Skip to main content
Log in

Gehirn und Gestalt

II. Neuronale Mechanismen

Brain and Gestalt

II. Neuronal Mechanisms

  • Published:
Kognitionswissenschaft

Abstract

New results in the study of visual perception are presented from a psychophysical, neurophysiological and neuroinformatics viewpoint and discussed in relation to Gestalt psychological ideas. Four topics are emphasized: figureground segregation, perception of surfaces, motion perception, eye movements and attention.

Zusammenfassung

Neue Ergebnisse in der Erforschung der visuellen Wahrnehmung werden aus psychophysischer, neurophysiologischer und neuroinformatischer Sicht dargestellt und ihre Bedeutung für gestaltpsychologische Ideen diskutiert. Vier Themenbereiche stehen im Vordergrund: Figur-Grund-Abhebung, Wahrnehmung von Flächen, Bewegungswahrnehmung, Augenbewegungen und Aufmerksamkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Allman, J., Miezin, F. & McGuinness, E. (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience, 8, 407–430

    Article  Google Scholar 

  • Attneave, F. (1954) Some informational aspects of visual perception. Psychological Review, 61, 183–193

    Article  Google Scholar 

  • Aulhorn, E. & Köst, G. (1989) Noise-field campimetry: A new perimet-ric method (snow campimetry). In: A. Heijl, (ed.), Perimetry update 1988/1989. Proceedings of the VIIIth International Perimetry Society Meeting (pp. 331–336). Amsterdam: Kugler & Ghedini

    Google Scholar 

  • Bachmann, G. & Fahle, M. (2000) Component perimetry: A fast method to detect visual field defects caused by brain lesions. Investigative Ophthalmology & Visual Science, 41, 870–2886

    Google Scholar 

  • Baumann, R., van der Zwan, R. & Peterhans, E. (1997) Figure-ground segregation at contours: A neural mechanism in the visual cortex of the alert monkey. European Journal of Neuroscience, 9, 1290–1303

    Article  Google Scholar 

  • Baumgartner, G. (1990) Where do visual signals become a perception? In: J. Eccles & O. Creutzfeldt (eds.), The principles of design and operation of the brain (pp. 99–114). Pontificiae Academiae Scientiarum Scripta Varia, 78

    Google Scholar 

  • Baumgartner, G. von der Heydt, R. & Peterhans, E. (1984) Anomalous contours: a tool in studying the neurophysiology of vision. Experimental Brain Research (Supplement), 9, 413–419

    Article  Google Scholar 

  • Beck, J. (1982) Textural segmentation. In: J. Beck, Organization and Representation in Perception (pp. 285–317). Hillsdale, NJ: L Erlbaum

    Google Scholar 

  • Benussi, V. (1904) Zur Psychologie des Gestalterfassens. In: A. Meinong (Hrsg.), Untersuchungen zur Gegenstandstheorie und Psychologie. Leipzig.

    Google Scholar 

  • Bergen, J.R. & Julesz, B. (1983) Parallel versus serial processing in rapid pattern discrimination. Nature, 303, 696–698

    Article  Google Scholar 

  • Biederman, I. (1987) Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147

    Article  Google Scholar 

  • Blanz, V., Tarr, M.J. & Bülthoff, H.H. (1999) What object attributes determine canonical views? Perception, 28, 575–599

    Article  Google Scholar 

  • Boynton, R.M., Hayhoe, M.M. & MacLeod, D.I.A. (1977) The gap effect: Chromatic and achromatic visual discrimination as affected by field separation. Optica Acta, 24, 159–177

    Article  Google Scholar 

  • Bradley, D.C., Chang, G.C. & Andersen, R.A. (1998) Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature, 392, 714–717

    Article  Google Scholar 

  • Bregman, A.L. (1981) Asking the “what for” question in auditory perception. In: M. Kubovy & J.R. Pomerantz (eds.), Perceptual organization (pp. 99). Hillsdale, N.J.: Lawrence Erlbaum

    Google Scholar 

  • Bressan, P., Mingolla, E., Spillmann, L. & Watanabe, T. (1997) Neon color spreading: A review. Perception, 26, 1353–1363

    Article  Google Scholar 

  • Bridgeman, B., van der Heyden, A.H.C. & Velichkovsky, B.M. (1994) A theory of visual stability across saccadic eye movements. Behavioral & Brain Sciences, 17, 247–292

    Article  Google Scholar 

  • Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. (1992) The analysis of visual motion: A comparison of neuronal and psycho-physical performance. Journal of Neuroscience, 12, 4745–4765

    Google Scholar 

  • Budd, J.M.L. (1998) Extrastriate feedback to primary visual cortex in primates: A quantitative analysis of connectivity. Proceedings of the Royal Society of London, B 265, 1037–1044

    Article  Google Scholar 

  • Burke, L. (1952) On the tunnel effect. The Quarterly Journal of Experimental Psychology, 4, 121–138

    Article  Google Scholar 

  • Campbell, F.W. & Maffei, L. (1970) Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology, 207, 635–652

    Article  Google Scholar 

  • Chakraborty, S. & Thier, P. (1998) Evidence for an extrastriate substrate of visual stability during smooth pursuit eye movements in the monkey. Society of Neuroscience Abstracts, 24, 650

    Google Scholar 

  • Chino, Y.M. (1999) The role of visual experience in the cortical topographic map reorganization following retinal lesions. Restorative Neurology & Neuroscience, 15, 165–176

    Google Scholar 

  • Churchland, P.S. & Ramachandran, V.S. (1996) In: K. Akins (ed.), Perception (pp. 132–157). New York: Oxford University Press

  • Creutzfeldt, O.D. & Nothdurft, H.C. (1978) Representation of complex stimuli in the brain. Naturwissenschaften, 65, 307–318

    Article  Google Scholar 

  • Dennett, D.C. (1996) Seeing is believing — or is it? In: Akins, K. (ed.), Perception (pp. 158–172). New York: Oxford University Press

    Google Scholar 

  • Desimone, R. (1992) Neural substrates for visual attention in the primate brain. In: G.A. Carpenter & S. Grossberg (eds.), Neural networks for vision image processing (pp. 343–364). Cambridge, MA: MIT Press

    Google Scholar 

  • Deubel, H. & Schneider, W.X. (1996) Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837

    Article  Google Scholar 

  • DeWeerd, P., Desimone, R. & Ungerleider, L.G. (1996) Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Visual Neuroscience, 13, 529–538

    Article  Google Scholar 

  • DeWeerd, P., Desimone, R. & Ungerleider, L.G. (1998) Perceptual filling-in: A parametric study. Vision Research, 38, 2721–2734

    Article  Google Scholar 

  • DeWeerd, P., Gattass, R., Desimone, R. & Ungerleider, L.G. (1995) Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Natur, 377, 731–734

    Article  Google Scholar 

  • Diesmann, M., Gewaltig, M.-O. & Aertsen, A. (1999) Conditions for stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533

    Article  Google Scholar 

  • Ditchburn, R.W., (1973) Eye movements and visual perception. Oxford: Clarendon Press

    Google Scholar 

  • Dresp, B. (1993) Bright lines and edges facilitate the detection of small light targets. Spatial Vision, 7, 213–225

    Article  Google Scholar 

  • Dresp, B. (1999) Dynamic characteristics of spatial mechanisms coding contour structures. Spatial Vision, 12, 129–142

    Article  Google Scholar 

  • Dresp, B. & Bonnet, C. (1991) Psychophysical evidence for low-level processing of illusory contours and surfaces in the Kanizsa square. Vision Research, 31, 1813–1817

    Article  Google Scholar 

  • Dresp, B. & Bonnet, C. (1995) Subthreshold summation with illusory contours. Vision Research, 35, 1071–1078

    Article  Google Scholar 

  • Dresp, B. & Grossberg, S. (1997) Contour integration across polarities and spatial gaps: From contrast filtering to bipole cooperation. Vision Research, 37, 913–924

    Article  Google Scholar 

  • Driver, J. & McLeod, P. (1992) Reversing visual search asymmetries with conjunctions of movement and orientation. Journal of Experimental Psychology: Human Perception and Performance, 18, 22–33

    Google Scholar 

  • Duffy, C.J. & Wurtz, R.H. (1997) Medial superior temporal area neurons respond to speed patterns in optic flow. The Journal of Neuroscience, 17, 2839–2851

    Google Scholar 

  • Duncan, J. & Humphreys, G.W. (1989) Visual search and stimulus similarity. Psychological Review, 96, 433–458

    Article  Google Scholar 

  • Eckhorn, R., Reitboeck, H.J., Arndt, M. & Dicke, P. (1990) Feature linking via synchronization among distributed assemblies: simulations and results from cat visual cortex. Neural Computation, 2, 293–307

    Article  Google Scholar 

  • Eckhorn, R. (1999) Neural mechanisms of visual feature binding investigated with microelectrodes and models. Visual Cognition, 6, 231–265

    Article  Google Scholar 

  • Ehrenstein, W.H. & Daubmann, U. (1999) Extrapolation dynamischer Seh-information: Experimentelle Untersuchung und ein quantitatives Mo-dell. In: R. Möller (Hrsg.) Berichte aus der Informatik, 6. Workshop Sichtsysteme - Visualisierung in der Simulationstechnik (pp. 3–13). Aachen: Shaker Verlag

    Google Scholar 

  • Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B. & Singer, W. (1992) Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends in Neuroscience, 15, 218–226

    Article  Google Scholar 

  • Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M. & Singer, W. (1997) Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex, 7, 571–582

    Article  Google Scholar 

  • Eriksen, C. W. & Collins, J.F. (1967) Some temporal characteristics of visual pattern perception. Journal of Experimental Psychology, 74, 476–484

    Article  Google Scholar 

  • Eysel, U.T., Eyding, D. & Schweigart, G. (1998) Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex. Neu-roreport, 9, 949–954

    Google Scholar 

  • Eysel, U.T. & Schweigart, G. (1999) Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. Cerebral Cortex, 9, 101–109

    Article  Google Scholar 

  • Eysel, U.T., Schweigart, G., Mittmann, T., Eyding, D., Qu, Y., Vandesande, F., Orban, G. & Arckens, L. (1999) Reorganization in the visual cortex after retinal and cortical damage. Restorative Neurology & Neu-roscience, 15, 153–164

    Google Scholar 

  • Fahle, M. (1993) Figure-ground discrimination from temporal information. Proceedings of the Royal Society, London, B 254, 199–203

    Article  Google Scholar 

  • Fahle, M., Quenzer, B. & Braun, D. (2001) Feature-specific electrophysio-logical correlates of texture segregation. Vision Research (im Druck)

  • Felleman, D.J. & van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1-47

  • Festinger, L., Coren, S. & Rivers, G. (1970) Effect of attention on brightness contrast and assimilation. American Journal of Psychology, 83, 189–207

    Article  Google Scholar 

  • Ffytche, D.H. & Zeki, S. (1996) Brain activity related to the perception of illusory contours. Neuroimage, 3, 104–108

    Article  Google Scholar 

  • Field, D.J., Hayes, A. & Hess, R.F. (1993) Contour integration by the human visual system: Evidence for a local “association field”. Vision Research, 33, 173–193

    Article  Google Scholar 

  • Fischer, B. (1999) Blickpunkte. Bern: Huber

    Google Scholar 

  • Friedman, H.S., Zhou, H. & von der Heydt, R. (1999) Monkeys perceive colour filling-in under steady fixation: Behavioral demonstration in monkeys and humans. Perception, 28, 1383–1395

    Article  Google Scholar 

  • Fries, P., Roelfsema, P.R., Engel, A.K., König, P. & Singer, W. (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proceedings of the National Academy of Sciences, USA, 94, 12699–12704

    Article  Google Scholar 

  • Gerling, J. & Spillmann, L. (1987) Duration of visual afterimages on modulated backgrounds: Postreceptoral processes. Vision Research, 27, 521–527

    Article  Google Scholar 

  • Gerrits, H.J.M. & Timmerman, G.J.M.E.N. (1969) The filling-in process in patients with retinal scotomata. Vision Research, 9, 439–442

    Article  Google Scholar 

  • Gerrits, H.J.M., Stassen, H.P.W. & van Erning, L.J.Th.O. (1984) The role of drifts and saccades for the preservation of brightness perception. In: L. Spillmann & B.R. Wooten (eds.), Sensory experience, adaptation, and perception (pp. 439–459). Hillsdale, NJ: Erlbaum

    Google Scholar 

  • Gerrits, H.J.M. & Vendrik, A.J.H. (1970) Simultaneous contrast filling-in process and information processing in man’s visual system. Experimental Brain Research, 11, 411–430

    Article  Google Scholar 

  • Gibson, J.J. (1950) The perception of the visual world. Boston: Houghton Mifflin CO

    Google Scholar 

  • Gibson, J.J. (1961) Ecological optics. Vision Research, 1, 253–262

    Article  Google Scholar 

  • Gibson, J.J. (1979) The ecological approach to visual perception. Houghton Mifflin Co, Boston. Deutsche Übers.: Lücke, G. & Kohler, I. Wahr-nehmung und Umwelt: Der ökologische Ansatz in der visuellen Wahr-nehmung. München: Urban & Schwarzenberg, 1982

  • Gilbert, C.D. (1992) Horizontal integration and cortical dynamics. Neuron, 9, 1–13

  • Gilbert, C.D. (1998) Adult cortical dynamics. Physiological Reviews, 78, 467–485

    Google Scholar 

  • Gilbert, C.D. & Wiesel, T.N. (1990) The influence of contextual stimuli on the orientation selectivitiy of cells in primary visual cortex of the cat. Vision Research, 30, 1689–1701

    Article  Google Scholar 

  • Gilbert, C.D. & Wiesel, T.N. (1992) Receptive field dynamics in adult primary visual cortex. Nature, 356, 150–152

    Article  Google Scholar 

  • Goldberg, M.E. (1985) The contribution of electrophysiology to the study of attention. In: H.-J. Freund & Gänshirt (eds.), Neurology (pp. 151–158). Berlin: Springer

    Google Scholar 

  • Gottschaldt, K. (1926) Über den Einfluß der Erfahrung auf die Wahrneh-mung von Figuren. Psychologische Forschung, 8, 261–317

    Article  Google Scholar 

  • Gregory, R.L. (1972) Cognitive contours. Nature, 238, 51–52

    Google Scholar 

  • Gregory, R.L. (1998) Eye and brain. The psychology of seeing. 5th Edition. Oxford: Oxford University Press

    Google Scholar 

  • Grossberg, S. & Mingolla, E. (1985) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review, 92, 173–211

    Article  Google Scholar 

  • Grossberg, S. & Todorovic, D. (1988) Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena. Perception & Psychophysics, 43, 241–277

    Article  Google Scholar 

  • Grunewald, A., Bradley, D.C. & Andersen, R.A. (1999) Neural Correlates of depth-order motion perception in areas V1 and MT of macaque monkey. Society for Neuroscience Abstracts, 25, 3

    Google Scholar 

  • Haarmeier, T., Thier, P., Repnow, M. & Petersen, D. (1997) False perception of motion in a patient who cannot compensate for eye movements. Nature, 389, 849–851

    Article  Google Scholar 

  • Hardage, L. & Tyler, C.W. (1995) Induced twinkle aftereffect as a probe of dynamic visual processing mechanisms. Vision Research, 17, 1001–1008

    Google Scholar 

  • Heider, B., Meskenaite, V. & Peterhans, E. (2000) Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours. European Journal of Neuroscience, 12, 4117–4130

    Article  Google Scholar 

  • Hirsch, J., DeLaPaz, R.L., Relkin, N.R., Victor, J., Kim, K., Li, T., Borden, P., Rubin, N. & Shapley, R. (1995) Illusory contours activate specific regions in human visual cortex: Evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 92, 6469–6473

    Article  Google Scholar 

  • Hubel, D.H. (1988) Eye, brain, and vision. New York: W.H. Freemann & Co

    Google Scholar 

  • Hupé, J.-M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P. & Bullier, J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3. Nature, 394, 784–787

    Article  Google Scholar 

  • Johansson, G. (1964) Perception of motion and changing form. Scandinavian Journal of Psychology, 5, 181–207

    Article  Google Scholar 

  • Juergens, E., Eckhorn, R., Frien, A. & Woelbern, T. (1996) Restricted coupling range of fast oscillations in striate cortex of awake monkey. In: N. Elsner & H.U. Schnitzler (eds.), G öttingen neurobiology report (p. 418). Stuttgart: Thieme

    Google Scholar 

  • Julesz, B. (1981) Textons, the elements of texture perception, and their interactions. Nature, 290, 91–97

    Article  Google Scholar 

  • Julesz B. (1984) Adaptation in a peephole: A texton theory of preattentive vision. In: L. Spillmann & B.R. Wooten (eds.), Sensory experience, adaptation, and perception (pp. 37–52). Hillsdale: Lawrence Erlbaum

    Google Scholar 

  • Jung, R. (1954) Correlation of bioelectrical and autonomic phenomena with alterations of consciousness and arousal in man. In: J.F. Delafresnaye, E.D. Adrian, F. Bremer & H.H. Jasper (eds.), Brain mechanisms and consciousness (pp. 310–344). Oxford: Blackwell Publ.

    Google Scholar 

  • Jung, R. (1971) Kontrastsehen, Konturbetonung und Künstlerzeichnung. Studium Generale, 24, 1536–1565

    Google Scholar 

  • Jung, R. (1973) Visual perception and neurophysiology. In: H. Autrum, R. Jung, W. Loewenstein, D.M. MacKay & H.L. Teuber (eds.), Handbook of sensory physiology, Bd. VII/3A: Central processing of visual information (pp. 1–152). Berlin New York: Springer-Verlag

    Google Scholar 

  • Jung, R. (1975) Neurophysiologie von Bewußtsein, Schlaf und Traum. In: H.W. Klement (Hrsg.), Bewußtsein: Ein Zentralproblem der Wissen-schaften (S. 165–268). Baden-Baden: Agis

    Google Scholar 

  • Jung, R. (1987) Art and visual abstraction. In: Gregory, R.L. (ed.) The Oxford companion to the mind (pp. 40–47). Oxford: Oxford University Press

    Google Scholar 

  • Kanizsa, G. (1955) Margini quasi-percettivi in campi con stimolazione omo-genea. Rivista di Psicologia, 49, 7–30

    Google Scholar 

  • Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron, 15, 843–856

    Article  Google Scholar 

  • Kasten, E., Wüst, S., Behrens-Baumann, W. & Sabel, B.A. (1998) Computer-based training for the treatment of partial blindness. Nature Medicine, 4, 1083–1087

    Article  Google Scholar 

  • Kasten, E., Poggel, D.A., Müller-Oehring, E., Gothe, J., Schulte, T. & Sabel, B.A. (1999) Restoration of Vision II: Residual function and training-induced visual field enlargement in brain-damaged patients. Restorative Neurology & Neuroscience, 15, 273–287

    Google Scholar 

  • Kastner, S. (2000) Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453–2457

    Google Scholar 

  • Kastner, S., DeWeerd, P., Desimone, R. & Ungerleider, L.G. (1998) Mechanisms of directed attention in the human extrastriate visual cortex. Science, 256, 108–111

    Article  Google Scholar 

  • Kastner, S., Nothdurft, H.C. & Pigarev, I.N. (1997) Neuronal correlates of pop-out in cat striate cortex. Vision Research, 37, 371–376

    Article  Google Scholar 

  • Kastner, S., Nothdurft, H.C. & Pigarev, I.N. (1999) Neuronal responses to orientation and motion contrast in cat striate cortex. Visual Neuros-cience, 15, 587–600

    Article  Google Scholar 

  • Kastner, S., Pinsk, M.A., DeWeerd, P., Desimone, R. & Ungerleider, L.G. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–761

    Article  Google Scholar 

  • Kleine-Horst, L. (1989) Visuelle Sinnes- und Außersinneswahrnehmung des gleichen Objekts. A. Die Versuchsobjekte “Kreis mit Kreuz”, “Ellipse” und “Stern”. Köln: Enane-Verlag

    Google Scholar 

  • Klemm, O. Wahrnehmungsanalyse. (1925) In: E. Abderhalden (Hrsg.), Handbuch der biologischen Arbeitsmethoden, Abt. VI, Teil B, 1. Hälfte, Individuelle Psychologie 2 (S. 1–106). Berlin: Urban & Schwarzenberg

  • Knau, H. & Spillmann, L. (1997) Brightness fading during Ganzfeld adaptation. Journal of the Optical Society of America, A 14, 1213–1222

    Article  Google Scholar 

  • Knierim, J.J. & van Essen, D.C. (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neuro-physiology, 67, 961–980

    Google Scholar 

  • Kohler, I. (1961) Interne und externe Organisation in der Wahrnehmung. Psychologische Beiträge (Festschrift für W. Köhler), 6, 424–438

    Google Scholar 

  • Köhler, W. (1920) Die physischen Gestalten in Ruhe und im stationä ren Zustand. Braunschweig: Vieweg

    Book  Google Scholar 

  • Köhler, W. (1929/1947) Gestalt psychology. An introduction to new concepts in modern psychology. New York: Liveright

    Google Scholar 

  • Kovács, I. & Julesz, B. (1993) A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences, USA, 90, 7495–7497

    Article  Google Scholar 

  • Kovács, I. (1996) Gestalten of today: early processing of visual contours and surfaces. Behavioural Brain Research, 82, 1–11

    Article  Google Scholar 

  • Krauskopf, J. (1963) Effect of retinal image stabilization on the appearance of heterochromatic targets. Journal of the Optical Society of America, 53, 741–744

    Article  Google Scholar 

  • Krauskopf, J. (1967) Heterochromatic stabilized images: A classroom demonstration. American Journal of Psychology, 80, 634–637

    Article  Google Scholar 

  • Lamme, V.A. (1995) The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience, 15, 1605–1615

    Google Scholar 

  • Lamme, V.A. F., Supér, H. & Spekreijse, H. (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8, 529–535

    Article  Google Scholar 

  • Lappe, M., Bremmer, F., Pekel, M., Thiele, A. & Hoffmann, K.P. (1996) Optic flow processing in monkey STS: A theoretical and experimental approach. Journal of Neuroscience, 16, 6265–6285

    Google Scholar 

  • Larsson, J., Amunts, K., Gulyás, B., Malikovic, A., Zilles, K. & Roland, P.E. (1999) Neuronal correlates of real and illusory contour perception: Functional anatomy with PET. European Journal of Neuroscience, 11, 4024–4036

    Article  Google Scholar 

  • Leonards, U., Singer, W. & Fahle, M. (1996) The influence of temporal phasde differences on texture segmentation. Vision Research, 36, 2689–2697

    Article  Google Scholar 

  • Leopold, D.A. & Logothetis, N.K. (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature, 379, 549–553

    Article  Google Scholar 

  • Leopold, D.A., Murayama, Y. & Logothetis, N.K. Inter- and intraareal covariation of neural activity during multistable perception in the monkey. Neuroscience (im Druck)

  • Lewald, J. & Ehrenstein, W.H. (2000) Visual and proprioceptive shifts in perceived egocentric direction induced by eye-position. Vision Research, 40, 539–547

    Article  Google Scholar 

  • Lewin, K. (1926) Untersuchungen zur Handlungs- und Affektpsychologie. II. Vorsatz, Wille und Bedürfnis. Psychologische Forschung, 7, 330–385

    Article  Google Scholar 

  • Liebmann, S. (1927) Über das Verhalten farbiger Formen bei Helligkeits-gleichheit von Figur und Grund. Psychologische Forschung, 9, 300–353. (Engl. Übers. West, M. & Spillmann, L. (1996): Susanne Lieb-mann in the critical zone. Perception, 25, 1451–1495)

    Article  Google Scholar 

  • Livingstone, M.S., Hubel, D.H. (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. The Journal of Neuroscience, 7, 3416–3468

    Google Scholar 

  • Livingstone, M.S. & Hubel, D.H. (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science, 240, 740–750

    Article  Google Scholar 

  • Logothetis, N.K. & Schall, J.D. (1989) Neuronal correlates of subjective visual perception. Science, 245, 761–763

    Article  Google Scholar 

  • Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42

    Google Scholar 

  • Lund, J.S., Yoshioka, T. & Levitt, J.B. (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex, 3, 148–162

    Article  Google Scholar 

  • Mack, A. & Rock, I. (1998) Inattentional blindness. Cambridge, MA: MIT Press

    Google Scholar 

  • Mallot, H.A. (1998) Sehen und die Verarbeitung visueller Informationen — Eine Einführung. Braunschweig, Wiesbaden: Vieweg Verlag

    Book  Google Scholar 

  • Mallot, H.A. (1999) Spatial cognition: Behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft, 8, 40–48

    Article  Google Scholar 

  • Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. San Francisco, CA: Freeman

    Google Scholar 

  • McConkie, G.W. & Currie, C.B. (1996) Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22, 563–581

    Google Scholar 

  • Maunsell, J.H.R. & Desimone, R. (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736–1753

    Google Scholar 

  • Mendola, J.D., Dale, A.M., Fischl, B., Liu, A.K. & Tootell, R.B.H. (1999) The representation of illusory and real contours in human cortical visual areas revealed by function magnetic resonance imaging. Journal of Neuroscience, 19, 8560–8572

    Google Scholar 

  • Merigan, W. (1996) Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Visual Neuroscience, 13, 51–60

    Article  Google Scholar 

  • Metzger, W. (1930) Optische Untersuchungen am Ganzfeld. II. Mitteilung: Zur Phänomenologie des homogenen Ganzfelds. Psychologische For-schung, 13, 6–29

    Article  Google Scholar 

  • Metzger, W. (1935) Tiefenerscheinungen in optischen Bewegungsfeldern. Psychologische Forschung, 20, 195–260

    Article  Google Scholar 

  • Metzger, W. (1966) Figural-Wahrnehmung. In: W. Metzger (Hrsg.), Hand-buch der Psychologie, Bd. I, 1, Wahrnehmen und Erkennen (S. 693–744). Göttingen: Hogrefe

    Google Scholar 

  • Metzger, W. (1953) Gesetze des Sehens. Erste Auflage 1936. Zweite Auf-lage, Frankfurt/M.: W. Kramer

    Google Scholar 

  • Metzger, W. (1954) Psychologie, Die Entwicklung ihrer Grundannahmen seit der Einführung des Experiments. Darmstadt: Steinkopff

    Google Scholar 

  • Michotte, A. (1946) La perception de la causalité (Louvain, Institut Supérieur de Philosophie). Engl. transl. Miles, T.R. & Miles, E.: The perception of causality. London: Methuen, 1963)

    Google Scholar 

  • Michotte, A. et collaborateurs (1962) Causalité, pérmanence et réalité phénoménales. Studia Psychologica Louvain. Publications Unversitai-res

    Google Scholar 

  • Milner, A.D. & Goodale, M.A. (1995) The visual brain in action. Oxford: Oxford University Press

    Google Scholar 

  • Miltner, W.H.R., Braun, C., Arnold, M., Witte, H. & Taub, E. (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 397, 434–346

    Article  Google Scholar 

  • Moran, T. & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–784

    Article  Google Scholar 

  • Motter, B.C. (1993) Focal attention produces sapatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70, 909–919

    Google Scholar 

  • Motoyoshi, I. (1999) Texture filling-in and texture segregation revealed by transient masking. Vision Research, 39, 1285–1291

    Article  Google Scholar 

  • Mountcastle, V.B. (1986) The neuronal mechanisms of cognitive functions can now be studied directly. Trends in Neuroscience, 9, 505–508

    Article  Google Scholar 

  • Murphy, P.C. & Sillito, A.M. (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geni-culate nucleus. Journal of Neuroscience, 16, 1180–1192

    Google Scholar 

  • Nakayama, K. & Shimojo, S. (1990) Towards a neural understanding of visual surface representation. Cold Spring Harbor Symposia on Quantitative Biology, LV, 911–924

    Article  Google Scholar 

  • Neisser, U. (1967) Cognitive psychology. New York: Appleton-Century-Crofts

    Google Scholar 

  • Nelson, J.I. & Frost, B.J. (1978) Orientation-selective inhibition from beyond the classic visual receptive field. Brain Research, 139, 359–365

    Article  Google Scholar 

  • Neumann, H. & Sepp, W. (1999) Recurrent V1-V2 interactions in early visual boundary processing. Biological Cybernetics, 81, 425–444

    Article  Google Scholar 

  • Neumann, H. & Stiehl, S. (1993) Modelle der frühen visuellen Informa-tionsverarbeitung. In: G. Görz (Hrsg.), Einführung in die Künstliche Intelligenz (S. 589–681). Bonn: Addison-Wesley Publ. Co.

    Google Scholar 

  • Newsome, W.T., Britten, K.H. & Movshon, J.A. (1989) Neuronal correlates of a perceptual decision. Nature, 341, 52–54

    Article  Google Scholar 

  • Nothdurft, H.C. (1991) Texture segmentation and pop-out from orientation contrast. Vision Research, 31, 1073–1078

    Article  Google Scholar 

  • Nothdurft, H.C. (1994) Cortical properties of preattentive vision. In: B. Albowitz, K. Albus, U. Kuhnt, H.-Ch. Nothdurft & P. Wahle (eds.), Structural and functional organization of the neocortex (pp. 375–384). Berlin: Springer Verlag

    Google Scholar 

  • Nothdurft, H.C., Gallant & J.L., van Essen, D.C. (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Visual Neuroscience, 16, 15–34

    Article  Google Scholar 

  • Olson, R. & Attneave, F. (1970) What variables produce similarity grouping? American Journal of Psychology, 83, 1–21

    Article  Google Scholar 

  • Oram, M.W. & Perrett, D.I. (1984) Responses of anterior superior temporal polysensory (SPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 6, 99–116

    Article  Google Scholar 

  • Palmer, S., Rosch, E. & Chase, P. (1981) Canonical perspective and the perception of objects. In: J. Long & A. Baddeley (eds.), Attention and performance, Bd. X (pp. 135–151). Hillsdale, NJ: Lawrence Erlbaum

    Google Scholar 

  • Paradiso, M.K. & Nakayama, K. (1991) Brightness perception and filling-in. Vision Research, 31, 1221–1236

    Article  Google Scholar 

  • Pessoa, L. & Neumann, H. (1998) Why does the brain fill-in? Trends in Cognitive Science, 2, 422–424

    Article  Google Scholar 

  • Pessoa, L., Thompson, E. & Noë, A. (1998) Finding out about filling-in: A guide to perceptual completion for visual science and the philosophy of perception. Behavioral and Brain Sciences, 21, 723–747

    Google Scholar 

  • Peterhans, E. & von der Heydt, R. (1991) Subjective contours - bridging the gaps between psychophysics and physiology. Trends in Neuroscience, 14, 112–119

    Article  Google Scholar 

  • Peterhans, E. & von der Heydt, R. (1993) Functional organization of Area V2 in the alert monkey. European Journal of Neuroscience, 5, 509–524

    Article  Google Scholar 

  • Peters, A., Payne, B.R. & Budd, J.A. (1994) A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex, 4, 215–229

    Article  Google Scholar 

  • Pettet, M.W. & Gilbert, C.D. (1992) Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy, 89, 8366–8370

    Article  Google Scholar 

  • Pinna, B., Spillmann, L. & Brelstaff, G. (2001) Surface color from boundaries: a new ‘watercolor’ illusion. Vision Research, 41, 2669–2676

    Article  Google Scholar 

  • Polat, U. & Sagi, D. (1993) Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999

    Article  Google Scholar 

  • Posch, S. (1999) Perzeptives Gruppieren und Bildanalyse. Wiesbaden: Deut-scher Universitäts-Verlag

    Book  Google Scholar 

  • Posner, M.I., Cohen, Y. & Rafal, R.D. (1982) Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London, 298, 187–198

    Article  Google Scholar 

  • Prinz, W. (1997) Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154

    Article  Google Scholar 

  • Qian, N. & Andersen, R.A. (1994) Transparent motion perception as detection of unbalanced motion signals. II Physiology. Journal of Neu-roscience, 14, 7367–7380

    Google Scholar 

  • Ramachandran, V.S. & Gregory, R.L. (1991) Perceptual filling-in of artificially induced scotomas in human vision. Nature, 350, 699–702

    Article  Google Scholar 

  • Redies, C., Crook, J.M. & Creutzfeldt, O.D. (1986) Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal geniculate nucleus. Experimental Brain Research, 61, 469–481

    Article  Google Scholar 

  • Rensink, R.A., O’Regan, J.K. & Clark, J.J. (1997) To see or not to see. The need for attention to perceive changes in scenes. Psychological Science Bulletin, 8, 368–373

    Article  Google Scholar 

  • Riggs, L.A., Ratliff, F., Cornsweet, J.C. & Cornsweet, T.N. (1953) The disappearance of steadily fixated visual test objects. Journal of the Optical Society of America, 43, 495–501

    Article  Google Scholar 

  • Rodriguez, E., George, N., Lachaux, J.-P., Martinerie, J., Renault, B. & Varela, F.J. (1999) Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397, 430–433

    Article  Google Scholar 

  • Roelfsema, P.R. & Singer, W. (1998) Detecting connectedness. Cerebral Cortex, 8, 385–396

    Article  Google Scholar 

  • Rolls, E.T. (1994) Brain mechanisms for invariant visual recognition and learning. Behavioral Processes, 33, 113–138

    Article  Google Scholar 

  • Ross, J., Morrone, C., Goldberg, M. & Burr, D. (2001) Changes in visual perception at the time of saccades. Trends in Neurosciences, 24, 113–121

    Article  Google Scholar 

  • Rossi, A.F. & Paradiso, M.A. (1996) Temporal limits of brightness induction and mechanisms of brightness perception. Vision Research, 36, 1391–1398

    Article  Google Scholar 

  • Rossi, A.F. & Paradiso, M.A. (1999) Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex. Journal of Neuroscience, 15, 6145–6156

    Google Scholar 

  • Rubin, E. (1915) Synsoplevede Figurer. Kobenhavn: Glydendalske

    Google Scholar 

  • Sabel, B.A. (1999) Restoration of vision I: Neurobiological mechanisms of restoration and plasticity after brain damage — a review. Restorative Neurology & Neuroscience, 15, 177–200

    Google Scholar 

  • Safran, A.B. & & Landis, T. (1998) The vanishing of the sun: A manifestation of cortical plasticity. Survey of Ophthalmology, 42, 449–452

    Article  Google Scholar 

  • Sagi, D. & Julesz, B. (1986) Enhanced detection in the aperture of focal attention during simple discrimination tasks. Nature, 321, 693–695

    Article  Google Scholar 

  • Sampaio, A.C. (1943) La translation des objets comme facteur de leur permanence phénoménale. Louvain: Warmy

    Google Scholar 

  • Sander, F. (1928) Experimentelle Ergebnisse der Gestaltpsychologie. (Ein-schließlich Diskussion) Bericht über den 10. Kongress für experimen-telle Psychologie in Bonn 1927, S. 23–88

    Google Scholar 

  • Sarkar, S. & Boyer, K.L. (1994) Computing perceptual organization in computer vision. Singapore: World Scientific Publishing

    MATH  Google Scholar 

  • Sary, G., R. & Orban, G.A. (1993) Cue-invariant shape selectivity of macaque inferior temporal neurons. Science, 260, 995–997

    Article  Google Scholar 

  • Schiller, P.H. (1996) On the specificity of neurons and visual areas. Behavioral Brain Research, 76, 21–35

    Article  Google Scholar 

  • Schulz, T. (1989) Direct perception or unconscious inference? Some remarks on the valence of affordances within the debate between critical realism and rationalism. Gestalt Theory, 11, 52–67

    Google Scholar 

  • Sekuler, R. (1996) Motion perception in a modern view of Wertheimer’s 1912 monograph. Perception, 25, 1243–1258

    Article  Google Scholar 

  • Shadlen, M.N. & Movshon, J.A. (1999) Synchony unbound: A critical evaluation of the temporal binding hypothesis. Neuron, 24, 67–77

    Article  Google Scholar 

  • Simons, D.J. (2000) Current approaches to change blindness. Visual Cognition, 7, 1–15

    Article  MathSciNet  Google Scholar 

  • Simons, D.J. & Chabris, C.F. (1999) Gorillas in our midst: sustained inat-tential blindness for dynamic events. Perception, 28, 1059–1074

    Article  Google Scholar 

  • Singer, W. (1989) Search for coherence: A basic principle of cortical self-organization. Concepts in Neuroscience, 1, 1–25

    Google Scholar 

  • Singer, W. (1990) The formation of cooperative cell assemblies in the visual cortex. Journal of experimental Biology, 153, 177–197

    Google Scholar 

  • Singer, W. (1994) The putative role of synchrony on cortical processing. In: N. Elsner & H. Breer (eds.), Sensory transduction (Otto Creutzfeldt lecture) (pp. 119–144). Stuttgart: Thieme

    Google Scholar 

  • Singer, W. (1998) Das Bild im Kopf - ein Paradigmenwandel. In: D. Ganten u.a. (Hrsg.) Gene, Neurone, Qubits, & Co. Unsere Welten der Information (S. 267–278). Gesellschaft deutscher Naturforscher und Arzte. Stuttgart: S. Hirzel Verlag

    Google Scholar 

  • Singer, W., Engel, A.K., Kreiter, A.K., Munk, M.H.J., Neuenschwander, S. & Roelfsema, P.R. (1997) Neuronal assemblies: Necessity, significance, and detectability. Trends in Cognitive Sciences, 1, 252–261

    Article  Google Scholar 

  • Skiera, G., Petersen, D., Skalej, M. & Fahle, M. (2000) Correlates of figure-ground segregation in fMRI. Vision Research, 40, 2047–2056

    Article  Google Scholar 

  • Spiegel, B. (1958) Werbepsychologische Untersuchungsmethoden. Experi-mentelle Forschungs- und Prüfverfahren. Berlin: Duncker & Humblot

    Google Scholar 

  • Spillmann, L. (1999) From elements to perception: Local and global processing in visual neurons. Perception, 28, 1461–1492

    Article  Google Scholar 

  • Spillmann, L. (1999) Gehirn und Gestalt I. Metzgers Gesetze des Sehens. Psychologische Beiträge, 51, 458–493

    Google Scholar 

  • Spillmann, L. & Dresp, B. (1995) Phenomena of illusory form: Can we bridge the gap between levels of explanation? Perception, 24, 1333–1364

    Article  Google Scholar 

  • Spillmann, L. & DeWeerd, P. (2002) Surface completion: Psychophysics and neurophysiology of texture fading and filling-in. In: L. Pessoa & P. DeWeerd (eds.), Filling-in: From perceptual completion to skill learning. Oxford: Oxford University Press. (im Druck)

    Google Scholar 

  • Spillmann, L. & Ehrenstein, W.H. (1996) From neuron to Gestalt. Mechanisms of visual perception. In: R. Greger & U. Windhorst (eds.), Comprehensive human physiology. Mechanisms of visual perception, Vol. 1 (pp. 861–893). Heidelberg: Springer Verlag

    Chapter  Google Scholar 

  • Spillmann, L. & Kurtenbach, A. (1992) Dynamic noise backgrounds facilitate target fading. Vision Research, 32, 1941–1946

    Article  Google Scholar 

  • Spillmann, L., Ransom-Hogg, A. & Oehler, R. (1987) Acomparison of perceptive and receptive fields in man and monkeys. Human Neuro-biology, 6, 51–62

    Google Scholar 

  • Spillmann, L. & Werner, J.S. (1996) Long-range interactions in visual perception. Trends in Neurosciences, 19, 428–434

    Article  Google Scholar 

  • Strasburger, H. & Rentschler, I. (1996) Contrast-dependent dissociation of visual recognition and detection fields. European Journal of Neuros-cience, 8, 1787–1791

    Article  Google Scholar 

  • Strasburger, H., Rentschler, I. & Harvey, L.O., Jr. (1994) Cortical magnification theory fails to predict visual recognition. European Journal of Neuroscience, 6, 1583–1588

    Article  Google Scholar 

  • Strasburger, H., Scheidler, W. & Rentschler, I. (1988) Amplitude and phase characteristics of the steady-state visual evoked potential. Applied Optics, 27, 1069–1088

    Article  Google Scholar 

  • Stürzel, F. & Spillmann, L. (2000) Thatcher illusion: dependence on angle of rotation. Perception, 29, 937-942

  • Stürzel, F. & Spillmann, L. (2001) Texture fading correlates with stimulus salience. Vision Research (im Druck)

  • Tanaka, K., Fukada, Y. & Saito, H. (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the monkey. Journal of Neurophysiology, 62, 642–656

    Google Scholar 

  • Tovée, M.J. (1996) An introduction to the visual system. Cambridge: Cambridge University Press

    Google Scholar 

  • Treisman, A. & Gelade, G (1980) A feature-integration theory of attention. Cognitive Psychology, 12, 97–136

    Article  Google Scholar 

  • Treue, S. & Martinez Trujillo, J.C. (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575–579

    Article  Google Scholar 

  • Treue, S. & Maunsell, J.H.R. (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541

    Article  Google Scholar 

  • Treue, S. & Maunsell, J.H. (1999) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19, 7591–7602

    Google Scholar 

  • Troxler, D. (1804) Über das Verschwinden gegebener Gegenstände inner-halb unseres Gesichtskreises. In: K. Himley & J.A. Schmidt (Hrsg.), Ophthalmische Bibliothek, Bd.2 (S. 51–53). Jena: F. Fromann

    Google Scholar 

  • Tynan, P. & Sekuler, R. (1975) Moving visual phantoms: A new contour completion effect. Science, 188, 951–952

    Article  Google Scholar 

  • Ungerleider, L.G. & Mishkin, M. (1982) Object vision and spatial vision: Two critical pathways. Trends in Neurosciene, 6, 414–417

    Google Scholar 

  • Uttal, W.R., Spillmann, L., Stürzel, F. & Sekuler, A.B. (2000) Motion and shape in common fate. Vision Research, 40, 301–310

    Article  Google Scholar 

  • van de Grind, W.A., Grüsser O.-J. & Lunkenheimer H.U. (1973) Fusion frequency of Gestalt properties. In: R. Jung (ed.), Handbook of Sensory Physiology, Vol. VII/3A, Central Visual Information (pp. 463–464). Berlin: Springer-Verlag

    Google Scholar 

  • van Doorn, A.J. & Koenderink, J.J. (1982) Temporal properties of the visual detectability of moving spatial white noise. Experimental Brain Research, 45, 179–188

    Article  Google Scholar 

  • van Tonder, G.J. & Ejima, Y. (2000) Bottom-up clues in target finding: Why a Dalmation may be mistaken for an elephant. Perception, 29, 149–157

    Article  Google Scholar 

  • Varin, D. (1971) Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale campo percettivo. Rivista di Psicologia, 65, 101–128

    Google Scholar 

  • Vicario, G.B. & Kiritani, Y. (1999) Slow-motion tunnel effect: An inquiry into vertical organization of perceptual events. Gestalt Theory, 21, 100–121

    Google Scholar 

  • von der Heydt, R., Peterhans, E. & Baumgartner, G. (1984) Illusory contours and cortical neuron responses. Science, 224, 1260–1262

    Article  Google Scholar 

  • von der Heydt, R., Zhou, H. & Friedman, H. (1996) The coding of extended colored figures in monkey visual cortex. Society for Neuroscience Abstracts, 22, 951

    Google Scholar 

  • von Holst, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip. Naturwis-senschaften, 37, 464–476

    Article  Google Scholar 

  • Wallach, H. (1935) Über visuell wahrgenommene Bewegungsrichtung. Psy-chologische Forschung, 20, 325–380; Trans. S. Würger, R. Shapley, N. Rubin, 1996. On the visually perceived direction of motion. Perception, 25, 1317–1367

    Google Scholar 

  • Walsh, V. & Kulikowski, J. (eds.), (1998) Perceptual constancy: Why things look as they do. Cambridge, NY: Cambridge University Press

    Google Scholar 

  • Wertheimer, M. (1912) Experimentelle Studien über das Sehen von Bewe-gungen. Zeitschrift für Psychologie, 61, 161–265

    Google Scholar 

  • Wertheimer, M. (1923) Untersuchungen zur Lehre von der Gestalt II. Psy-chologische Forschung, 4, 301–350

    Article  Google Scholar 

  • Westheimer, G. (1999) Gestalt theory reconfigured: Max Wertheimer’s anticipation of recent developments in visual neuroscience. Perception, 28, 5–15

    Article  Google Scholar 

  • Wist, E.R., Ehrenstein, W.H. & Schrauf, M. (1998) A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast. Journal of Neuroscience Methods, 80, 41–47

    Article  Google Scholar 

  • Witkin, A.P. & Tenenbaum, J.M. (1983) On the role of structure in vision. In: J. Beck, B. Hope & A. Rosenfeld (eds.), Human and machine vision (pp. 481–543). New York: Academic Press

    Google Scholar 

  • Wohlfahrt, E. (1932) Der Auffassungsvorgang an kleinen Gestalten. Ein Beitrag zur Psychologie des Vorgestalterlebnisses. Neue Psychologi-sche Studien, 4, 347–414 (Leipziger Dissertation bereits 1925)

    Google Scholar 

  • Yarbus, A.L. (1967) Eye movements and vision. New York: Plenum Press

    Book  Google Scholar 

  • Zhou, H., Friedman, H.S. & von der Heydt, R. (2000) Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611

    Google Scholar 

  • Zihl, J. (2000) Rehabilitation of visual disorders after brain injury. Hove: Psychology Press

    Google Scholar 

  • Zihl, J. & von Cramon, D. (1985) Visual field recovery from scotoma in patients with postgeniculate damage. Brain, 108, 335–365

    Article  Google Scholar 

  • Zipser, K., Lamme, V.A.F. & Schiller, P.H. (1996) Contextual modulation in primary visual cortex. Journal of Neuroscience, 16, 7376–7389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zusammenfassung ausgewählter Vorträge einer Tagung über ‘Gehirn und Gestalt’, die anläßlich des 100. Geburtstages von Wolfgang Metzger im Juni 1999 im Hanse-Wissenschaftskolleg in Delmenhorst (bei Bremen) stattfand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spillmann, L. Gehirn und Gestalt. Kognit. Wiss. 9, 122–143 (2001). https://doi.org/10.1007/BF03354945

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354945

Navigation