Skip to main content
Log in

Measure of the temperature-depth profile by an S band radiometric receiver for biomedical applications

Mesure du Profil de Température en Profondeur par un Récepteur Radiométrique à Bande S Pour Applications Biomédicales

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

The authors present a method for measuring the temperature-depth profile in a lossy material by applying Kalman algorithm to radiometric signals. The method employs a correlation microwave radiometer. It uses both short-range weighting functions and the delay times of the correlator. An experimental verification of this new thermal inversion approach is presented. The thermal noise is received in the microwave domain, by a S band radiometer by using an automatic experimental bench. A feature of this method is that it can be used in biomedical applications.

Résumé

Les auteurs présentent une méthode de mesure de la température en profondeur dans un milieu dissipatif par application de l’algorithme de Kalman aux signaux radiométriques. Cette méthode emploie un radiomètre micro-onde à corrélation. Elle utilise des fonctions de couplage qui caractérisent le couplage entre un milieu dissipatif et une antenne, et le temps de retard du corrélateur. Une vérification expérimentale de cette nouvelle approche d’inversion thermique est présentée. Le signal de bruit thermique est traité à l’aide d’un radiomètre à bande S, en utilisant un banc expérimental automatisé. Cette méthode est destinée, en particulier, à des applications biomédicales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bocquet (B.),Ait-Abdelmanlek (R.),Van De Velde (J.C.),Mamouni (A.),Leroy (Y.), “Microwave Radiometric signals transmitted by breasts tissues”,ieee-ursi,workshop of Microwave in medicine, Rome, October 1993, pp. 55.1–55.4.

  2. Bocquet (B.),Van De Velde (J.C.),Mamouni (A.),Giaux (G.),Delannoy (J.),Delvallée (D.), “Microwave Radiometric Imaging at 3 GHZ for the exploration of breast tumors”,ieee. Trans.mtt,38, no 6, 1990, pp. 791–793.

    Article  Google Scholar 

  3. Leroy (Y.),Bocquet (B.),Mamouni (A.), “Non-Invasive Microwave Radiometry Thermometry”,Physiological Measurement, no 19, 1998, pp. 127–148.

  4. Mizhushina (S.),Shimizu (T.),Suzuki (K.),Kinomura (M.),Ohba (H.),Sugiura (T.), “Retrieval of temperature-depth profiles in biological objects from Multifrequency Microwave Radiometric data”,Journal of Electromagnetic Waves and Applications,7, no 11, 1993, pp. 1515–1548.

    Article  Google Scholar 

  5. Bardati (F.),Brown (V.J.),Tognolatti (P.), “Temperature reconstitutions in a Dielectric cylinder by Multi-Frequency Microwave Radiometry”,Journal of Electromagnetic Waves and Applications,7, no 11, 1993, pp. 1549–1571.

    Article  Google Scholar 

  6. Bocquet (B.),Aït-Abdelmalek (R.),Leroy (Y.), “Deconvolution and wiener filtering of short range radiometric images”,Electronics letters,29, no 18, 1993, pp. 1628–1629.

    Article  Google Scholar 

  7. Bocquet (B.),Allal (D.),Leroy (Y.), “Thermometry on lossy coplanar lines by microwave correlation radiometry”,Sensors & Actuators A. Physical Journal,A.5, 1996, pp. 25–28.

    Article  Google Scholar 

  8. Labarerre (M.),Kries (J.P.),Gimonet (B.), « Le filtrage et ses applications »,ÉditionsCepadues

  9. Mamouni (A.),Leroy (Y.),Bocquet (B.),Van De Velde (J. C.),Gelin (P.), “Computation of near field Radiometric Signals: Definition and Experimental Verification”,ieeeTrans.mtt,39, no 1, 1991, pp. 124–132.

    Article  Google Scholar 

  10. Ridaoui (K.),Bocquet (B.),Mamouni (A.),Leroy (Y.), “Computation of microwave radiometric weighting functions for industrial and medical applications”,Proc.Piers’97, janvier 1997, Hong-Kong.

  11. Blum (J.), «Sensibilité des radiotélescopes et récepteurs à corrélation »,Annales d’Astrophysique,22, 1959, pp. 140–163.

    Google Scholar 

  12. Landau (L.),Lifshitz (E.), “Statistical Physics”,Pergamon Press, London-Paris, 1959.

    Google Scholar 

  13. Gelin (Ph.),Toutain (S.),Kennis (P.),Citerne (J.), “Scattering of thete10 andtm01 modes on transverse discontinuities in a rod dielectric wave guide, Application to the Dielectric resonators”,ieeetrans.mtt,29, no 7, 1981, pp. 712–719.

    Article  Google Scholar 

  14. Land (D.V.), “Radiometer Receivers for Microwave Thermography”,Microwave Journal,26, no5, 1983.

  15. Kafadar (K.), “Gaussian White-Noise Generation for Digital Signal Synthesis”,ieeeTransactions On Instrumentations and Measurement,IM35, no4, 1986, pp. 492–495.

    Google Scholar 

  16. emmanuel (C.), “A parallel implementation of Kalman filtering on transputers”,L’Onde Électrique,69, no3, 1989, pp. 39–50.

    Google Scholar 

  17. Land (D.V.),Campbell (A.M.), “Dielectric properties of female human breast tissue measured in vitro at 3.2 Ghz”,Phys. Med. Biol.,37, no1, 1992, pp. 193–210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bri, S., Zenkouar, L., Saadi, A. et al. Measure of the temperature-depth profile by an S band radiometric receiver for biomedical applications. Ann. Télécommun. 59, 467–484 (2004). https://doi.org/10.1007/BF03179706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179706

Key words

Mots clés

Navigation