Skip to main content
Log in

Contrôle de puissance dans les réseaux ad-hoc

Power Control for Ad-Hoc Networks

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

Dans les réseaux ad-hoc, il n’y a pas d’infrastructure fixe et donc pas de stations de base. Les stations mobiles communiquent directement entre elles en simple saut ou en multi-saut. Chaque station peut agir comme routeur et donc transférer des paquets pour d’autres stations du réseau.

La puissance est une ressource précieuse dans les réseaux sans fil en raison de l’autonomie limitée de la batterie et de la relation directe entre l’interférence globale et la capacité du réseau. Un contrôle de puissance efficace économise l’énergie des stations et augmente la capacité d’un réseau sans fil en réduisant l’interférence. Dans notre travail, nous présentons trois catégories de contrôle de puissance pour les réseaux ad-hoc. Une première classe d’algorithmes se base sur la minimisation de la puissance transmise sur chaque lien de chaque route de la source jusqu’à la destination. Une deuxième classe d’algorithmes comporte des stratégies pour trouver la puissance optimale transmise. Ces stratégies sont basées sur le contrôle de la topologie et la connectivité du réseau. Une troisième classe d’algorithmes vise à modifier la couche mac de sorte à avoir un contrôle de puissance performant. Dans cet article, nous proposons une comparaison et une classification des algorithmes de contrôle de puissance dans les réseaux ad hoc.

Enfin, nous évaluons les algorithmes de contrôle de puissance dans un environnement de simulation correspondant à un réseau ad-hoc multi-saut 802.11b/Dsss. Dans le cadre de ces simulations, nous reprenons des modèles existants de contrôle de puissance pour les réseaux cellulaires et nous les appliquons en mode distribué aux réseaux ad-hoc. Les résultats de simulations montrent les limites et les apports des algorithmes de contrôle de puissance dans les réseaux sans fil ad-hoc.

Abstract

In an ad-hoc network, mobile stations communicate with each other using multi-hop wireless links. There is no stationary infrastructure such as base stations. Each node in the network also acts as a router, forwarding data packets for other nodes. In this architecture, mobile stations have a multi-hop path, via other mobile stations acting as intermediaries or relays, to indirectly forward packets from source to destination.

Adjusting the transmitted power is extremely important in ad-hoc networks due to at least the following reasons. The transmitted power of the radio terminals determines the network topology. The network topology in turn has considerable impact on the throughput (fraction of packets, sent by a source, and successfully received at the receiver) performance of the network. The need for power efficiency must be balanced against the lifetime of each individual node and the overall life of the network.

Power control problem can be classified in one of three categories. The first class comprises of strategies to find an optimal transmitted power to control the connectivity properties of the network. The second class of approaches could be called power aware routing. Most schemes use some shortest path algorithm with a power based metric, rather than a hop count based metric. The third class of approaches aim at modifying the mac layer.

We use distributed power control algorithms initially proposed for cellular networks. We establish a classification of power control algorithms for wireless ad-hoc networks. We evaluate these algorithms in anIeee 802.11b multi-hop wireless ad-hoc LAN environment. Results show the advantage of power control in maximizing signal-to-interference ratio and minimizing transmitted power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Elmusrati (M.), Koivo (H.), Multi-objective distributed power and rate control for wireless communications.Ieee International Conference on Communications,3, pp. 1838–1842, 2003.

    Google Scholar 

  2. ElBatt (T.), Ephremides (A.), Joint scheduling and power control for wireless ad-hoc networks. Twenty-First Annual Joint Conference of theIeee Computer and Communications Societies infocom,2, pp. 976–984, 2002.

    Article  Google Scholar 

  3. Kawadia (V.), Narayanaswamy (S.), Rozovsky (R.), Sreenivas (R. S.), Kumar (P. R.), Protocols for media access control and power control in wireless networks. Proceedings of the 40thIeee Conference on Decision and Control,2, pp. 1935–1940, 2001.

    Google Scholar 

  4. Ramanathan (R.), Rosales-Hain (R.), Topology control of multihop wireless networks using transmit power adjustment. 19th Annual Joint Conference of theIeee Computer and Communications Societies infocom,2, pp. 404–413, 2000.

    Google Scholar 

  5. Wattenhofer (R.), Li (L.), Bahl (P.), Wang (Y.-M.), Distributed Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc Networks. 20thAnnual Joint Conference of theIeee Computer and Communications Societies infocom,3, pp. 1388–1397, 2001.

    Google Scholar 

  6. Fahmy (N. S.), Todd (T. D.), Kezys (V.), Distributed power control for ad hoc networks with smart antennas.Ieee 56th Vehicular Technology Conference,4, pp. 2141–2144, 2002.

    Article  Google Scholar 

  7. Behzad (A.),Rubin (I.),Mojibi-Yazdi (A.), Distributed power controlled medium access control for ad-hoc wireless networks.Ieee 18th Annual Workshop on Computer Communications, pp. 47–53, 2003.

  8. Agarwal (S.), Katz (R. H.), Krishnamurthy (S.V.), Dao (S.K.), Distributed power control in ad-hoc wireless networks Personal. 12thIeee International Symposium on Indoor and Mobile Radio Communications,2, pp. F59-F6, 2001.

    Google Scholar 

  9. Pahlavan (K.), Levesque (A.), Wireless Information Networks.Wiley-Interscience, New York, 1995.

    Google Scholar 

  10. Grandhi (S. A.), Vijayan (R.), Goodman (D. J.), Distributed power control in cellular radio systems.IeeeTransactionson Communications,42, pp. 226–228, 1994.

    Article  Google Scholar 

  11. Sawaragi (Y.), Nakayama (H.), Tanino (T.), Theory of Multiobjective Optimization.Academic Press Inc., Orlando, Florida,U.s.a., 1985.

    MATH  Google Scholar 

  12. Kawadia (V.), Kumar (P. R.), Power control and clustering in ad hoc networks. 22ndAnnual Joint Conference of theIeee Computer and Communications SocietiesInfocom,1, pp. 459–469, 2003.

    Google Scholar 

  13. Jantti (R.),Kim (S. L.), Energy-efficient routing in dsss ad hoc networks under mean rate constraints.Ieee Vehicular Technology Conference, pp. 428–432, 2003.

  14. Zander (J.), Distributed cochannel interference control in cellular radio systems.Ieee Trans. Veh. Technol.,41, pp. 305–311, 1992.

    Article  Google Scholar 

  15. Jantti (R.),Kim (SL.), Second-order power control with asymptotically fast convergence.Ieee Journal on Selected Areas in Communications,18, 2000.

  16. Li (X.),Bao-Yu (Z.), Study on cross-layer design and power conservation in ad hoc network.Parallel and Distributed Computing, Applications and Technologies, pp. 27–29, 2003.

  17. Conti (M.), Maselli (G.), Turi (G.), Giordano (S.), Cross-Layering in Mobile Ad Hoc Network Design.Ieee Computer Society,37, pp. 48–51, 2003.

    Article  Google Scholar 

  18. Fahmy (N.), Todd (T.), Kezys (V.), Ad Hoc Networks with smart antennas usingieee 802.11-based protocols.ieee International Conference on Communications,1, pp. 3144–3148, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abinakhoul, A., Nuaymi, L. Contrôle de puissance dans les réseaux ad-hoc. Ann. Télécommun. 61, 141–181 (2006). https://doi.org/10.1007/BF03219972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219972

Mots clés

Key words

Navigation