Skip to main content
Log in

Bandwidth sharing with heterogeneous flow sizes

Partage de Capacité de Transmission Avec des Tailles de Flux Hétérogènes

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

We consider a system with two heterogeneous traffic classes. The users from both classes randomly generate service requests, one class having light-tailed properties, the other one exhibiting heavy-tailed characteristics. The heterogeneity in service requirements reflects the extreme variability in flow sizes observed in the Internet, with a vast majority of small transfers (“mice”) and a limited number of exceptionally large flows (“elephants”). The active traffic flows share the available bandwidth in a Processor-Sharing (ps) fashion. Theps discipline has emerged as a natural paradigm for modeling the flow-level performance of band-width-sharing protocols liketcp. The number of simultaneously active traffic flows is limited by a threshold on the maximum system occupancy. We obtain the exact asymptotics of the transfer delays incurred by the users from the light-tailed class. The results show that the threshold mechanism significantly reduces the detrimental performance impact of the heavy-tailed class.

Résumé

On considère un système doté de deux classes de trafic hétérogènes. Les utilisateurs de ces deux classes engendrent aléatoirement des demandes de service, l’une des classes ayant une loi à décroissance rapide, l’autre une loi à décroissance lente. Cette hétérogénéité dans les demandes reflète les grandes variations observées dans le trafic de l’internet: une grosse majorité de petits transferts (les « souris ») et un petit nombre de très gros transferts (les « éléphants »). Les flux de trafic se partagent la capacité disponible suivant le modèle de partage de processeur (ps ou Processor Sharing) qui a déjà été utilisé pour modéliser le comportement de protocoles commetcp. Le nombre de flux de trafic simultanés est limité par un seuil d’occupation maximale du système. On obtient la limite exacte des retards de transfert auxquels s’exposent les utilisateurs de la classe « souris ». Les résultats montrent que le mécanisme de seuil diminue sensiblement l’impact négatif de la classe « éléphant ».

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman (E.),Avrachenkov (K.),Barakat (C.),Núñez-Queija (R.), State-dependent M/G/1 type queueing analysis for congestion control in data networks, In:Proc. Infocom 2001 Conference, Anchorage AK, USA, 1350–1359.

  2. Ben Fredj (S.),Bonald (T.),Proutière (A.),Régnié (G.),Roberts (J.W.), Statistical bandwidth sharing: a study of congestion at the flow level.In: Proc. Sigcomm 2001, p. 111–122.

  3. Bonald (T.),Massoulié (L.), Impact of fairness on Internet performance, In:Proc. acm Sigmetrics 2001, p. 82–91.

  4. Borst (S.C.),Boxma (O.J.),Morrison (J.A.),Núñez-Queija (R.), The equivalence between processor sharing and random order of service,Oper. Res. Lett.31, p. 254–262, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer (J.),Guillemin (F.),Robert (Ph.),Zwart (A.P.), Heavy-tailed M/G/1/PS queues with impatience and admission control in packet networks, In:Proc. Infocom 2003 Conference, San Francisco CA.

  6. Bu (T.),Towsley (D.), Fixed point approximation fortcp behavior in anaqm network, In:Proc. acm Sigmetrics 2001, p. 216–225.

  7. Cohen (J.W.), The multiple phase service network with generalized processor sharing,Acta Informatica12, p. 245–284, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  8. Crovella (M.),Bestavros (A.), Self-similarity in World Wide Web traffic: evidence and possible causes. In:Proc. acm Sigmetrics 96, p. 160–169.

  9. Flatto (L.), The waiting time distribution for the random order service M/M/l queue,Ann. Appl. Prob.7, p. 382–409, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. Gibbens (R.J.),Sargood (S.K.),Van Eijl (C.),Kelly (F.P.).Azmoodeh (H.),Macfadye (R.N.),Macfadyen (N.W.), Fixed-point models for the end-to-end performance analysis ofip networks, In:Proc. 13thitc Specialist Seminar, Monterey, California, 2000.

  11. Guillemin (F.),Robert (Ph.),Zwart (A.P.), Performance oftcp in the presence of correlated packet losses, In:Proc. 15thitc Specialist Seminar, Würzburg, Germany, 2002.

  12. Jelenković (P.R.),Momčilović (P.), Large deviation analysis of subexponential waiting times in a Processor-Sharing queue,Math. Oper. Res.28, p. 587–608, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kelly (F.P.),Reversibility and Stochastic Networks, Wiley, Chicheste, 1979.

    MATH  Google Scholar 

  14. Kelly (F.P.),Williams (R.J.), Fluid model for a network operating under a fair bandwidth-sharing policy,Ann. Appl. Prob.,14, pp. 1055–1083, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  15. Massoulié (L.),Roberts (J.W.), Arguments in favor of admission control fortcp flows. In:Teletraffic Engineering in a Competitive World, Proc. itc-16, Edinburgh, UK, eds. P. Key, D. Smith (North-Holland, Amsterdam), p. 33–44, 1999.

    Google Scholar 

  16. Massoulié (L.),Roberts (J.W.), Bandwidth sharing: Objectives and algorithms, In:Proc. Infocom 99 Conference, New York NY, USA, p. 1395–1403.

  17. Massoulié (L.),Roberts (J.W.), Bandwidth sharing and admission control for elastic traffic,Telecommunication Systems15, p. 185–201, 2000.

    Article  MATH  Google Scholar 

  18. Núñez-Queija (R.),Processor-Sharing Models for Integrated-Services Networks, Ph.D. Thesis (2000), Eindhoven University of Technology, ISBN 90-646-4667-8.

  19. Núñez-Queija (R.), Queues with equally heavy sojourn time and service requirement,Ann. Oper. Res.113, p. 101–117, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  20. Olver (F.W.J.),Asymptotics and Special Functions, Academic Press, New York, 1974.

    Google Scholar 

  21. Padhye (J.),Firoiu (V.),Towsley (D.),Kurose (J.), Modelingtcp Reno Performance: a simple model and its empirical validation,ieee/acm Trans. Netw,8, p. 133–145, 2000.

    Article  Google Scholar 

  22. Resnick (S.),Samorodnitsky (G.), Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues,Queueing Systems,33, p. 43–71, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. Roughan (M.),Erramilli (A.),Veitch (D.), Network performance fortcp networks part I: persistent sources. In:Teletraffic Engineering in the Internet Era, Proc. itc-17, Salvador da Bahia, Brazil, eds. J.M. de Souza, N.L.S da Fonseca, E.A. de Souza e Silva (North-Holland, Amsterdam), p. 857–868, 2001.

    Google Scholar 

  24. De Veciana (G.),Lee (T.-J.),Konstantopoulos (T.), Stability and performance analysis of networks supporting elastic services,ieee/acm Trans. Netw.9, p. 2–14, 2001.

    Article  Google Scholar 

  25. Zwart (A.P.), Sojourn times in a multiclass processor sharing queue. In:Teletraffic Engineering in a Competitive World, Proc. itc-16, Edinburgh, UK, eds. P. Key, D. Smith (North-Holland, Amsterdam), p. 335–344, 1999.

    Google Scholar 

  26. Zwart (A.P.),Boxma (O.J.), Sojourn time asymptotics in the M/G/1 processor sharing queue,Queueing Systems35, p. 141–166, 2000.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, S., Núñez-Queija, R. & Zwart, B. Bandwidth sharing with heterogeneous flow sizes. Ann. Télécommun. 59, 1300–1314 (2004). https://doi.org/10.1007/BF03179722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179722

Key words

Mots clés

Navigation