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In this article, we describe the development and 
validation of an automatic algorithm to segment brain 
from extracranial tissues, and to classify intracranial 
tissues as cerebrospinal fluid (CSF), gray matter (GM), 
white matter (WM) or pathology. T1 weighted spin 
echo, dual echo fast spin echo (T2 weighted and 
proton density (PD) weighted images) and fast Fluid 
Attenuated Inversion Recovery (FLAIR} magnetic reso- 
nance (MR) images were acquired in 100 normal 
patients and 9 multiple sclerosis (MS) patients. One of 
the normal studies had synthesized MS-like lesions 
superimposed. This allowed precise measurement of 
the accuracy of the classification. The 9 MS patients 
were imaged twice in one week. The algorithm was 
applied to these data sets to measure reproducibility. 
The accuracy was measured based on the synthetic 
lesion images, where the true voxel class was known. 
Ninety-six percent of normal intradural tissue voxels 
(GM, WM, and CSF) were labeled correctly, and 94% of 
pathological tissues were labeled correctly. A Iow 
coefficient of variation (COV) was found (mean, 4.1%) 
for measurement of brain tissues and pathology when 
comparing MRI scans on the 9 patients. A totally 
automatic segmentation algorithm has been de- 
scribed which accurately and reproducibly segments 
and classifies intradural tissues based on both syn- 
thetic and actual images. 
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S EGMENTATION is the separation of the vox- 
els of an image into groups. Classification 

identifies the nature or tissue type of each group. 
Segmentation and classification of magnetic reso- 
nance (MR) head images can provide a quantitative 
basis for evaluation of a disease process such as 
multiple sclerosis (MS). l Automated and semiauto- 
mated methods have considerable advantage over 
manual methods because of their objectivity and 
the time savings they allow. 2 Semiautomated tech- 
niques have been shown to be reasonably accurate 
and reproducible. However, they require user inter- 
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action early in the segmentation process, with some 
delay before the segmentation is completed. If 
segmentation and classification are to become a 
routine part of practice, it would be optimal to 
develop a totally automated process which can 
begin as soon as images are reconstructed and be 
completed before interpretation and reporting be- 
gin. In this article, we present such a totally 
automated process, apply it to both synthetic and 
real patient data, and demonstrate its accuracy and 
reproducibility. 

METHODS 

Image Acquisition and Preprocessing 
The images for this study were 3 mm contiguous images 

obtained with 1.5T GE Signa imager (General Electric Medical 
Systems, Milwaukee, WI). The image sets consisted of spin 
echo TI (450/17 TR/TE), dual echo fast spin echo PD and T2 
(4000/17/102), and fast FLAIR (11000/139 TI 2600) acquisi- 
tions (Table 1). The mean and standard deviation (SD) of normal 
GM, WM, and CSF, for TI, PD, T2, and FLAIR images were 
obtained from 10 manual measurements in 10 normal patients. 

For validating the accuracy of segmentation, a normal head 
MRI study was manually segmented into GM, WM, CSF, and 
extradural tissues. "Lesions" were created in this data set by 
drawing regions of interest on the normal human MR images. A 
Gaussian random number generator combined with measure- 
ments of actual voxel values of lesions for each of the image 
types was then used to replace the normal brain voxel values 
with lesion values. Whereas there is a wide variety in the 
appearance of MS lesions, the validity of the synthetic lesions 
was verified visually and numerically. This synthetic lesion 
image provides a very good gold standard because it is known 
precisely which voxels are pathological and which are normal. 

To validate reproducibility, two complete MRI studies were 
obtained approximately 7 days apart in 9 chronic progressive 
MS patients. There was no change in the patient's clinical status 
during this time interval, nor had there been for the previous 6 
months. Therefore, any change in lesion volume should be 
caused by va¡ owing to differences in pafient position or 
the algorithm. 

Images were registered by using a separate algorithm (similar 
to that of Ostuni et al3) that defined skin/subcutaneous fat 
interfaces on TI, PD and FLAIR images. The spatial transform 
that rninimized the RMS error between the location of the 
surfaces was used to register images to within 1 voxel (verified 
by visual observation). The FLAIR image was used as the 
template for registration to minimize blurring it because it is 
used in the final determination of previously unclassified voxels. 
The T2 image was transformed by using the PD transformation 
matrix because they were acquired at the same time. 

A multispectral anisotropic diffusion filter was applied to all 
MRI images to reduce noise without blurring edges. 4 
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Table 1. Parameters Used for Each of the Four Image Types 
Ussd in This Study 

TR TE (TI) 

T1 450 17 
Spin Density (SD) 4000 17 
T2 4000 102 
FLAIR 11000 139 (2600) 

The Segmentation Algorithm 
The key to the voxel classifier is the multiparametric space 

map. If image intensity values ate normalized to the intensity of 
subcutaneous fat on each pulse sequence, the intensity of each 
normal intradural tissue type becomes essentially constant for 
each type of image. Mean voxel intensity values on 10 normal 
patient examinations were measured 10 Umes for subcutaneous 
fat, CSF, GM and WM on T1, T2, PD and FLAIR images. 
Parametric maps were generated by normalizing the images 
based on the intensity of subcutaneous fat. Figure 1 shows the 
ratio of the intensity of the tissues of interest versus fat for 9 
normal patients. When fat intensity is normalized, the intensity 
of CSF, GM and WM are fairly fixed. 

Subcutaneous fat is identified on TI weighted images by 
finding large groups of contiguous pefipherally located voxels 
that are above a threshold equal to 75% of the maximum voxel 
intensity on each slice. The corresponding voxels in the other 
sequences are labeled as fat because the sequences were 
spatially registered in a previous step. The mean intensity value 
for fat is calculated for each slice of each sequence. The voxels 
of each slice for each sequence ate then scaled by the factor 
(1000/mean fat intensity). This slice-by-slice scaling corrects 
for field heterogeneity. Next, voxels ate classified as CSF, GM, 
WM, or "other" by using the multiparametric spacemap. 
Three-dimensional (3D) erosion is applied to brain (GM + WM) 
voxels to remove bridges between brain and extradural tissues 
followed by 3D region growing of the largest collection of brain 
voxels (eliminating extracranial tissues with signal like brain). 
Conditional dilation is then applied to restore superficial brain 
voxels. 

The final step is to classify all remaining unclassified 

intradural voxels. These could be unclassified if the underlying 
tissue is pathological or because of artifact (eg, misregistrafion, 
partial volume effects). In the ¡ pass, the mean and SD of 
brain voxels (GM and WM) on FLAIR images is calculated. 
Any unlabeled voxels greater than 2 SDs above the mean are 
labeled as pathology, all those more than 2 SDs below the mean 
are labeled as CSF, and those remaining ate labeled as brain. 
Because the FLAIR is used as the template for registrafion with 
the other pulse sequences, any minor misregistration of images 
or blurring of images dufing registration that inevitably occurs 
will not prevent labeling of voxels. The entire algorithm is 
descfibed in pseudocode in Appendix A. 

RESULTS 

Normal and Synthetic Lesion Images 

The results o f  the mul t ipa ramet ¡  classification 

a lgor i thm for the manual ly  segmented  normal  head 

M R I  are shown in Figs  2 and 3. Nine ty- four  percent  

o f  brain ( W M  + GM)  voxels  were  labeled cor- 

rect ly and 99% of  C S E  Figure  3 shows a sl ice-by- 

slice compar i son  of  the vo lume  of  brain and C S F  

for the gold standard based on manual  segmenta-  

tion. For  the entire vo lume,  92% of  W M ,  96% of  

G M  voxels ,  99% of  CSF, and 94% of  pathology 

were  labeled correct ly on a voxe l -by -voxe l  basis. 

MS Patient Results 

The initial and fo l low-up  v o l u m e t ¡  measure-  

ments  of  CSF, GM,  W M  and pathology in the 9 

patients with MS are shown in Fig 4. F igure  5 

shows a s l ice-by-sl ice compar i son  for one of  the 

patients. The  initial and fo l low-up examinat ions  for 

this patient  were  reasonably wel l  registered,  and 

therefore,  a s l ice-by-s l ice  compar i son  is meaning-  

ful. The  mean  coeff icient  of  va ¡  (COV)  for all 

Fig 1, Theratiooftissuemean 
intensity to subcutaneous fat for 
white matter (WM), gray matter 
(GM), and carebrospinal fluid 
(CSF) for each of the 4 pulse 
saquences used (T1, SD = spin 
density, 1"2, and FL = FLAIR). The 
error bars show plus and minus 
2 standard deviations. The scan- 
ning parameters used (sea Tabla 
1) may affect these values. 
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Fig 2. Left image: FLAIR image with synthetic lesions. Right image: Segmented image. 

studies was 4.1% and was always less than 12%. 
Figure 6 shows a graph of the COV for each of the 
9 patients. 

Performance 
The algorithm (excluding registration) requires 

approximately 5 minutes to segment and classify a 
data set consisting of 54 3mm contiguous slices for 
each for each of the four images types (TI, PD, T2, 
and FLAIR), when executed on a 200 Mhz Pentium 

Pro CPU (Intel Corp, Palo Alto, CA) with 128 MB 
RAM. The time required for the registration pro- 
cess is variable depending on the amount of patient 
motion between sequences. Typical times are 12 to 
15 minutes, but may range from 5 to 50 minutes. 

DISCUSSION 

We have described a method for totally auto- 
matic segmentation of head MRIs. Although not 
providing a perfect result, we view it is an impor- 
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Fig 3 . .The results of the automated segmentatŸ algorithm on the synthetic lesion images. The graph shows a slice-by-slice 
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Fig 4. (A) Total volume of CSF, (B) wrvl ,  (c) GM, and (D) pathology for MS patients scanned at an interval of I week are compared. 

tant step toward more timely and more widespread 
delivery of volumetric information into routine 
clinical practice. Clinical acceptance of any method 
will require accurate results and minimal operator 
intervention. Several investigators have proposed 
semiautomated segmentation schemes based on 
supervised and unsupervised techniques. These 
techniques require operator interaction at some 
stage. After that interaction, some processing is 
performed, and eventually the result is obtained. 
The time required to obtain measurements has 
hindered its application to routine practice. On the 
other hand, an automatic process can execute on 
any computer (including a remote server) as soon 
as the images have been reconstructed. This com- 
puter can then send the image labels to a radiology 
display station, making routine clinical use more 
feasible. It is quite possible to perform registration, 
classification, and segmentation on a study before 
most practices would be ready to interpret the study 
(less than 30 minutes after study completion). 

Previous efforts have used semiautomatic seg- 
mentation and classification methods based on 
multiparametric cluster plot analysis, 5,6 as well as 

nonparametric feature map techniques. 6 Most semi- 
automatic segmentation techniques can be catego- 
rized as supervised or unsupervised but both re- 
quire operator interaction at some stage of 
segmentation. The supervised methods require the 
operator to select samples of each tissue class. 
Supervised segmentation techniques are commonly 
based on pattern recognition techniques such as the 
maximum likelihood method, k-nearest neighbors 
(k-NN), and back propagation artificial neural net 
algorithms. In a comparison of these methods in 
controls and patients with gliomas, k-NN provided 
best results. 7 To minimize user-induced variability, 
operator interaction should be minimized. In a 
recent study, unsupervised segmentation was pref- 
erable for measurement of tumor volume in re- 
sponse to treatment, s In that study, ir was shown 
that the split fuzzy c-means algorithm identifies 
tissue better than the fuzzy c-means algorithm, 
which is mostly an unsupervised technique. Unfor- 
tunately, unsupervised techniques previously de- 
scribed still have the problem of identifying ana- 
tomically relevant tissue and determining how 
many classes there should be. 
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Fig 6. Coefficient of variation 
of the MS patients scanned twice 
in a span of 1 week are plotted 
for GM, WM, CSF, and pathology. 

8 .= 

(J 

12 

10t - - - - -  

1 3 4 5 6 7 8 9 

Patlent 

Another approach based on spatial fuzzy connect- 
edness of objects was proposed by Udupa et al, 9 to 
detect and quantify the volume of MS lesions. In 
this approach, the operator marks each tissue, and 
once the algorithm extracts the tissues and pathol- 
ogy the operator is asked to accept or reject each 
focus of pathology in each slice. All of these 
methods require significant user time. 

There have been efforts to develop totally auto- 
mated image segmentation techniques. Ardekani et 
aP ~ reported a 3.3% average error for automated 
detection of intradural tissues from extradural tis- 
sues. This is not directly comparable to our results 
because we report misclassification between intra- 
dural tissues, but our errors are of similar magni- 
tude to theirs. 

An important advantage of an automated process 
is the lack of operator variability; the interoperator 
and intraoperator variability of semiautomatic meth- 
ods introduces measurement uncertainties. As an 
example, the complexity of MS lesion identifica- 
tion makes it difficult to obtain consistent results 
with manual of semiautomatic techniques, and 
therefore serves asa very challenging pathology for 
evaluating segmentation reproducibility. In fact, 
change in an experienced operator's use of a 
semiautomated technique over the course of a 
multiyear study was noted in one major study, 1 and 
if another study design had been used, could have 
affected the outcome. 

There are many reports on MRI quantitation of 
MS lesions in the literature because it plays an 
important role in assessing MS therapies, nq5 Di- 

rect comparison is complicated in part because of 
the variability in how results of a technique is 
reported. Because the lesion load in MS patients 
can vary by orders of magnitude, reporting variabil- 
ity as absolute volumes or percent change is 
probably not useful. It appears that the COV is 
becoming an accepted measure, because it tends to 
correct for total volume. Intraobserver variability 
when using manual methods is now reported in the 
range of less than 6% for measuring T2 lesion 
volume (using the same MRI images) and as high 
as 20% for interobserver variability. 16 Obviously, 
f o r a  totally automated technique like the one 
described, intraobserver and interobserver variabil- 
ity is 0. 

MS tesions are notoriously difficult to reproduc- 
ibly segment because they often have ill-defined 
borders. Because they are multiple and often small, 
the borders contribute to a significant percentage of 
total lesion volume. It is not surprising, therefore, 
that there would be significant variation when 
humans attempt to separate a lesion from normal 
tissue and that relative accuracy improves as total 
lesion volume increases. 17 This might help to 
explain why intraobserver variability is greater 
than interobserver variability3 s We believe that our 
MS model represents one of the most challenging 
measures of error that one might expect to see in 
clinical practice. 

Finally, for real-world problems, we must also 
recognize that variability is introduced by changes 
in patient position. We have attempted to create a 
real-world scenario, as we allowed a full week to 
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pass between scanning, and only routine physical 
placement methods were used to position patients, 
as opposed to special scanning-based techniques 
which have been described. 19 Although some re- 
ports have used these special methods, many have 
reported reproducibility based on a single data set 
that produces an unrealistically low estimate of 
variation. We have chosen to use routine clinical 
positioning techniques because our aim was to 
develop a technique for mainstream application, 
not for research protocols. This resulted in a 
significant percentage change in CSF volume for 
one patient, resulting from one additional slice 
through the high cervical region, but this should not 
represent a problem for routine clinical application. 

Several criticisms can be directed at this study. 
Only one data set was manually segmented to 
demonstrate accuracy of classification and segmen- 
tation of normal structures. There are two reasons 
for this. First, as noted earlier, the manual tech- 
nique is subject to great variability, and is a poor 
gold standard. Second, manual methods are based 
on visual observation, and this observation of 
accuracy occurs with every data set the algorithm is 
applied to. Using this visual test, the algorithm 
generally performs well. On occasion, portions of 
facial musculature will remain after morphologic 
filtering (not observed in the study cases), which is 
both easily identified, and easily corrected by 
manual intervention after the algorithm has com- 
pleted. 

The second criticism is that the synthetic lesions 
in this one data set may not precisely emulate 
multiple sclerosis (or any other type of pathologi- 
cal) lesions. This is a valid concern, but we would 
note that in MS, the best gold standard (histopatho- 
logic examination of tissues) does not correlate 
with T2 abnormality either--many lesions are 
present pathologically in the "normal appearing 
white matter. ''2~ Therefore, the best gold standard 
we could imagine was to create image patterns that 
visually and numerically simulated real lesions. 
Knowing what the "normal" voxel was before, and 
what the voxel value became, we hada reasonable 
gold standard for determining presence of absence 
of abnormality. 

There is clearly room for improvement in the 
method. The most obvious improvement would be 
to implement a final quality control (QC) check by 
the radiologist to make sure that obvious failures 
(eg, including extradural tissues) are corrected. 

Although not seen in this study, examples where 
the morphological filtering did not exclude extradu- 
ral tissues have occurred. 

Requi¡ four image types reduces the useful- 
ness of this algorithm. We are pursuing the possibil- 
ity of using only T1 and FLAIR images. This would 
reduce the imaging time required, and also reduce 
registration demands. 

We also believe that because k-NN techniques 
may model partial volume effects well, its addition 
could improve reproducibility. Therefore, we are 
also attempting to further refine the algorithm by 
applying a neural network based approach to the 
output of the current classification scheme. 

CONCLUSION 

In conclusion, we have desc¡ and validated a 
method for fully automated classification and seg- 
mentation of head MRIs. Its accuracy has been 
documented by using manually segmented images 
with synthetically created lesions of known volume 
and location. Reproducibility has been shown by 
repeated scanning of MS patients in a routine 
clinical fashion. An automated technique such as 
this may facilitate use in a clinical setting because 
most (if not all) of the processing has occurred 
before interpretation. Little time penalty is incurred 
by the user, and the benefit is a standardized, 
reproducible identification and measurement of 
pathological processes. 
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APPENDIX A. THE SEGMENTATION 
ALGORITHM 

1. Initialization--get the image files (sequences to 
be segmented). These will be referred to as T1, SD, 
T2, and FLAIR. 
2. Spatial registrafion--geometfically transform the 
T1, SD, and T2 to match the FLAIR. This corrects 
for any patient motion between sequences. 
3. Intensity Normalization--normalize voxel inten- 
sity based on fat. 

(A) Find subcutaneous (scalp) fat. This is done 
by finding a large group of peripherally located 
voxels which are at least 75% of the maximum 
intensity on the T1 weighted images. 
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(B) For all 4 pulse sequences do{ 
1. For each slice of sequence do{ 

a. Compute mean intensity of fat for 
each slice. 
b. Multiply each voxel of each slice by 
(1000/Mean Fat Intensity for this slice). 
After this scaling, the mean fat intensity of 
each slice will be 1000. This also corrects 
for RF heterogeneity in the Z-direction. 
}end for loop 

} end for loop 
****At this point, all voxels of all sequences are 
normalized to fat intensity**** 
4. Initial classification. For each voxel do { 

if (intensity of voxel on each of the for se- 
quences is compatible with WM), 
voxel mask 21 = WM; 

if (i¡ of voxel on each of the for sequences 
is compatible with GM), 
voxel mask 2~ -- GM; 

if-(intensity of voxel on each of the for se- 
quences is compatible with CSF), 

voxel mask 21 = CSF; 
else voxel mask 21 = UNKNOWN; 
} end for l�91 

****Now there is a large blob of "brain" but also 
many voxels outside the brain (eg, facial muscles) 
which are labeled brain. Furthermore, abnormal tissue, 
like bone and air, are labeled UNKNOWN*** 
5. Morphologic Filtering 

(A) Do 3D region growing of all groups of brain 
voxels 

(B) Select the largest group--this is assumed to 
include the brain 

(C) Apply 3 rounds of erosion and conditional 
dilation to delete the 'bridges' of brain-like tissue 
that connect to extracranial tissues. 
****Now we have the one large blob of brain, 
which is disconnected from the face**** 
6. Restore CSF voxels that are 3D-connected to 
brain. 
7. Label UNKNOWN voxels that are contained 
within the brain. 

(A) Compute means and standard deviations for 
WM, GM, and CSF for each of the 4 pulse 
sequences. 

(B) For each unknown, classify as WM, GM or 
CSF if the unknown is withŸ 2 standard deviations 
of the mean on all 4 pulse sequences. 

(C) For any remaining unknowns, 
1. if ( (voxel intensity on FLAIR) < mean 
WM intensity - 2 * SD) 
voxel mask[I] = CSF 
2. if i (voxel intensity on FLAIR) > mean 
WM intensity + 2 * SD) 
voxel mask[I] = PATHOLOGY 
3. Else assign as WM. 

(D) For each PATHOLOGY voxel, label as 
ENHANCING if TI intensity is more than 2SDs 
above mean WM intensity on TI, assign as NE- 
CROTIC is less than mean - 2 * SD), else assign 
as ISOINTENSE PATHOLOGY. 
8. Store the brain mask (segmentation labels). 
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