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1 Introduction

A good deal of research activity in wireless com-
munications has been devoted to finding accurate
statistical models of the channel. A major problem
here is caused by the fact that no single model (e.g.,
Rayleigh or Rice distributions modeling fading ef-
fects) can be accurate enough for a wide variety of
channels. Considerable efforts have been spent in the
search for general classes of probability measures,
viz., pdfs (probability density functions) or cdfs (cu-
mulative distribution functions) that are physically
justified and flexible enough to fit a large mass of ex-
perimental results. Nonetheless, wireless system anal-

ysis and design should in some way account for the
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uncertainty intrinsic in the use of inaccurate channel
models. This uncertainty adds to that caused by the
randomness of system behavior, but differs from it in
a substantial way, so that we should treat differently
the uncertainty due to randomness and the “epistem-
ic” uncertainty due to ignorance. This distinction
is not new, and has generated several techniques to
deal with this second type of uncertainty: among

them, we recall random-set theory'"”!

, fuzzy-set
theory”, Dempster-Shafer theory'", and probability
boxes” (relations among these techniques, and some
equivalence results, are discussed for example in
Refs.[2,6,7]). In this paper we focus on mathematical
models for wireless channels. While most previous

works in this area were primarily focused on the un-



certainties due to randomness under the optimistic
assumption that the channel models were perfectly
known, here we study the impact of epistemic uncer-
tainty on performance analysis. Our key point here is
that one should avoid performance analyses relying
on unwarranted distribution assumptions, and at the
same time evaluate the cost of the inaccuracy of a
physical model. Citing verbatim from Ref.[8], “it is
better to have a correct analysis that honestly distin-
guishes between variability and incertitude than an
analysis that depends on unjustified assumptions and
wishful thinking. If the price of a correct assessment
is broad uncertainty as a recognition or admission of
limitations in our scientific knowledge, then we must
pay that price.”

This paper is organized as follows: Section 2
serves as motivation, and describes two simple yet
general problems to which the theory expounded here
can be applied, viz., the computation of error proba-
bilities and outage probabilities. Section 3 shows how
bounds on cdfs can be used or combined in computa-
tions, and it describes moment bounds, i.e., methods
to derive upper and lower bounds to cdfs and to av-
erages when only a few moments of the underlying
RVs (Random Variables) are known. Section 4 shows
how moment bounds can be applied to cope with
certain sources of inaccuracy in cognitive radio using
linear, quadratic, or linear-quadratic spectrum sens-
ing. Section 5 describes a method to derive a “worst”
distribution when the exact one is unknown, but lies
“not too far” from the one being used. Section 6 deals
with upper and lower performance bounds obtained
when the statistical dependence among the random
variables used in the model is totally unknown or

only partially known.

2 Two applications

Although the theories described in this paper have

various other applications, here we focus, for motiva-

tion’s sake, on two specific problems, simple enough
to be often amenable to closed-form solutions.

The first one is the calculation of a performance
parameter of interest, say H, that can be expressed as

the expectation
H=£,[G(2)] , (1

where G(*) is a known function, and Z is a RV whose
pdf is only inaccurately known.

The formulation above encompasses for example
the calculation of the error probability # of uncoded
binary antipodal transmission over a channel affected
by additive white Gaussian noise, SNR (Signal-to-
Noise Ratio) equal to snr and a fading whose envelope
is modeled by the RV R, under the assumption of per-
fect channel state information at the receiver. In this

case, Eq.(1) applies with
G(Z)=0(/2snr Z) , 2)

where Q is the Gaussian tail function and Z=R’.

The second problem of interest refers to a noner-
godic channel affected by fading with random en-
velope R and additive white Gaussian noise. The
parameter H of interest is now the information
outage probability 4, i.e., the probability that the
transmission rate p, measured in bits per dimension
pair, exceeds the instantaneous mutual information
of the channel at signal-to-noise ratio snr. This is

given by"!
h,, =Plb(1+ R*snr)< p] , 3)
which can be rewritten in the form
h,, =P[R* <(2” =1)/snr]
=F.((2" =1)/snr)) , 4)

where the cdf F: is inaccurately known. Notice that
the calculation of /4, can be reduced to a special case

of Eq.(1), with Z=R” and the function G being the in-

dicator of the interval

T 2(0,4(2° =1)/snr) . (5)

With a nonergodic channel, /4, is the informa-

out



tion-theoretical rate limit which cannot be exceeded
by the word error probability of any coding scheme,
and hence can be utilized for estimating the error
probability of coded systems with powerful codes.
The comparison of the two parameters 4 and /4,

yields an indication of how coding can be beneficial

for transmission over a given channel.

3 Bounds on distribution functions

We consider first the situation where sharp upper and
lower bounds to the cdf of a RV, denoted F and F,
respectively, can be obtained on the basis of the in-
complete knowledge available about the RV itself. A
key point here is that the width of the gap between
the bounds yields a quantitative indication of the ef-
fects of the model uncertainty on the distribution of
the RV and on the performance parameters derived
from it. Thus, a wide gap would reflect, rather than a
weakness of the theory, a large amount of epistemic
uncertainty.

As an example of how these bounds can be used,
consider again the calculation of Eq.(1) in terms of
the cdf F,(z). If Z is a continuous RV with range R"
and G(x0)=0 and g(z) = G'(z) <0, we can rewrite
Eq.(1). Integration by parts yields

H=-| F, ()20 ©)

where this time we assume that the cdf F,(z) is inac-
curately known. If upper and lower bounds to F,(z)
are known, then we obtain upper and lower bounds to

H as follows. With obvious notations:

h= —I:Fz (2)g(2)dz ,

h=-["F,(2)2() , ™
With G(z) as in Eq.(2), Eq.(7) hold with
SHr gy 2
g(z)=- Ee ) ®)

n wireless communication

3.1 Using parameter intervals

A simple case of cdf bounds occurs when a model cdf
can be assessed with reasonable accuracy, except for
an uncertainty about the exact values of its parame-
ters, which are known only within an interval (see,
e.g., Ref.[10] for the presentation of an exceedingly
general class of parametrizable distributions to be used
as fading models). In this case bounds can be generated
by determining the envelope of all cdfs whose param-
eters lie in that interval. As an example, Fig.1 shows
the p-box generated by Nakagami cdfs'"" whose pa-
rameters are me(0.6, 2.0), Qe (1.2, 1.8).
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Figure 1 Upper and lower bounds Fx, F v generated by
Nakagami-m cdfs with parameters me (0.6, 2.0), Qe(1.2,
1.8). The dashed curves correspond to three Nakagami-m
cdfs with randomly selected values of m and 2 within their

intervals.

Once bounds are derived, they can be aggregated in
several ways, for example using binary operations in
the set {+, —, %, +}. Consider first the case of two in-
dependent RVs whose upper and lower bounds to cdfs
are given, and assume again that the RVs involved in
the calculations take their values on R". We denote by
®, ©, ®, and O, respectively, the “generalized convo-
lutions” that combine Fy and F to generate F'y.,, SO
that if for example Z=XxY with X and Y independent
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we have Fiy (2) = (Fy ®F,)(2) = [ Fy (/0)dF, (0). In
these conditions it can be easily proved”’ that the up-

per and lower bounds for the cdfs, denoted f and F,
respectively, are given by

Fyy=F,®F,, Fxoy =Fx® Fy,
Fyy=F, OFy, Fxoy =Fx © F,,
Froy=F,®F,, Fx«y =Fx ®Fy,
Fyy=Fy®Fy, Fx.o =Fx ©F . ©)

3.2 Moment bounds

Here we assume that the inaccurately modeled RV
Z is known through a (possibly small) number of its
moments, i.e., of expected values of known functions
of Z. Formally, we look for upper and lower bounds
to H in Eq.(1) under the constraint that the values of
some moments of Z are exactly known, and the range
Z of Z is known. It can be expected that the more
moments are known, the tighter the interval within
which the exact value of H is confined.

In this case, geometric moment-bound theory (see,
e.g., Refs.[12-15] and references therein) allows one
to obtain sharp upper and lower bounds to the values
of H. To keep our treatment simple, we examine here
only the two-dimensional case of moment bounds.
Thus, let k,(z) and k,(z) be two continuous functions
defined over a finite Z. The moment space of Z, de-
noted 17, is defined as the (closed, bounded, and

convex) set of the pairs

([ k@G, [ k@), o)

as H(-) runs over all cdfs defined over Z. The main
result we need is the following"*": A1 is the convex
hull of the curve = {(k (2),k,(2))|ze £} in the
two-dimensional Euclidean space R”. For example, by
choosing k,(z)=z" and k,(z)=G(z), the expected value
of G(z) can be identified with the second coordinate
of A4. If the first coordinate is chosen as the known
value of £Z°, then upper and lower bounds to EG(X)

are obtained by direct evaluation of the upper and
lower envelopes of A7 (see next section for an appli-
cation). Moment bound theory yields bounds that are
sharp, i.e., such that there exists a pair of RVs Z,, Z,
that have moments £[k,(Z)], i, /=1, 2, and whose cdfs
yield exactly these upper and lower bounds. (It is also
possible to derive bounds for a RV whose moment
values are not known only known exactly, but only
within intervals'®.)

If the parameter of interest is to be evaluated
through the cdf F(z), as in Eq.(6), then one can ob-
tain upper and lower bounds to it (see Ref.[17] for
the relevant theory and bibliographic references).
As an example, assume that the mean x, and the
variance o =&[X — 4, T are known for a RV X tak-
ing values in the finite interval [a,b] (Wwe must have
oy <(b— ), —a) for consistency). Then we have,

for x < x,

2
Ox

0<SF,(x)s——=——
x (@) (4, —x)’ +0o3 » (11)

While for X1 < X< X,

(x_ﬂl)(b_ﬂ1)+o-)2(
b ™ (12)

and

FX(X)gl—('ul _x)(/“ll —a)+0',2(

(b-x)(x—a) : (13)
Finally, for X, S x< b,
(x_:ul)2 <
— < F ()<l
(x—u) +or @) ) (14)
where
2
_ - oy
X, =a, X1 =4 — ,
X 1= [ b—pu
o -
= X =
X, Iu1+,ul_a , x2=b, (15)

Fig.2 shows upper and lower moment bounds to the cdf of
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a RV defined in [0, 1] with expected value m,=0.2 and vari-

ance 07=0.125.
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Figure 2 Upper and lower moment bounds to the cdf of a
RV X, defined in [0,1], that is known only through its ex-

pected value #,=0.2 and variance 6-3=0.125

4 Application to spectrum sensing

Moment bound theory can be applied to spectrum
sensing in cognitive radio'®'”. The situation here
is one in which the presence of a primary signal in
an observed signal should be detected, when the
observation is affected by an interference i(¢) that
cannot be modeled exactly. We assume in particular
that only the amplitude range and maximum power
of i(7) are known. Moment bound theory allows us
to characterize all probability distributions of the
interference satisfying the known constraints, and
derive those yielding maximum and minimum values
for the probability of false alarm A, and of missed

detection /.

4.1 Coherent sensor

Assume first that the primary signal is deterministic
and known (corresponding to a known preamble).

In order to assess the presence of the primary-user

signal, the secondary-user sensor compares against a

threshold 6 the maximum-likelihood statistics

1 N-1
Y& — X
v & Iy,
1 “l 2 * *
:ﬁn:0%{€|xn | +ix, +z,x,} 7 (16)

where N denotes the number of samples observed, y,
denote the samples of the observed signal, z, the sam-
ples of complex Gaussian additive noise, i, the sam-
ples of the interfering signal, and ¢ takes value 1 if
the primary signal x, is present, and 0 otherwise. The
false-alarm and missed-detection probabilities have

the form

P (=P >0]c=0)

Q[\/ﬁ g-1 1
Po? ||, (17)
Pp()=PY <0|e=1)

Q[\/NP—H+I]

Po?

z

(18)

where &, denotes expectation wrt /, [ is the interfer-

ence term

IS (19

and P is the average signal power

lN

N :0 (20)

IIl>

We finally assume for simplicity that N=1, P=1, Ie[-1, 1],
and that / has an even probability density function
(this implies in particular that its mean value is zero).
Fig.3 shows the evolution of the convex hull of Py,
with the noise power (here 6=0.5). The convex hull
contains all possible values of Py, for a given value of
o, =&
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Figure 3 Coherent sensing and its probability of false alarm
Pp,. Evolution of Py, uncertainty with noise power for
6=0.5

Similar results hold for Py, (see Ref.[19] for further
details).

4.2 Energy sensor

This is the simplest spectrum sensor. The presence of
a primary signal is detected by comparing the mea-
sured energy against a suitable threshold, which must
depend on the noise floor. The decision metric Y is
built again from a sequence of N received signal sam-

ples

1 N-1 )
Y =—
N,,Z:(;|yn| . (21)

We assume, as commonly done, that the noise sam-
ples are independent, circularly symmetric zero-mean
complex Gaussian random variables with variance
&z, ’]1= ~ A(0,07). The simplest deci-

sion strategy consists of comparing Y against a suit-

2 .
o, e, z,

ably optimized threshold 6. Since the decision thresh-
old depends on the observed-signal model, it becomes
vulnerable to modeling inaccuracies.

We assume a deterministic primary signal with

average power P. In this situation, the probability of a

false alarm conditioned on the interference is

N-1
P (Z,])= EZ,,P(%Z] i +z, [*> ej
n=0

N-1
254z, |2>40J
O

z n=0 z

=&, ,73[
The random variable appearing before the inequality
sign in last equation has a noncentral chi-square dis-
tribution with 2V degrees of freedom and noncentral-
ity parameter

A

NN|N

z (22)

Therefore,

Pa(D=E0,(J2\2NO/c?) . (23)

where O, denotes the generalized Marcum Q-func-
tion!""!. The conditional probability of missed detec-

tion can be derived in a similar way, to yield

B =1-50,(J4 \2NO/c?) . (24)

where now
= |x, +1, |
o nZ; (25)
Sharp upper and lower bounds to Py, and Py, can
be obtained under the assumption that £[i,]=0, which

allows us to obtain the moments

ElA]= 2N—2 and E[4]=2N—"L

Z

P+ 0'1
(26)
Thus, the moment space relevant to our problem

is obtained as the convex hull of the curve (x, Q(\/; ,

J2NO/c?)) (for Py,) and (x,1- O(x,y/2N6/c?))

(for Pyp). See Refs.[18,19] for further details).

4.3 Linear—quadratic sensor

Coherent sensing uses a matched-filter detector in the
presence of full knowledge of the signal that may be
transmitted by the primary user, while energy sensing
assume that that knowledge is missing. An intermedi-

ate situation occurs when the primary signal is imper-



fectly known. In this case, as advocated in Ref.[20],
a linear-quadratic detector may be used. The signal
observed by the spectrum sensor during a sensing in-
terval of duration N has the vector form

27)

where x is the primary-user signal, z the noise, and ¢

y=extz ,

takes on value 1 if a primary signal is included in the
observation, and 0 otherwise. The vectors in Eq.(27)
have N real components. By indicating with the nota-
tion g~/ (m, R) the fact that the random vector g has
a Gaussian probability density function with mean m
and covariance matrix R, a standard assumption for
Eq.(27) is z~AV (0, R,) (where the covariance R, is as-
sumed to have full rank).

Decision is made again by comparing the statistic
Y, a suitable function of the observed signal, against a
threshold 8. Assuming that x is incompletely known,
we use a LQ (Linear-Quadratic) detector which has
the matched-filter and the energy one as special cases.
Its performance approaches that of the linear detector
when the uncertainty on the primary signal is small,
and that of the quadratic detector in the opposite case.
A simple model for the uncertainty assumes that x is
the sum of a perfectly known signal s and a distur-
bance i whose probability distribution is only known
within an “uncertainty set,” which includes distribu-
tions whose first moments are known, so that moment
bound theory can be used™”.

To choose the detector parameters under the as-
sumed uncertainty of the model (which does not
allow the “natural” choice of using for Y the likeli-
hood ratio) a generalized signal-to-noise ratio is used,
called defiection. Thus, moment bound theory is used
to scrutinize the implications of the model mismatch
and to evaluate the robustness of the LQ statistics to
signal-model variations. To do this, while accepting
that x = s + i, with s a known signal, we assume that a
limited knowledge of the distribution of i is available,
for example in the form of its range and variance (we

also assume that it has mean zero), and study how

nication

the detector performs as that distribution varies in
the uncertainty set dened by those constraints. Under
these conditions, after observing that the probability

of false alarm does not depend on i, we may write

Ppy=E[Pp)] , (28)

where / denotes the actual distribution of 7, &, expec-
tation with respect to /, and P,(7) the detection prob-
ability conditioned on i. The extent of variation of P,,
as / runs in the uncertainty set tells us how robust the
detector is (see Ref.[20] for further details).

5 Finding the worst distribution
within a set

Assume again that Eq.(1) must be computed, while the
exact pdf of Z is unknown and approximated by the
pdf f,. It is assumed that f£; is “reasonably close” to the
exact density, where the measure of closeness is cho-
sen to be the K-L (Kullback-Leibler) divergence").
The solution of an optimization problem allows one
to determine the worst distribution having a given K-L
divergence from the nominal distribution, and assess
the system performance when the former is used in
lieu of the latter.

The mathematical problem of evaluating a per-
formance metric vs. the K-L divergence between the
nominal and the worst distribution is described and

solved in Ref.[22] as the convex optimization problem
) max , jG(z) f(2)dz ,
sit. jlogf( )f(z)dz<5
/(2)

jf(z)dz=1 .

(Condition f{z) = 0 should be added unless automati-
cally satisfied by the solution of (1))

The optimizing f(z) is

" fy()

fr )= )

(29)
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where

£ 2 [ f(x)dx (30)

v* is the solution of
g'v) _
v—f(v) logé(v)=0 31

and

£0)2 LY [Ge [t (3

The resulting maximum value of &£,/ G(Z)], denoted

Naxs 18 glVen by

)

EWVY) (33)
that is, 4, is the slope of the logarithmic derivative
of E(v)atv=v*.

P

5.1 Applications

The general expression for the error probability of un-
coded binary antipodal modulation with equally likely
signals having a common signal-to-noise ratio equal
to snr, under the assumption of ergodic Rayleigh fad-
ing with amplitude R, additive white Gaussian noise,

and perfect channel state information at the receiver, is

h0=l | |8
2 1+snr |, (34)

Fig.4 depicts the behavior of 4, and #4,,, vs. SNR for
two values of d. It is seen that for large values of SNR

max

the curve slope (the “diversity”) becomes logarith-
mic, showing that the performance loss is mainly due
to the model uncertainty, while for small SNR it is

approximately dictated only by the SNR.

5.1.1 Outage probability

As for outage probability, in the special case of

Rayleigh-distributed fading we obtain

hout,O = l_exp[_(zp_l)/snr] .

An indication of the robustness of the coding/mod-
ulation choice, one may evaluate the ratio between
the performance metric value corresponding to the
worst probability distribution and the one correspond-
ing to the nominal distribution. The higher this ratio
for a given value of J, the lower the robustness of
/h, and

Neod. 2 Pous, max/ o, o TOr different signal-to-noise ratios

the design. Tab.1 shows the ratios 7, 2 Mmax
and values of the K-L divergence J. The first ratio
indicates the robustness of uncoded transmission,
while the second indicates that of a system using a
near-optimal code. It is seen that for small ¢ addition
of error-control coding does not add much to robust-
ness, which on the contrary is increased when ¢ is
large. Robustness is lower for large values of signal-
to-noise ratio, indicating that in that regime the per-
formance is dictated by model uncertainty rather than
by noise (see Ref.[22] for further details about this
approach).
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Figure 4 Error probability of uncoded binary antipodal
modulation with equally likely signals having a common
signal-to-noise ratio equal to snr. A, is the error probabil-
ity under the assumption of ergodic Rayleigh fadingwith
amplitude R. &, is the worst error probability with model

uncertainty o



Table 1 Values Of ’7uncod. é hmax/hO and ncodA é hout, max/hout, 0
for different signal-to-noise ratios and values of the

K-L divergence 0

0=0.1 0=5.0
snr/dB
Muncod. Meod. Muncod. Meod.
0 1.38 1.32 3.26 1.58
10 2.52 2.62 17.0 10.5
20 7.8 8.0 132 100

6 Dependence bounds

Here we examine a situation in which the model un-
certainty arises from a RV Z that is a combination
of other RVs that are not independent, with their de-
pendence being unknown or only partially known. It
may happen that independence is assumed for ease of
treatment only, in which case it is important to assess
the possible performance penalty caused by a wrong
independence assumption. In this case, bounds to
cdfs are obtained by bounding the copulas connecting
marginal cdfs to their joint cdf. To study how this
can be done, we first summarize a few facts about
copulas, then we describe the resulting dependence
bounds resulting from copula theory. This approach
allows one to determine the width of the performance
range caused by possibly unwarranted independence
assumptions.

(224 is a function that links the marginal

A copula
cdfs of d random variables X, i=1,, d, to their joint
cdf. Using copulas, the joint cdf is identified through
two separate entities, one describing the marginal cdfs
and the other describing the dependence structure.
For simplicity’s sake, we consider two-dimensional
copulas first.

Specifically, if Fy, denotes a two-dimensional cdf
with marginals F, F',, then a function K, called a cop-

ula, exists such that

Fyx, p)=K(Fx(x), Fy(y)) - (35)

Hence, the copula K contains all the information

n wireless communication

about the dependence of X and Y.
The dual K” of copula X is defined as
K%(a, b) 2 a+b-K(a, b) . (36)

Given its definition, much can be obtained in the
study of copulas by examining different dependences
occurring among RVs uniform in [0, 1], which we de-
note writing U ~Z/ (0, 1).

Comonotonicity: The copula

K(uy, u)=min(u,, u,) (37)
is always attained if U,=T(U,), where T is an a.s.
monotonic increasing transformation. RVs of this
type are called comonotonic.
Independence: Independence occurs with
K(uy, uy) = uyu, (38)
Countermonotonicity: The copula
K(u,, uy) = max(u,+u,~1,0) (39)
refers to RV with perfect negative dependence:
U,=T(U,), with T strictly decreasing. RVs of this type
are called countermonotonic.
The following general inequalities can be proved™”.
For every copula K and all {x, y} [0, 1]x[0, 1]:
Wix,y) < K(x, y) < M(x, y) , (40)
where both W and M are copulas, defined as
W(x, y) 2 max(x+y-1,0) , (41)
M(x, y) 2 min(x, y) . (42)
If Ty, and T, are strictly increasing a.s. on ran X and
Y, then™
KTX(X)’ Ty(Y)(x’ V)= Knlx,y) . 43)
This equality shows how copulas capture the proper-

ties of a joint cdf which are invariant under a.s. strict-

ly increasing transformations. If 7y and 7 are strictly

decreasing a.s. on ran X and ran Y, respectively, then™”

KTX()()n Y(xy J’) = y - KXY(l_xn J/) > (44)
KXa Ty (Y)(-xay)=x_ KXY(xa l_y) > (45)
KTX()(): Ty(Y)(xa V) =xty- 1K (1-x, 1-p) . (46)



Journal of Comm

Combining Eq.(35) with Eq.(40)—Eq.(42) we ob-
tain the Fréchet—Hoeffding bounds on a joint cdf in
terms of its marginals”**"

Fyy (x,y) = max[Fy (x) + F, () - 1,0] ,
Fyy (3, y) < min[Fy (x), F, (y)] -

The upper bound is achieved when Y is a.s. an in-

(47)

creasing function of X, while the lower bound is
achieved when Y is a.s. a decreasing function of X.
The two-dimensional bounds Eq.(40) can be gen-
eralized to d-dimensional RVs:
d
maX(Zui +1- d,O] < K(u) <min(u,,",u,) (48)
i=1 s
while the d-dimensional Fréchet—-Hoeffding bounds
Eq.(47) are
d
max(ZFX[ (x,,)+1—d,o]
i=1
SFy oy, (X X))
< min(Fy ,", Fy ) .

The upper Fréchet-Hoeffding bound in Eq.(49) is a

copula, while the lower bound is not a copula for &>2.

(49)

Thus, while the upper bound in Eq.(49) is achieved
by comonotonic RVs, the lower bound is achieved in

general only for d=2.

6.1 Operations on RVs

We examine first a RV Z obtained as a composition of
two RVs X and Y. The following key result holds"":
Let X, Y denote two RVs defined on the extended real
line R" 2 RU {~o0,%0}, and L the set of binary opera-
tions mapping R’*R’ to R" to which are nondecreas-
ing in each place and continuous except possibly at
(0,e) and (==, 0). If Z 2 X oy, Where o€ L and K,
is any lower bound on copula Ky, then two functions
ldb, (the “lower dependence bound”) and udb, (the
“upgér dependence bound”) exist such that, Vv, ;X;{*,
F,(2) = ldby  (Fy.Fy.0)(2)

F,(z)<udb, (Fy,Fy,0)(z2) , (50)

where!”

ldbgn (Fy, Fy,0)(2) £ sup K vy (Fy (x),F5 ()

Xoy=z

udb, | (Fy,Fy0)(2) 2 inf K'y (Fy (0, F () - (51)

For example, the special case of a sum of RVs
yields the following result, valid on the real line R""":

Fy.y(2)= sup max [F, (x) + F, () ~1,0] ,

x+y=z

Fyy(2)< inf min[F, () +F0).1] . (52)

This bound is sharp, i.e., cannot be further im-
proved'”.

The results above can be generalized to operations
involving more than two RVs by exploiting their as-
sociativity’””. For example, explicit equations for the

sum of RVs are®*!!

F(z)= sup maX[Zd:E(xi)—(d—l),Oj,

X otxy =z

F(z)< inf min(ZFl.(xl.),lj .

i=1

(53)

6.2 Order statistics

We examine first the case of two RVs X, X, with
joint cdf F,x, (x,, x,) and their order statistics X, and
X,

max

1 Since we have, with obvious notations,
Fmax ('x) = F'XIX2 ('x’x) N

using the Fréchet-Hoeffding bound Eq.(47) with x=y

(54)

we obtain

max(Fy, +F, —L0)< F < min(F, ,F, ) . (55)

ax

Result Eq.(55) can be generalized to the extremes

of d RVs, and even to more general order statistics'”.

6.3 Example 1

Consider a block fading channel with d blocks". Us-
ing independent Gaussian symbols on the d blocks,

the outage probability is given by

Pou(P) = PGZ C(R)< pj (56)

b



tain channel models on wireless communication

where p is the average transmission rate, and
C(R)=1b(1+ R’snr) is the instantaneous mutual
information of the block with fading amplitude R; and

signal-to-noise ratio snr. Eq.(56) can be given the

form
PoulP)=EAp) (57)
where
L
zZ2 > X (58)
and
X, é%caei) . (59)

Under the assumption that the RVs R; have a common
Rayleigh distribution, we obtain, for the cdf of X,

dx; _1
r J. (60)

To examine the effect on p,, of the lack of inde-

F(x) =1—exp{—

pendence of the fading across blocks, we determine
the upper and lower dependence bounds of F, viz.,

Fz(z)= inf min{zd:F(xi),l},

X+t Xy =2 i-1

d
F,(z)= sup max ZF(xl.)—d+1,0 ,
b | 2 (61)

After some algebra, we obtain

Fz(2)=F(2) ,
F,(z)=max[dF(z/d)-d +1,0] . (62)

Numerical results are shown in Fig.5.

6.4 Example 2

Consider a wireless transmission system with diver-
sity d, Rayleigh fading, and selection combining'”’.
Usual analyses assume independence of the diver-
sity branches, which may be violated in practical
systems. The dependence bounds of Subsection 6.2
can be applied here, with Fy (x)=1-¢",i=1-",d
the cdf of the square fading amplitude. We obtain, for

x =0,

max(0,1-de ™) < F, (x) <l-e" ,  (63)

1.0 —=9
[i 4
Ibg: f]

0.8 '.i f
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i I
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Figure 5 Dependence upper and lower bounds for the out-
age probability of a block fading channel with Rayleigh
fading, signal-to-noise ratio snr=5 dB, and d blocks, d=2,
4, 8, and 16. The middle curve shows p,, for d=2 and in-
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dependent fading"". The value at which the lower bound

equals zero is p,=lb (1+snr log d)

with the upper bound corresponding to the same fad-
ing amplitude in each branch, and hence no diversity.
The corresponding error probability for binary antipo-
dal transmission are obtained from Eq.(6) and Eq.(8),
which yield, after some algebra,

1¢(d snr
P(e) =— —1)* 64
© 2;(kj( ) k+snr (&4
while the upper bound is
- 1 snr
P(e) = —( J (65)
20N 1+snr |,

and the lower bound

g@):{l—d |5 ert(Jsnriogd)
2 1+ snr
+d | et (J(+ snr) logd)} (66)
1+ snr .

What is especially relevant in this example is that

the upper dependence bound carries essentially no
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new information, as it only tells us that the worst de-
pendence among diversity branches corresponds to
the sheer absence of diversity. Thus, to obtain useful
dependence bounds one should add some informa-
tion about what is known about the dependence. This
aspect is covered in Ref.[30], where two ways of
gathering and using partial dependence information
to tighten the dependence bounds are discussed and
compared for pairs X, ¥ of RVs: One consists of using
a measure of dependence like Kendall’s fau or Spear-

[23,31,32]

mans’ rho , while the other one is based on as-

suming positive quadrant dependence, i.e., assuming
that the probability that X and Y be simultaneously
small (large) is at least as great as it would be were

t[23]

they independent”. Yet another approach was taken

in Ref.[33], where a parametric family of copulas (the
Clayton copulas) was chosen to model the depen-
dence of the RVs of interest.

7 Conclusions

We have examined how interval-type bounds on pdfs
or cdfs can make one able to handle problems arising
when a wireless communication system performance
must be assessed in the presence of model uncertain-
ties. Several techniques are described, and a few ap-

plications discussed.
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