows that the threshold value 
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Fig 9. Optimum threshold values for each level to classify 
horizontal subimages of CT images. (~), CT1 H; (D), CT2 H; 
(G), CT3 H; (• CT4 H; (�9 CT5 H. 
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increases with the level of MLD because the 
correlation of the reference subimage gets 
smaller for higher-level MLD. In Figs 9, 10, and 
11, the threshold values of first-level MLD are 
obtained from the reference subimage R1 in 
Fig 5, whereas those of second- and third-level 
MLD are obtained from R2 and R3 in Fig 5, 
respectively. 

Figure 12 shows the relation between the 
entropy and the threshold values for a horizon- 
tal subimage of first-level MLD, which corre- 
sponds to the left part of Fig 9. In Fig 12, the 
entropy graphs are nicely parabolic near the 
minimum and, because the parabolas are not 
sharp, an optimum threshold corresponding to 
a minimum entropy can be approximately in the 
range of 40 to 100 without severe entropy loss in 
this simulation. For example, in Fig 9, the 
optimum horizontal threshold value for CT 1 by 
first-level MLD is 90. However, even if we 
change this threshold value to 50, the resulting 
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Fig 11. Optimum threshold values for each level to  classify 
d iagonal  sub images  of CT images.  (<~), CT1 D; (~), CT2 D; (G), 
CT3 D; (x),  CT4 D; (O), CT5 D. 

19  

3.5 

3.4 

3.3 

3.2 

3.1 

3 

2.9 

2.8 

2.7 

\ 

i i i r i i i J i i 

20 40 60 80 100 120 140 160 180 200 

horizontal threshold value 

Fig 12. Relat ion b e t w e e n  the  e n t r o p y  of H d and the  horizon- 
tal th resho ld  va lues for first-level MLD of CT images.  

entropy difference will be only about 0.01. All 
the other  CT images have the same parabolic 
entropy distribution. In Figs 9, 10, and 11, 
another  trend of the entropy asa  function of the 
threshold values can be found; the threshold 
values are clustered around some value for each 
level and each direction. Using these proper- 
ties, threshold values for each level and each 
subimage can be predetermined according to 
each image type; eg, we can simulate a number 
of radiograph CT images of transverse slices at 
the forehead level and predetermine the thresh- 
old values for each level and each subimage. In 
this way, we can save the processing time 
necessary to determine the threshold values 
with only a small decrease in performance�9 

CONCLUSION 
In this paper, a new lossless coding algorithm 

was proposed for medical image compression, 
in particular for CT images. The idea of the new 
algorithm Ÿ based on the predicton/classifica- 
tion algorithm, 7 which has shown the best en- 
tropy reduction performance for medical im- 
ages. Three major improvements are added to 
the prediction/classification algorithm to achieve 
high compression performance. The improve- 
ments are the iterated process, a 2D linear 
interpolation predictor for diagonal subimages, 
and the use of two threshold values to classify 
the prediction error subimages of CT images. 

The proposed algorithm showed an entropy 
reduction of about 0.45 compared with the 
prediction/classification algorithm. This corre- 
sponds to 10.86% to 12.46% more entropy 
reduction. This algorithm shows good perfor- 
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mance  for an image with a not iceable  edge 
because  the effect of classification will be maxi- 
mized for that  kind of image. Also, it shows 
good pe r fo rmance  for highly corre la ted images 
because  the effect of predic t ion  depends  on the 
correlation property. A disadvantage of the pro- 
posed algori thm is the weakness  in the commu-  

n ica t ion  channe l  noise because  of the i terated 
process and  the predic t ion for the horizontal ,  
the vertical, and the diagonal  subimages;  ie, ir 
some data  are lost or changed to different 
values dur ing  t ransmission,  this error  will be 
propaga ted  to the next subimages to be pre- 
dicted or to the next in te ra t ion  process. 
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