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Abstract: Although large-scale MIMO can offer a high spectral efficie ncy, there are a number of difficulties in its 
implementation. Among those, the computational complexity of MIMO detection  is crucial and may limit its use at devices of 
limited computing power such as users’ mobile devices. Random sampling for  large-scale MIMO detection of low complexity 
were studied. In particular, a MMSE approach for random sampling, was formulated from which an iterative detector can be 
derived for better performances.  
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1 Introduction 

Large-scale or massive MIMO (Multiple-Input Mul-
tiple-Output) has been considered to increase the 
spectral efficiency for next generation wireless sys-
tems[1,2]. In most cases, large-scale MIMO systems are 
considered for BSs (Base Stations). As the carrier fre-
quency increases, the spatial correlation can be lower 
for a fixed antenna spacing. Thus, the physical size 
of antenna arrays may not be a critical issue in large-
scale MIMO systems of high carrier frequencies. This 
means that large-scale MIMO systems can also be 
used for mobile terminals and vehicles. 

Although a high spectral efficiency can be 
achieved, there are various problems in large-scale 
MIMO systems. Among those, implementation dif-

ficulties in terms of computational complexity and 
hardware cost would be the main obstacles in build-
ing large-scale MIMO systems. In particular, the 
joint signal detection in large-scale MIMO becomes 
computationally infeasible as the complexity grows 
exponentially with the number of transmit antennas. 
Therefore, there have been a number of approach-
es for low-complexity MIMO detection methods. 
Linear detectors can be considered as they have 
low computational complexities[3,4] . It is also possi-
ble to formulate the MIMO detection problem as a 
convex optimization problem and use SDR (Semi
Definite Relaxation) to find an approximate solution to 
the ML(Maximum Likelihood) detection problem[5]. 
Lattice basis reduction has been applied to MIMO  
detection[4,6,7] . 
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These well known approaches have their own 
drawbacks. For example, linear detectors, e.g., ZF
(Zero-Forcing) and MMSE(Minimum Mean Squared
Error ) detectors, have poor performances (espe-
cially, at high SNR(Signal-to-Noise Ratio)). The com-
plexity of lattice basis reduction is prohibitively high 
when the number of transmit antennas is large. SDR 
approximation also has a similar complexity problem 
for large-scale MIMO.

In this paper, we consider an approach that can 
provide better performances than linear detectors 
using random sampling. This approach is not only 

-
tectors), but also easy to perform iterations for better 
performances using the MMSE formulation. 

The rest of the paper is organized as follows. A 
system model for the MIMO detection is presented in 
Section 2. A list detection method with random sam-
pling is explained in Section 3. A random sampling 
method based on MMSE formulation are proposed 
with an iterative detector in Section 4. A performance 
analysis is presented in Section 5 and simulation 
results are given in Section 6. Some remarks are con-
ducd in Section 7. 

Notation: Matrices and vectors are denoted by 
upper- and lower-case boldface letters, respectively. 
The superscripts T and H denote the transpose and 
complex conjugate, respectively. The 2-norm of a is 
denoted by ||a||. For a given vector, x, [x]m denotes the 
m-th element. For a matrix, X, [X]m, n represents the (m, 
n) -th element. �[·] denotes the statistical expectation. 
��(a, R) represents the distribution of CSCG (Circu-
larly Symmetric Complex Gaussian) random vectors 
with mean vector a and covariance matrix R. 

2 System model 

Suppose that a transmitter is equipped with K an-
tennas and a receiver is equipped with N antennas. 
Denote by sk the symbol to be transmitted by transmit 

antenna k. We assume that sk�� for all k, where � 
represents the signal constellation. In addition, we 
assume that the mean and variance of sk are 0 and 
ES, respectively. Here, ES denotes the symbol energy. 
For M-ary signaling, we have |�|=M. Let s=[s1...sK]T. 
In addition, denote by rq and nq the received signal 
and background noise at receive antenna q, respec-
tively. Then, we have   

                                   

where n=[n1...nN]T. Here, H denotes the channel ma-

trix from the transmitter to the receiver, where  
represents the channel coefficient from transmit an-
tenna k to receive antenna n. Throughout the paper, 
n~��(0, N0I), i.e., the background noise vector is 
assumed to be zero-mean CSCG random vector. 

For convenience, we convert the complex-valued 
channel model into the real-valued one. Let 

�

�

In addition, let 

� � �

Then, we have  
                                    r = Hs + n                                 (2)
For convenience, we assume that each element of s 
is an integer, i.e., [s]k��, where � denotes the set of 
integers, after proper scaling and shifting[4].  

3 List detection using random sam-

pling 

An optimal detection can be carried out using the ML 
criterion. That is,  

                                                   (3)

where f (r|s) is the likelihood function of s for given 
r. Since |�K| is MK, we can see that the complexity of 
the ML detection grows exponentially with K if an 
exhaustive search is used. This shows that the ML de-
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x = QHr
If we consider the SIC (Successive Interference Can-
cellation) approach for detection [4], it follows 

where Round(x) is the round operation to convert 
x into an integer. This rounding operation can be 
replaced by a randomized rounding operation that 
is associated with a certain distribution in order to 
generate a list of candidate symbol vectors. Define 
the following distribution, which is a Gaussian-like 
distribution:  

                                                (5)

where � > 0 a parameter that decides the degree of 
randomness and 

For any r, we can show that 

�

where � . From this, it can be shown 
that  

          

�

    （6）

where s(�) is an upper-bound on s, which is inde-
pendent of r. 

With the distribution in Eq.(5), the randomized 

 randRound�(x) = q, with probability Pr(Q=q; x), q�Z   （7）
The randomized rounding becomes the deterministic 
rounding if � approaches . Using the randomized 
rounding, the randomized SIC detection is given by

  (8)

where  
                                       �k=A|rk, k|

2 .                             (9)

tection is computationally infeasible for a large K. 
We slightly modify the ML detection in Eq.(3) as  

                                                   (4)

The signal space, �K, is now expanded to �2K. Since it 
 that minimizes the likelihood 

function from �2K, we may consider a list of candidate 
signal vectors of finite length. Denote by � the list. 
If we are able to draw samples from f (r|s) (assuming 
f (r|s) as a distribution), it is possible to build a list of 
candidate vectors from sampling. In this list, we can 
expect to have the ML solution with a high probabil-
ity since , i.e., the ML solution, is the sample of the 
largest likelihood value. 

In Refs.[8,9], MCMC (Markov chain Monte Carlo) 
algorithms[10] are considered to build a list from ran-
dom sampling. However, this approach has a draw-

it requires a long burn-in time or a number of itera-
tions. This makes MCMC algorithms less attractive 
if the receiver has limited computing power such as 
mobile terminals. 

As an alternative, we can consider the approach 
proposed in Ref.[11] for random sampling to build 
a list, which has been used for MIMO detection in 
Refs.[12,13] with lattice basis reduction. However, 
since the complexity of lattice basis reduction can 
be prohibitively high for a large number of transmit 
antennas[14], K, this approach may not be suitable for 
large-scale MIMO systems. Fortunately, we can have 
random samples based on this approach without lat-
tice basis reduction at the cost of performance degra-
dation. 

For convenience,

,

 we assume that N K and con-
sider the QR factorization of H as 

H=QR
where Q and R are unitary and upper triangular, re-
spectively. Let  and . Clearly, the size 
of H is . Let 

.
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Here, A > 0 is a design parameter that plays a crucial 
role in providing a good performance. This rand-
omized SIC detection can provide a different hard-de-
cision of s for each call, which is an important feature 
to build a list. With Llist calls, we can have a list of 
Llist candidate vectors (note that there might be some 
duplicate candidate vectors). With this list, the best 
vector that maximizes the likelihood function can be 
found for the list detection. Thus, the performance 
can be improved as Llist increases, while the complex-
ity grows linearly. In Ref.[12], an approach to decide 
A in Eq.(9) is derived. Note that due to possible pres-
ence of duplicate candidate vectors, the increase of 
Llist does not necessarily result in an improved perfor-
mance. 

Throughout this paper, the detection method in 
Eq.(8) is referred to as the ZF-based detector with 
random sampling as the interference signals not yet 
canceled are suppressed. This approach can have 
good performances as samples are obtained from the 
likelihood function. To see this, from Eq.(8), we can 
derive the probability of s as

                        (10)

where Ak is the normalization factor and 

Thus, if , we can see that 

While this approach can provide good performanc-
es, there are a couple of difficulties. This approach 
may not be applicable to the case where N < K (over-
loaded systems). In addition, no prior information 
can be incorporated, which is important to derive an 
iterative approach. In the next section, we modify the 
ZF-based detector with random sampling using the 

MMSE formulation to overcome the above difficul-ties.  

4 MMSE approach with gaussian ap-

proximation 

In this section, we employ the MMSE formulation to 
modify the ZF-based detector with random sampling. 
This formulation allows to derive an iterative detec-
tion method. 

Suppose that the a priori distribution of s is availa-
ble as

                          (11)
where  and Cov(s)=CI, which is an approx-
imation as s is a discrete random vector. However, 
this Gaussian approximation allows us to adopt the 
MMSE formulation easily. Then,

,

,

,

,

 it can be shown  
that [4,15]

      (12)

We can derive the conditional probability density 
function (pdf) of s for given r as follows: 

where  

               (13)

Thus, the a posteriori pdf of s is given by  

                  (14)

We now want to draw samples from Pr(s|r). 
Consider the Cholesky factorization of C 1 as 

Then, it follows 

                                (15)

where s��K and U=LT. Noting that U is upper-trian-
sk drawn 

from Pr(s|r), which is denoted by . Let

,

.

.
.

,

,

32



MMSE-based random sampling for ierative detection for large-scale MIMO systems 

and  

                           (16)

where �k=�|uk, k|
2 and � is a design parameter. Then, 

as in Section 3, we can find a list of samples from 
Pr(s|r). 

It is noteworthy that the inverse of C in Eq.

.

(14) 
can be found easily. Using the matrix inversion lem-
ma, we have  
                                                  (17)
Thus, we only need to perform the inverse of CI. If 
the elements of s are assumed to be independent, CI 
become diagonal matrix. Thus, the complexity to ob-
tain C 1 is low. The resulting approach is referred to 
as the MMSE-based detector with random sampling. 

Using the MMSE formulation with Gaussian ap-
proximation, we can derive an iterative detection 
method. At the j th iteration, the mean and covariance 
of s can be found from the list of the previous itera-
tion, say the ( j 1) th iteration. In each iteration, we 
can have a better prior information, which can result 
in better sampled candidate vectors. Let �j denote the 
list of candidate vectors from the jth iteration. Then, 
the mean vector and covariance matrix of s from the a 
priori distribution for the jth iteration are given by 

and 

respectively. Note that the initial mean vector and co-
variance matrix are 0 and , respectively.

.

 At the j th 

iteration, a total list of candidate vectors is given as
                                                               (18)

Thus, the length of this list is jLlist. If we consider J it-
erations, the length becomes JLlist. Using this iterative 
detection method, we expect to have a better list than 
a list of the same length that can be obtained without 

iteration. 

5  Performance analysis 

In this section, we consider the performance of the 
MMSE-based detector with random sampling with 
the decoding radius. 

The squared decoding radius [12] can be found as  

                              
                          (19)

We have the following result. 
Theorem 1  For any Hermitian psd matrix C, we 
have  

                                             (20)

Proof 1 Consider the LDL factorization of C 1 as fol-
lows:

where  is lower unitriangular (the diagonal elements 
are all 1) and D is diagonal (as C is Hermitian psd, 
the diagonal elements of D are nonnegative). Clearly, 

we have  and

                                               (21)

k|uk,k|
2, we can formulate the following op-

timization problem:

                               (22)

where ek is the standard basis vector whose elements 
are all zero except the kth element which is one. Since 

 is lower unitriangular, T is upper unitriangular 
and L Tek is the kth column vector of L T,

,

 in which the 
kth element is 1. This implies that 

Then, since 

we have the following crucial observation:  

                          (23)

From Eq.(23), it follows that 

, 

,
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which implies Eq.(20). This completes the proof. 
Since  

                (24)

we can see that the decoding radius, Rd can be great-
er than 0 even if . Note that for the ZF-based 
detector with random sampling in Section 3 has the 
squared decoding radius from Eq.(10) as follows: 

This squared decoding radius is lower-bounded as 

If , �min(HTH)=0. Thus, the decoding radius can 
be 0, which implies that the ZF-based detector with 
random sampling cannot be applied to the case of 

, while the MMSE-based detector with random 
sampling is applicable. 

Furthermore, from Eq.(20), we can see that if prior 
information is more reliable (i.e., the diagonal ele-
ments of CI are close to zeros), the diagonal elements 
of  are larger, which makes the lower-bound larger 
and results in better performances. 

6  Simulation results 

In this section, we present simulation results with 
M-ary quadrature amplitude modulation (QAM) 
signaling for a class of MIMO channels where  
[mH]n,k~��(0,1/N). The SNR is Eb/N0, where Eb is 
the bit energy. 

Fig.1 shows the BER (Bit Error Rate) perfor-
mances of the three detectors: (i) the MMSE detector 
(without random sampling), (ii) the ZF-based detector 
with random sampling, (iii) the MMSE-based detec-
tor with random sampling. We can see that the list 
detectors with random sampling (i.e., (ii) and (iii)) 
perform better than the MMSE detector. In particular, 
at a low BER (less than 10 2), we can have about 5 

dB SNR gain by using random sampling. It is shown 
that both the ZF-based and MMSE-based detectors 
with random sampling have similar performances. In 
the MMSE-based detector with random sampling, we 
assume that the prior information is initialized as fol-
lows: 

where Es is the (complex-valued) symbol energy, 
i.e., Es=�[|sk|

2]. Thus, no particular prior information 
that can help improve the performance is used in the 
MMSE-based detector with random sampling. 

Figure 1 BER  versus SNR  when N=K=10 and 16-
QAM is used. For random sampling, the length of the 
list is Llist=2K=20

As discussed in Section 4, the MMSE formulation 
allows us to incorporate prior information if available. 
Thus, we can build an iterative detector, where the list 
of candidate vectors of the previous iteration is used 
as prior information. Fig.2 shows the performances 
of this iterative detector when N=K=20 and 4-QAM 
is used. In each iteration, the MMSE-based detector 
with random sampling provides a list of Llist=20 can-
didate vectors. The length of the overall list increases 
with iterations by adding new list at each iteration. 
Thus, after 6 iterations, we have a list of length 
6×Llist=20. We can see that the performance can be 
improved by iterations. In Fig.2, we also have BER 
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performance of the list detection without iteration 
when the list length is set to 120. This detection has 
a slightly better performance than that of the iterative 
detector after one iteration (whose list length is 20). 
Consequently, we can observe that the performance 

unless good prior information is provided. In order to 
improve the performance further, the iterative detec-
tion method can be employed as better prior informa-
tion can be exploited through iterations. 

Figure 2 BER performances of the MMSE-based iter-
ative detector with random sampling when N=K=20 
and 4-QAM is used. In each iteration, the length of 
the list is Llist=20

In order to see the impact of iterations, we show 
the BER curves as functions of iterations when [Trial 
mode] and 16-QAM is used in Fig. 3. It is shown that 
the performance cannot be improved after a few itera-

-
sue, we could consider an analysis to derive the error 

As mentioned earlier, an advantage of the MMSE-
based iterative detector with random sampling over 
the ZF-based iterative detector with random sampling 
is that it can be used when K > N. We consider sim-
ulations with various values of K and present the re-
sults in Figure 4 with N=10 and 4-QAM. It is shown 
that the performance the MMSE-based iterative de-

tector with random sampling is better than that of the 
MMSE detector, and the performance gap increases 
as K decreases. 

Figure 3 BER versus iterations of the MMSE-based 
iterative detector with random sampling when N=K=4 
and 16-QAM is used. For random sampling, the 
length of the list for each iteration is Llist=20

Figure 4 BER performances of the MMSE detector 
and MMSE-based iterative detector with random 
sampling for different numbers of transmit antennas, 
K, when  SNR=20 dB, N=10, and 4-QAM is used. 

. For random  sampling, the length of the list is Llist=4K 

7 Conclusion

In this paper, we studied list detection using random 
sampling. By adopting the MMSE formulation, it was 

L
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possible to derive an iterative detector, which can 
improve the performance by iterations as better prior 
information could be available. It was shown that the 
resulting detector has better performance than a lin-
ear detector (i.e., the MMSE detector). Furthermore, 
since it was based on the MMSE formulation, it can 
be used for overloaded systems (i.e., more transmit 
antennas than receive antennas). 
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