Skip to main content
Log in

La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication

Non-cooperative game theory applied to telecommunication networks

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

Dans cet article, nous exposons divers outils provenant de la théorie des jeux non-coopératifs qui permettent d’étudier des situations de compétition dans les réseaux de télécommunication. Nous décrivons les outils mathématiques tout en offrant des exemples de domaines de réseaux de télécommunication variés.

Abstract

In this paper, we present various tools originating from non-cooperative Game Theory, which allow us to study competition situations in telecommunication networks. We describe the mathematical tools while providing examples from a variety of areas in telecommunication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allen F., Morris S., Finance applications of game theory. In K. Chatterjee and W. Samuelson, editors, Advances in Business Applications of Game Theory, pages 17–48, Boston, 2001. Kluwer Academic Publishers.

    Google Scholar 

  2. Altman E., Avrachenkov K., Barakat C., Tcp network calculus: The case of large delay-bandwidth product, In IEEE INFOCOM, New-York, USA, June 2002.

    Google Scholar 

  3. Altman E., El Azouzi R., Pourtallier O., Computer Networks, 43(2), 133–146, October 2003.

    MATH  Google Scholar 

  4. Altman E., El Azouzi R., Vyacheslav A., Non-cooperative routing in loss networks. 49, Issue 1-4:43–55, 2002.

    MATH  Google Scholar 

  5. Altman E., Baar T., Jimenez T., Shimkin N., Routing into two parallel links: Game-theoretic distributed algorithms. Journal of Parallel and Distributed Computing, 61(9): 1367–1381, September 2001.

    MATH  Google Scholar 

  6. Altman E., Baar T., Jimenez T., Shimkin N., Competitive routing in networks with polynomial cost. IEEE Transactions on Automatic Control, 47:92–96, 2002.

    Google Scholar 

  7. Altman E., N. Bonneau N., Debbah M., Caire G., An evolutionary game perspective to ALOHA with power control. In Proceedings of the 19th International Teletraffic Congress, Beijing, 29 August-2 September 2005.

    Google Scholar 

  8. Altman E. Wynter L., Equilibrium, games, and pricing in transportation and telecommunication networks. Networks and Spatial Economics (Special Issue on Crossovers Between Transportation and Telecommunication Modelling, E. Altman and L. Wynter, Guest Eds.), 4(1), March 2004.

    Google Scholar 

  9. Aumann R. J., Subjective and correlation in randomized strategies. Journal of Mathematical Economics, p. 67–96, 1974.

    Google Scholar 

  10. Axelrod R., The Evolution of Cooperation. New York: Basic Books, 1984.

    Google Scholar 

  11. El Azouzi R., El Kamili M., Altman E., Abbad M., Basar T., Combined competitive flow control and routing in mult-user communication networks with hard side constraints, analysis control and optimization of complex dynamic systems, Editors E. K. Boukas and R. R Malhamé. 2005.

    Google Scholar 

  12. Basar T. Bernhard P., II °° — Optimal Control and Relaxed Minimax Design Problems: A Dynamic Game Approach. Birkhauser, Boston, MA, USA, 1991 (2nd edition, 1995).

    Google Scholar 

  13. Douglas T., Baird G., Robert H. Gertner, Randal Picker C., Game Theory and the Law. Cambridge, Mass.: Harvard University Press, 1994.

    Google Scholar 

  14. Bardi M., Parthasarathy T., Raghavan T.E., In Annals of Dynamic Games: Stochastic and Differential Games, Theory and Numerical Methods, volume 5, Berlin, 1999. Birkhauser.

    Google Scholar 

  15. Beans N. G., Kelly F. P., Taylor P. G., Braess’s paradox in a loss network. J. Appl. Prob., 34:155–159, 1997.

    Google Scholar 

  16. Lawrence E., Blume and William Zame R., The algebraic geometry of competitive equilibrium. In W. Neuefeind, editor, Essays in General Equilibrium and International Trade: In Memoriam Trout Kader, New York, 1993. Springer Verlag.

    Google Scholar 

  17. Boulogne T., Altman E., Competitive routing in multicast communications networks, 2005.

    Google Scholar 

  18. Boulogne T., Altman E., Kameda H., Pourtallier O., Mixed equilibrium in multiclass routing games, IEEE Trans, on Automatic Control, 47(6):903916, June 2002.

    MathSciNet  Google Scholar 

  19. Boulogne T., Altman E., Pourtallier O., On the convergence to nash equilibrium in problems of distributed computing. The Annals of Operations Research, special volume on applications of game theory, 109(1), Jan 2002.

    Google Scholar 

  20. Braess D. Über ein paradoxen der werkehrsplannung. Unternehmen-forschung, 12:256–268, 1968.

    MathSciNet  Google Scholar 

  21. Te Bu Towsley D., Fixed point approximation for tcp behaviour in an AQM network. June 2001.

    Google Scholar 

  22. Cabrales A., Stochastic replicator dynamics. International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, 41(2):451–481, May 2000.

    MathSciNet  Google Scholar 

  23. Charnes A., Constrained games and linear programming. Proceedings of the National Academy of Science of the USA, 39:639–641, 1953.

    MathSciNet  MATH  Google Scholar 

  24. Cohen J. E., Kelly F. P., A paradox of congestion in a queuing network. J. Appl. Prob., 27:730–734, 1990.

    MathSciNet  MATH  Google Scholar 

  25. Cubiotti P., Existence of nash equilibria for generalized games without upper semicontinuity. International Journal of Game Theory, 26:267–273, 1997.

    MathSciNet  MATH  Google Scholar 

  26. Dafermos S., Nagurny A., On some traffic equilibrium theory paradoxes. Transportation Research B., 18:101–110, 1984.

    Google Scholar 

  27. Debreu G., A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the U.S.A, 38:886–893, 1952.

    MathSciNet  MATH  Google Scholar 

  28. Debreu G., Existence of competitive equilibrium. Handbook of Mathematical Economics, 1982.

    Google Scholar 

  29. El-azouzi R., Altman E., Constrained traffic equilibrium in routing, IEEE Transaction on Automatic Control, 48(9):1656–1660, Sept. 2003.

    MathSciNet  Google Scholar 

  30. El-Azouzi R., Altman E., Wynter L., Telecommunications network equilibrium with price and quality-of-service characteristics. In Proceedings of the International Teletraffic Conference (ITC), Berlin, 2003.

    Google Scholar 

  31. Gupta P., Kumar P. R., A system and traffic dependent adaptive routing algorithm for Ad Hoc networks. In Proceedings of the 36th IEEE Conference on Decision and Control, p. 2375–2380, San Diego, USA, Dec. 1997.

    Chapter  Google Scholar 

  32. Haurie A. Marcotte P., On the relationship between Nash-Cournot and Wardrop equilibria. Networks, 15, pp. 295–308, 1985.

    MathSciNet  MATH  Google Scholar 

  33. Hofbauer J., Sigmund K., Evolutionary game dynamics. American Mathematical Society, 40(4), p. 479–519, 2003.

    MathSciNet  MATH  Google Scholar 

  34. Houston A. I., McNamara J.M., Evolutionarily stable strategies in the repeated hawk-dove game. Behavioral Ecology, pages 219–227, 1991.

    Google Scholar 

  35. Jorgensen S., Zaccour G., Differential games in marketing. Kluwer Academic Publishers, Boston, Dordecht, London, 2004.

    Book  Google Scholar 

  36. Kameda H., HOW harmful the paradox can be in braess/cohen-kelly-jeffries networks. In IEEE INFOCOM, New York, NY, USA, June 2002.

    Google Scholar 

  37. Kameda H., Altman E., Kozawa T., Hosokawa Y., Braess-like paradoxes in distributed computer systems. IEEE Transaction on Automatic control, 45(9): 1687–1691, 2000.

    MathSciNet  MATH  Google Scholar 

  38. Kameda H., Altman E., Pourtallier O., Analytic study of mixed optima in symmetric distributed computer systems. In Proceedings of the 9th International Symposium on Dynamic Cames and Applications, Adelaide, Australia, Dec. 18-21 2000.

    Google Scholar 

  39. Kameda H., Pourtallier O., Paradoxes in distributed decisions on optimal load balancing for networks of homogeneous computers. Journal of the ACM, 49(3):407–433, 2002.

    MathSciNet  Google Scholar 

  40. Korilis Y A., Lazar A. A., Orda A., Avoiding the Braess paradox in non-cooperative networks. Journal of Applied Probability, 36:211–222, 1999.

    MathSciNet  MATH  Google Scholar 

  41. Korilis Y A., Orda A., Incentive-compatible pricing strategies for QoS routing. In Proceedings of IEEE INFOCOM’99, New York, NY, USA, March 1999.

    Google Scholar 

  42. Low S. H., A duality model of TCP and queue management algorithms, IEEE/ACM Trans, on Networking, 11(4):525–536, August 2003.

    MathSciNet  Google Scholar 

  43. Mcnamara J. M., Merad S., Collins E. J., The hawk-dove game as an average cost problem. Advances of Applied Probability, 23:667–682, 1991.

    MathSciNet  MATH  Google Scholar 

  44. Mhatre V., Rosenberg C., Energy and cost optimizations in wireless sensor networks: A survey, in the 25th Anniversary of CERAD, Kluwer Academic Publishers, Jan 2004.

    Google Scholar 

  45. Morrow J. D., Came Theory for Political Scientists. Princeton University Press, Princeton, New Jersey, 1994.

    Google Scholar 

  46. Orda A., Rom N., Shimkin N., Competitive routing in multi-user communication networks, IEEE/ACM Transaction on Networking, 1:614–627, 1993.

    Google Scholar 

  47. Patriksson M., The Traffic Assignment Problem: Models and Methods, VSPBV, The Netherlands, 1994.

    Google Scholar 

  48. Prestwich K., Came Theory.

  49. Rosen J. B., Existence and uniqueness of equilibrium points for concave Nperson games. Econometrica, 33:153–163, 1965.

    Google Scholar 

  50. Sandholm W. H., Evolutionary Justification of Nash Equilibrium. PhD thesis, Northwestern University, 1998.

    Google Scholar 

  51. Sandholm W. H., Evolutionary implementation and congestion pricing, SSRI Working Paper, (9938), 1999.

    Google Scholar 

  52. Sandholm W. H. Potential games with continuous player sets. Journal of Economic Theory, 97:81–108, 2001.

    MathSciNet  MATH  Google Scholar 

  53. Schanuel S., Simon L. K., Zame W. R., The algebraic geometry of games and the tracing procedure. In R. Selten, editor, Came Equilibrium Models, II: Methods, Morals and Markets, pages 9–44, Berlin, 1991. Springer-Verlag.

    Google Scholar 

  54. Smith M., Game theory and the evolution of fighting. In John Maynard Smith, editor, On Evolution (Edinburgh: Edinburgh University Press), pages 8–28, 1972.

    Google Scholar 

  55. Smith M., Evolution and the Theory of Cames. Cambridge University Press, Cambridge, UK, 1982.

    Google Scholar 

  56. Stackelberg H. V., Marktform und Cleichgewicht. Julius Springer, Vienna, Austria, 1934.

    Google Scholar 

  57. Vincent T. L. and Evolution and control system design, IEEE Control Systems Magazine, 20(5):20–35, Oct. 2000.

    Google Scholar 

  58. von Neumann J., Morgenstern O., Theory of Cames and Economic Behavior. Princeton University Press, 1944.

    Google Scholar 

  59. Wardrop J. G., Some theoretical aspects of road traffic research communication networks. Proc. Inst. Civ. Eng., Part 2, 1:325–378, 1952.

    Google Scholar 

  60. Wie B. W., A differential game approach to the dynamic mixed behavior traffic network equilibrium problem. European Journal of Operational Research, 83:117–136, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altman, E., El-Azouzi, R. La théorie des jeux non-coopératifs appliquée aux réseaux de télécommunication. Ann. Telecommun. 62, 827–846 (2007). https://doi.org/10.1007/BF03253292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03253292

Mots clés

Key words

Navigation