Skip to main content
Log in

Optimisation des performances de modules multipuces Modélisation par réseaux de neurones

Optimization of the multichip module performance modeling using neural networks

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Résumé

Largement utilisés dans la conception de modules multipuces micro-ondes, les modèles de composants passifs font l’objet de recherches intensives. Cet article introduit le concept de génération automatisée de modèles de composants passifs et d’interconnexions par réseaux de neurones. Précis et rapides, ces modèles intègrent efficacement les effets électromagnétiques présents aux hyperfréquences. En optimisant les performances d’un circuit, notre approche peut déterminer automatiquement non seulement la structure géométrique finale des différents composants passifs et de leurs interconnexions respectives mais également, pour la première fois, leur localisation optimale dans le circuit. Des applications utilisant des modèles de composants passifs implémentés dans des simulateurs de circuits sont présentées.

Abstract

Widely used in microwave multichip module design, passive device models are subject to intensive researches. This paper introduces the concept of automate generation of neural models for passives and interconnects. Accurate and fast, these models efficiently integrate electromagnetic effects present at microwave frequencies. By optimizing the circuit performance, the proposed approach can automatically predict not only the final geometrical structure of the different passive components and their respective interconnects but also, for the fist time, their optimum location in the circuit. Applications using passive models implemented in circuit simulators are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. cads v.2003,Agilent Technologies, Palo Alto,ca, usa.

  2. Ansofthfss v.8.0, 2002,Ansoft Corporation, Pittsburg,pa, usa.

  3. Antonini (G.),Orlandi (A.), Gradient evaluation for neural-network-based electromagnetic procedures,ieee Trans. Microwave Theory Tech.,48, pp. 874–876, 2000.

    Article  Google Scholar 

  4. Bandler (J.),Ismail (M.),Rayas-Sanchez (J.),Zhang (Q.J.), New directions in model development forrf/microwave components utilizing artificial neural networks and space mapping,ieee aps Int. Symp., 1999, pp. 2572–2575.

  5. Baudrand (H.), Electromagnetic study of coupling between active and passive circuits,ieee mit Int. Microwave and Optoelectronics Conf., 1997, pp. 143–152.

  6. Bhattacharya (S.K.),Young (W.K.),Chahal (P.),Allen (M.G.),Tummala (R.R.),Hubbard (R.L.),mcm-l compatible integrated resistors and capacitors,4th Int. Symp. on Advanced Packaging Materials, 1998, pp. 295–299.

  7. Centeno (A.), A comparison of numerical dispersion infdtd andtlm algorithms,Asia-Pacific Conf. on Applied Electromagnetics, 2003, pp. 128–131.

  8. Chahal (P.),Tummala (R.R.),Allen (M.G.),Swaminathan (M.), A novel integrated decoupling capacitor formcm-L technology,46th Electronic Components and Technology Conf., 1996, pp. 125–132.

  9. Chang (T.N.),Chang Sze (Y.), Flexibility in the choice of Green’s function for the boundary element method,ieee Trans. Microwave Theory Tech.,42, pp. 1973–1977, 1994.

    Article  Google Scholar 

  10. Chattaraj (B.),Yagoub (M.C.E.),Ding (X.),Zhang (Q.J.),em Based optimization of microwave circuits by neural models and their application to power distribution and decoupling optimization,31stEuropean Microwave Conf., 2001, pp. 125–128.

  11. Cho (C.),Gupta (K.),em-ann modeling of overlapping open-ends in multiplayer microstrip lines for design of bandpass filter,ieee aps Int. Symp., 1999, pp. 2592–2595.

  12. Coates (K.L.),Chien (C.P.),Hsiao (Y.-Y.R.),Kovach (D.J.),Tanielian (M.H.), Highly reliable embedded thin film resistors in Cu/PI MCM-Ds for aerospace applications,9thElectronic Components and Technology Conf., 1999, pp. 93–98.

  13. Cornett (K.D.), A wirelessr&d perspective onrf/if passives integration,Bipolar/BiCMOS Circuits and Technology Meeting, 2000, pp. 187–190.

  14. Creech (G.L.),Paul (B.J.),Lesniak (C.D.),Jenkins (T.J.),Calcatera (M.C.), Artificial neural networks for fast and accurateem-cad of microwave circuits,ieee Trans. Microwave Theory Tech.,45, pp. 794–802, 1997.

    Article  Google Scholar 

  15. Creech (G.L.),Zurada (J.M.), Neural network modeling of GaAsic material andmesfet device characteristics,Int. J. RF and Microwave cae,9, pp. 241–253, 1999.

    Article  Google Scholar 

  16. Del Mar Hershenson (M.),Mohan (S.S.),Boyd (S.P.),Lee (T.H.), Optimization of inductor circuits via geometric programming,36th Design Automation Conf., 1999, pp. 994–998.

  17. Devabhaktuni (V.K.),Chattaraj (B.),Yagoub (M.C.E.),Zhang (Q.J.), Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks and space mapping,ieee mtt Int. Microwave Symp., 2002, pp. 1098–1100.

  18. Devabhaktuni (V.K.),Yagoub (M.C.E.),Fang (Y.),Xu (J.J.),Zhang (Q.J.), Neural networks for microwave modeling: model development issues and nonlinear techniques,Int. J. rf Microwave cae, 11, pp. 4–21, 2001.

    Article  Google Scholar 

  19. Ding (X.),Devabhaktuni (V.K.),Chattaraj (B.),Yagoub (M.C.E.),Deo (M.),Xu (J.),Zhang (Q.J.), Neural-Network approaches to electromagnetic-based modeling of passive components and their applications to high-frequency and high-speed nonlinear circuit optimization,ieee Trans. Microwave Theory Tech.,52, pp. 436–449, 2004.

    Article  Google Scholar 

  20. Edwards (T.), Countdown to the microwave millenium,Microwave J.,41, pp. 70–81, 1998.

    Google Scholar 

  21. Filicori (F.),Ghione (G.),Naldi (C.U.), Physics-based electron device modeling and computer-aided mmic design,ieee Trans. Microwave Theory Tech.,40, pp. 1333–1352, 1992.

    Article  Google Scholar 

  22. Friday (D.), Microwave technology: directions and measurement requirements for the 21th century,Microwave J.,41, pp. 110–114, 1998.

    Google Scholar 

  23. Garcia (J.A.),Puente (A.T.),Sanchez (A.M.),Santamaria (I.),Lazaro (M.),Pantaleon (C.J.),Pedro (J.C.), Modelingmesfets andhemts intermodulation distortion behavior using generalized radial basis function network,Int. J. rf and Microwave cae,9, pp. 261–276, 1999.

    Article  Google Scholar 

  24. Ge (Y.),Esselle (K.P.), New closed-form Green’s functions for microstrip structures — theory and results,ieee Trans. Microwave Theory Tech.,50, pp. 1556–1560, 2002.

    Article  Google Scholar 

  25. Gentili (G.G.),Macchiarella (G.), Quasi-static analysis of shielded planar transmission lines with finite metallization thickness by a mixed spectral-space domain method,ieee Trans. Microwave Theory Tech.,42, pp. 249–255, 1994.

    Article  Google Scholar 

  26. Golonka (L.J.),Wolter (K.-J.),Dziedzic (A.),Kita (J.),Rebenklau (L.), Embedded passive components formcm,24th Int. Spring Seminar on Concurrent Engineering in Electronic Packagin, 2001, pp. 73–77.

  27. Gupta (K.C.), Emerging trends in millimeter wavecad,ieee Trans. Microwave Theory Tech.,46, pp. 747–755, 1998.

    Article  Google Scholar 

  28. Halchin (D.),Golio (M.), Trends for portable wireless applications,Microwave J.,40, pp. 62–78, 1997.

    Google Scholar 

  29. Harkouss (Y.),Rousset (J.),Chehade (H.),Ngoya (E.),Barataud (D.),Teyssier (J.P.), Modeling microwave devices and circuits for telecommunications system design,ieee Int. Conf. Neural Networks, 1998, pp. 128–133.

  30. Hartung (J.), Integrated passive components inmcm-Si technology and their applications inrf-systems,Int. Conf. on Multichip modules and High Density Packaging, 1998, pp. 256–261.

  31. Haykin (S.),Neural Networks: A Comprehensive Foundation, Upper Saddle River,nj: Prentice Hall, 1994

    MATH  Google Scholar 

  32. Ju (C.-W.),Lee (S.-P.),Lee (Y.-M.),Hyun (S.-B.),Park (S.-S.),Sonmg (M.-K.), Embedded passive components inmcm-d forrf applications,Electronic Components and Technology Conf., 2000, pp. 211–214.

  33. Kythakyapuzha (S.R.),Kuhn (W.B.), Modeling of inductors and transformers,ieee mtt Int. Symp., 2001, pp. 587–590.

  34. Lenihan (T.),Schaper (L.),Morcan (G.),Fairchild (K.),Parkerson (J.), Embedded thin film resistors, capacitors and inductors in flexible polyimide films,Int. J. Microcircuits and Electronic Packaging,20, pp. 474–481, 1997.

    Google Scholar 

  35. Mahajan (R.L.), Design and optimization through physical/neural network models,ieee mtt Int. Microwave Symp. Workshop on Appl. of ann to Microwave Design, 1997, pp. 1–16.

  36. Martini (E.),Pelosi (G.),Selleri (S.), A hybrid finite-element-modal-expansion method with a new type of curvilinear mapping for the analysis of microwave passive devices,IEEE Trans. Microwave Theory Tech.,51, pp. 1712–1717, 2003.

    Article  Google Scholar 

  37. Mccullogh (W.S.),Pitts (W.), A logical calculus of the ideas immanent in nervous activity,Bulletin of Math. Biophysics,5, pp. 115, 1943.

    Article  Google Scholar 

  38. Mohan (S.S.),Hershenson (M.),Boyd (S.P.),Lee (T.H.), Simple accurate expressions for planar spiral inductances,ieee J. of Solid-State Circuits,34, pp. 1419–1424, 1999.

    Article  Google Scholar 

  39. Nakhla (M.), Application of Neural networks to simulation and optimization of high speed interconnects,ieee mtt Int. Microwave Symp. Workshop on Appl. of ann to Microwave Design, 1997, pp. 49–66.

  40. NeuroModeler v. 1.2, 2000, Q.J. Zhang,Carleton University, Ottawa, Canada.

  41. Niknejad (A.M.),Meyer (R.G.), Analysis, design, and optimization of spiral inductors and transformers for Sirf ic’s,ieee J. of Solid-State Circuits,33, pp. 1470–1481, 1998.

    Article  Google Scholar 

  42. Patnaik (A.),Mishra (R.K.),ann techniques in microwave engineering,ieee Microwave Magazine,1, pp. 55–60, 2000.

    Article  Google Scholar 

  43. Piernas (B.),Nishikawa (K.),Kamogawa (K.),Nakagawa (T.),Araki (K.), Improved three-dimensional GaAs inductors,ieee mtt Int. Microwave Symp., 2001, pp. 189–192.

  44. Pieters, (P.),Vaesen, (K.),Carchon, (G.),Brebels, (S.),De Raedt, (W.),Beyne, (E.), Integration of passive components in thin film multilayermcm-d technology for wireless front-end applications,Asia-Pacific Microwave Conf., 2000, pp. 221–224.

  45. Purviance (J.),Meehan (M.),cad for statistical analysis and design of microwave circuits,Int. J. Microwave and Millimeter-Wave cae,1, pp. 59–76, 1991.

    Article  Google Scholar 

  46. Rizzoli (V.),Costanzo (A.),Masotti (D.),Lipparini (A.),Mastri (F.), Computer-Aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation,ieee Trans. Microwave Theory Tech.,52, pp. 362–377, 2004.

    Article  Google Scholar 

  47. Rousset (J.),Harkouss (Y.),Collantes (J.M.),Campovecchio (M.), An accurate neural network model offet intermodulation and power analysis,European Microwave Conf., 1996, pp. 16–19.

  48. Shirakawa (K.),Shimiz (M.),Okubo (N.),Daido (Y.), A large-signal characterization of anhemt using a multilayered network,ieee Trans. Microwave Theory Tech.,45, pp. 1630–1633, 1997.

    Article  Google Scholar 

  49. Sonnet v.9.51,Sonnet Software Inc., Liverpool,ny, usa.

  50. Tatinian (W.),Pannier (P.),Gillon (R.), A new T circuit topology for the broadband modelling of symmetric inductors fabricated incmos technology,ieee mtt Int. Microwave Symp., 2001, pp. 583–586.

  51. Tounsi (M.L.),Halheit (H.),Yagoub (M.C.E.),Khodja (A.), Analysis of shielded planar circuits by a mixed variational-spectral method,ieee cas Int. Circuit Syst. Symp., 2003, pp. 65–68.

  52. Vai (M.),Prasad (S.), Neural networks in microwave circuit design — beyond black box models,Int. J. of rf and Microwave cae,9, pp. 187–197, 1999.

    Article  Google Scholar 

  53. Vuong (T.P.),Garcia (R.),Raveu (N.),Zeid (A.),Baudrand (H.),Peuch (J.C.),fwcip method forpgb planar structures,Int. J. rf Microwave Computer-Aided Eng., 12, pp. 236–246, 2002.

    Article  Google Scholar 

  54. Wang (S.),Wang (F.),Devabhaktuni (V.K.),Zhang (Q.J.), A Hybrid neural and circuit-based model structure for microwave modeling,European Microwave Conf., 1999, pp. 174–177.

  55. Watson (P.M.),Gupta (K.C.), Design and optimization ofcpw circuits usingem-ann models forcpw components,ieee Trans. Microwave Theory Tech.,45, pp. 2515–2523, 1997.

    Article  Google Scholar 

  56. Yagoub (M.C.E.), Optimisation des performances de modules multipuces à base de modèles neuronaux de composants passifs et d’interconnexions,4eConf. Européenne sur les Méthodes Numériques en Électromagnétisme, 2003, pp. S42_1–S42_2.

  57. Yamaguchi (M.),Baba (M.),Arai (K.I.), Sandwich type ferromagneticrf integrated inductor,ieee mtt Int. Microwave Symp., 2001, pp. 185–188.

  58. Yamashita (E.),Mittra (R.), Variational method for the analysis of microstrip lines,IEEE Trans. Microwave Theory Tech.,16, pp. 251–256, 1968.

    Article  Google Scholar 

  59. Zaabab (A.H.),Zhang (Q.J.),Nakhla (M.S.), A neural network models approach to circuit optimization and statistical design,ieee Trans. Microwave Theory Tech.,43, pp. 1349–1358, 1995.

    Article  Google Scholar 

  60. Zeid (A.),Baudrand (H.), Electromagnetic scattering by metallic holes and its applications in microwave circuits design,ieee Trans. Microwave Theory Tech.,50, pp. 1198–1206, 2002.

    Article  Google Scholar 

  61. Zhang (Q.J.),Gupta (K.C.),Neural Networks for rf and Microwave Design, Norwood,ma: Artech House, 2000.

    Google Scholar 

  62. Zhang (Q.J.),Wang (F.),Nakhla (M.S.), Optimization of high-speedvlsi interconnects: A review,Int. J. Microwave Millimeter-Wave cae, 7, pp. 83–107, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha C. E. Yagoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagoub, M.C.E. Optimisation des performances de modules multipuces Modélisation par réseaux de neurones. Ann. Télécommun. 59, 1092–1117 (2004). https://doi.org/10.1007/BF03179712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179712

Mots clés

Key words

Navigation