Skip to main content
Log in

Zur Ausdrucksstärke der Stammdaten des Advanced Planning and Scheduling

Expressiveness of Master Data in Advanced Planning and Scheduling

  • WI — Aufsatz
  • Published:
Wirtschaftsinformatik

Abstract

Expressiveness is applied to evaluate languages or descriptions. By expressiveness we mean what can be said within the limitations of some language. Assessing expressiveness is always based on a reference, namely the set of all things sayable, the things said in another language or the things that must be said to meet a certain purpose. So far, only nominal or ordinal measures of expressiveness have been proposed.

In the approach presented here, a certain purpose serves as reference to evaluate expressiveness by a cardinal measure. The approach is derived from measuring similarity between binary vectors and employs results concerning the formal semantics of logical descriptions. By applying this approach to measure the expressiveness of the master data used by Advanced Planning and Scheduling (APS) systems on the one hand and Enterprise Resource Planning (ERP) systems on the other hand it can be shown that in most cases the master data of APS systems do not possess higher expressiveness than the master data of ERP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Baader, F.: A Formal Definition for the Expressive Power of Terminological Knowledge Representation Languages. In: Journal of Logic and Computation 6 (1996) 1, S. 33–54.

    Google Scholar 

  2. Batini, C.; Ceri, S.; Navathe, S. B.: Conceptual Database Design. 4. Aufl., Redwood City et al. 1992.

    Google Scholar 

  3. Badia, A.: Extending Entity-Relationship Models with Higher-Order Operators. In: Zbigniew, W. R.; Ohsuga, S. (Hrsg.): Foundations of Intelligent Systems. Berlin et al. 2000, S. 321–330.

    Chapter  Google Scholar 

  4. Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R.: Multivariate Analysemethoden — Eine anwendungsorientierte Einführung. 9. Aufl., Berlin et al. 2000.

    Google Scholar 

  5. Boehm, B.; Basili, V. R.: Software Defect Reduction Top 10. In: Computer 34 (2001) 1, S. 135–137.

    Google Scholar 

  6. Borgida, A.: On the relative expressiveness of description logics and predicate logics. In: Artificial Intelligence 82 (1996) 2, S. 353–367.

    Google Scholar 

  7. Bunge, M.: Treatise on Basic Philosophy. Vol. III: Ontology I — The Furniture of the World. Dordrecht 1977.

    Google Scholar 

  8. Chandra, A. K.: Theory of Database Queries. In: ACM (Hrsg.): Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. New York 1988, S. 1–9.

    Chapter  Google Scholar 

  9. Dudek, G.; Rohde, J.; Sürie, C.: Advanced Planning Systems — Lösungsverfahren und Modellierung. In: Industrie Management 18 (2002) 6, S. 49–52.

    Google Scholar 

  10. Frank, U.: Zur Verwendung formaler Sprachen in der Wirtschaftsinformatik: Notwendiges Merkmal eines wissenschaftlichen Anspruchs oder Ausdruck eines übertriebenen Szientismus. In: Becker, J. (Hrsg.): Wirtschaftsinformatik und Wissenschaftstheorie — Bestandsaufnahme und Perspektiven. Wiesbaden 1999, S. 127–160.

    Google Scholar 

  11. Frank, U.; van Laak, B. L.: Anforderungen an Sprachen zur Modellierung von Ge-schäftsprozessen. Arbeitsbericht Nr. 34 des Instituts für Wirtschaftsinformatik, Universität Koblenz-Landau 2003.

    Google Scholar 

  12. Gregersen, H.; Jensen, C. S.: On the Onto-logical Expressiveness of Temporal Extensions to the Entity-Relationship Model. In: Chen, P. P. (Hrsg.): Advances in Conceptual Modeling — Proceedings ER ’99. Berlin et al. 1999, S. 110–121.

    Chapter  Google Scholar 

  13. Green, P.; Rosemann, M.: Integrated Process Modeling: An Ontological Evaluation. In: Information Systems 25 (2000) 2, S. 73–87.

    Google Scholar 

  14. Hermes, H.: Einführung in die mathematische Logik: Klassische Prädikatenlogik. 5. Aufl., Stuttgart 1991.

    Google Scholar 

  15. Heinemann, B.; Weihrauch, K.: Logik für Informatiker: Eine Einführung. 2. Aufl., Stuttgart 1992.

    Google Scholar 

  16. Jeavons, P.; Cohen, D.; Gyssens, M.: How to Determine the Expressive Power of Constraints. In: Constraints — An International Journal 4 (1999) 2, S. 113–131.

    Google Scholar 

  17. Kilger, C.: Optimierung der Supply Chain durch Advanced Planning Systems. In: IM — Information Management & Consulting 13 (1998) 3, S. 49–55.

    Google Scholar 

  18. Kreowski, H.-J.: Logische Grundlagen der Informatik. München-Wien 1991.

    Google Scholar 

  19. Kurtonina, N.; de Rijke, M.: Expressiveness of concept expressions in first-order description logics. In: Artificial Intelligence 107 (1999) 2, S. 303–333.

    Google Scholar 

  20. Kung, C. H.: An analysis of three conceptual models with time perspective. In: Olle, T. W.; Sol, H. G.; Tully, C. J. (Hrsg.): Information Systems Design Methodologies: A Feature Analysis. Amsterdam et al. 1983, S. 141–167.

    Google Scholar 

  21. Layden, J.: APS is here to stay: The history of advanced planning & scheduling from one who knows. In: Manufacturing Systems 17 (1999) 1, S. 66–68.

    Google Scholar 

  22. MSI: Advanced Planning. http://www.manufacturingsystems.com/glossary, Abruf am 2003-05-09.

  23. Nebel, B.: Die Ausdrucksstarke von Planungsformalismen: Eine formale Charakterisierung. In: Künstliche Intelligenz 13 (1999) 3, S. 12–19.

    Google Scholar 

  24. Ortner, E.: Methodenneutraler Fachentwurf. Stuttgart — Leipzig 1997.

    Google Scholar 

  25. proALPHA Software AG: Funktionen im Überblick — Advanced Planning and Scheduling. http://www.proalpha.de, Abruf am 2003-05-09.

  26. Reihlen, M.: Die Passivistische Abbildungsthese und die Aktivistische Konstruktions-these in der Modelldiskussion (I). In: Das Wirtschaftsstudium 27 (1998) 2, S. 157–162.

    Google Scholar 

  27. Sapia, C.; Blaschka, M.; Höfling, G.; Dinter, B.: Extending the E/R Model for the Multidimensional Paradigm. In: Kambayashi, Y.; Lee, D. L.; Lim, E.-P.; Mohania, M. K.; Masun-ga, Y. (Hrsg.): Advances in Database Technologies. Berlin et al. 1999, S. 105–116.

    Chapter  Google Scholar 

  28. SAP AG: SAP Bibliothek, Release 4.6 C. http://help.sap.com, April 2001, Abruf am 2003-12-10.

  29. SAP AG: SAP Bibliothek, APO — Advanced Planner and Optimizer, Release 3.1A. http://help.sap.com, Mai 2002, Abruf am 2003-12-09.

  30. Schäuble, P.; Wüthrich, B.: On the Expressive Power of Query Languages. Report 173, Fachbereich Informatik, Institut für Informationssysteme, ETH Zürich 1992.

    Google Scholar 

  31. Stadtler, H.; Kilger, C.: Supply Chain Management and Advanced Planning: Concepts, Models, Software and Case Studies. 2. Aufl., Berlin et al. 2002.

    Google Scholar 

  32. ter Hofstede, A. H. M.; van der Weide, T. P.: Expressiveness in conceptual data modelling. In: Data & Knowledge Engineering 10 (1993) 1, S. 65–100.

    Google Scholar 

  33. Wight, O. W.: Manufacturing Resource Planning — MRP II: Unlocking America’s Productivity Potential. New York 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Patig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patig, S. Zur Ausdrucksstärke der Stammdaten des Advanced Planning and Scheduling. Wirtschaftsinf 46, 97–106 (2004). https://doi.org/10.1007/BF03250929

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03250929

Keywords

Navigation