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Abstract: Modern mobile devices provide a wide variety of services. Users are able to access these services for many sensitive
tasks relating to their everyday lives (e.g., finance, home, or contacts). However, these services also provide new attack surfaces
to attackers. Many efforts have been devoted to protecting mobile users from privacy leakage. In this work, we study state-of-
the-art techniques for the detection and protection of privacy leakage and discuss the evolving trends of privacy research.
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1 Introduction

Millions of mobile applications (apps for short)
are deployed for purposes ranging from gaming
and social networking to more serious uses such as
healthcare, finance, and even home security. As a
result, mobile devices are accessed by users for many
sensitive reasons, and these make them lucrative
targets for cybercrimes. Users typically grant access
to these data to mobile applications, without a full
appreciation of the security of the information that
they are exposing to a variety of third parties. As a

1

result'’, the adversary could gain access to details

such as the mobile user’s bank accounts, identities,
and medical data. For example, prior research’™
shows that a large number of Android apps fail to

perform any certificate verification during an SSL
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connection, and some even utilize hardcoded security
credentials, which provide the adversary with the
ability to steal mobile users’ privacy data during
Internet communications.

Nevertheless, studies show that users remain con-
cerned about their privacy and many application
markets apply privacy leakage detection and
protection technologies to protect users’ privacy. In
this work, we study the state-of-the-art techniques
for detection and protection of privacy leakage and

discuss the evolutionary trends of privacy research.

2 Privacy leakage detection

State-of-the-art leakage detection approaches depend on
either static data propagation analysis or dynamic taint

tracking. Researchers mainly focus on the propagation
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of users’ sensitive data. Data propagation analysis first
marks the user privacy data in apps (known as sources),
and labels the channels that can be used to transmit
data outside of the app (known as sinks), for example,
SMS and Internet. Then, data propagation analysis
identifies privacy leakage if a data propagation path
exists between the source and the sink, by analyzing
the source code with the call graph and control
flow graph of the application. On the other hand, in
dynamic taint tracking, a flag is bound to each privacy
data, and represents whether the corresponding data
contain privacy information. Taint tracking techniques
dynamically propagate the taint information and check
whether tainted data are transmitted outside of the
app. The remainder of this section presents a review of

research work related to privacy leakage detection.

2.1 Static data propagation analysis

Androidleaks”™ proposes a static approach to auto-
matically checking the leakage of sensitive
information in Android applications on a large scale.
Comdroid® and Chex! use static analysis to detect
application and discover vulnerabilities that can
be used to leak user data. LeakMiner™ uses static
taint analysis for application vetting. Furthermore,
FlowDroid” proposes a precise context, flow, field,
object-sensitive and lifecycle-aware static taint
analysis for Android apps. Commonly, static analysis
only requires a small amount of time to analyze the
whole application and gain a high coverage of the
program code. However, a static analysis does not
provide runtime information, thereby causing false
positives/negatives. Besides, attackers can easily
evade static analysis by using detection-evasion

technologies, such as code obfuscation.

2.2 Dynamic taint tracking

Contrary to static data propagation analysis, dynamic

taint tracking detects privacy leakage by monitoring
the runtime propagation flow of sensitive information.
The most well-known tracker is TaintDroid"",
which modifies the code in the Android Dalvik VM.
TaintDroid uses instrumentation to dynamically
monitor data propagation in the application and warns
the user when the target application transmits sensitive
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information to the network. Aurasium
approach to monitor the runtime data propagation
of the application, by injecting monitoring code and
repacking the application. Compared to static data
propagation analysis, dynamic taint tracking can
achieve a higher precision for identifying privacy
leakage, but it is hard to gain satisfactory coverage
of the application code. However, when applied to
large-scale analysis, dynamic taint tracking is time-
consuming because it needs to be performed while

the app is running.

2.3 Combine static data propagation analysis
and dynamic taint tracking

Researchers have proposed exploiting the advantages
of both static data propagation analysis and dynamic taint
tracking by presenting approaches that combine static
and dynamic analysis. For example, Applntent"?!
first uses static data propagation analysis to generate
a set of candidates possibly responsible for leaking
user data and then uses symbolic execution to remove
infeasible data propagation paths. In this way,
ApplIntent!'” can increase its precision without losing
its coverage of application code, and can detect the
privacy leakage with low time cost. AspectDroid""”’
uses static bytecode instrumentation to weave
monitoring code into an existing app and then
executes the repackaged apps to investigate Android
apps for possible unwanted behavior. However, this
kind of hybrid approach is prone to detection-evasion
attacks used for either static data propagation analysis

or dynamic taint tracking.



The common way to protect user data from privacy
leakage is to prohibit the unsafe use of sensitive
information. Based on this idea, the following
approaches are introduced to limit the abuse of

system resources.

3.1 Permission and access control

Both Android and iOS have run-time permission
models that require users to explicitly approve a
request by an application to access private data
or potentially dangerous functionality. However,
mobile users often do not understand the permission
descriptions and there is no way of granting some

[14]
proposes an

permissions and denying others. Apex
approach that the mobile user can grant permissions
to apps or the accesses to system resources on
demand. DescribeME"" proposes a novel technique
to automatically generate security-centric app
descriptions, which are readable and help users
(1]

avoid privacy-breaching apps. AppFence' ™ presents
two privacy controls to empower users to protect
their data from exfiltration by permission-hungry
applications and prevent the mobile application from
collecting user data based on dynamically monitoring
application behaviors. FlaskDroid"'” provides
simultaneous mandatory access control on both the
middleware and kernel layers of the Android OS.
However, this kind of approach is unable to decrease
the false positive rate and they commonly require the
implementation of security policies that mobile users

and developers find hard to understand.

3.2 Sandboxing and isolation

The sandboxing capabilities of the Android OS
centered on the user separation capabilities of Linux.

Researchers have enhanced the Android sandboxing

mechanism to protect apps when they interact
with the user’s privacy information. For example,
Aurasium"" proposes a user-level sandboxing and
repackages Android applications to monitor the
behaviors of retrieving user’s sensitive information.
SplitDroid"* splits the execution of an app into two
components, in which the sensitive component is
isolated from the normal component and the sensitive
data can not be accessed by the normal component.
On the other hand, AFrame'"”, AdDroid”", AdSplit"*"
propose approaches to isolate untrusted processes that

utilize sensitive system sources.

3.3 Security property

Researchers have attempted to enforce the protection
of mobile users’ privacy by identifying rules of safe
programming practice. They write down these rules
as security properties, and check whether these
properties are followed by application developers.
Kirin™' designs security rules, which can be used
to match unwanted properties in the security

configuration of Android applications. Saint””!

uses
security policies to manage the grant of permissions
at install-time and run-time. Mops™™" defines the
security property as a finite state automaton, and
identify whether any state of the application violate

the pre-defined security property.

Considering the huge number of different apps
and various kinds of leakage channels, it is hard to
provide comprehensive protection for mobile users.
Additionally, increasing kinds of user data have to be
treated as private sources and the judgment used to
identify privacy leakage should be amended. These
are challenges for the technologies used for detecting
privacy leakages. In the following, we introduce three

new areas of research focus.



4.1 User intent

Traditionally, the detection of privacy leakage on
mobiles focus on the transmission of sensitive
data""**!. They commonly identify privacy leakages
by checking whether sensitive data leaves the device.
However, many mobile apps use cloud services
to store their data, thus they need to transmit user
information (sensitive or not) to remote data server.
As a result, recognizing sensitive data transmission as
privacy leakage is not precise. Actually, we found that
a lot of benign apps collect and send user sensitive data
(for example, contacts, location, etc.) to their cloud
servers. Since this kind of data transmission is notified
to the mobile user, it should not be treated as privacy
leakage. Therefore, the transmission of sensitive data
by itself may not indicate privacy leakage. Thus,

t"'” claims that a more appropriate indicator

Applnten
should be whether the transmission is user-intended:

1) User-intended data transmission. Some data
transmissions are granted by the mobile users,
since they are required to fulfill some ongoing user
operation. For example, an SMS management”® app
can allow the user to forward an SMS message on
demand, by clicking several buttons on the mobile
screen. Another example is the Map application.
When using location-based services"””, the mobile
user knows and allows that the location data will be
sent to the internet for retrieving location-based web
contents. Therefore, this kind of data transmission
should not be treated as privacy leakage.

2) Unintended data transmission. This kind of data
transmission is conducted stealthily, and should be
recognized as privacy leakage. Commonly, it does
not need any user operation on user-interfaces, such
as clicking a button, inputing text. As a result, the
mobile user is not aware of the data transmission.

Other than AppIntent!'”, other researches also
contribute on the verification of privacy leakage.
Gilbert, et al.”® use an EULA (End-User-License

Agreement) to explicitly notify the user of the
sensitive data usage at run-time. Then, the user can
decide whether this usage should be granted. Similarly,
BLADE"™ recognizes web malware by identifying
whether an explicit notification is presented.
Additionally, Pegasus”” proposes an approach which
detects the malicious behaviors of applications. It
characterizes the app behaviors based on the temporal
sequence when the apps use critical APIs and
permissions, and verifies malicious behaviors which
are inconsistent with the user-interface operations.
However, privacy leakage cannot be simply modeled
as the usage sequence of permissions or APIs. Thus,
Pegasus missed many kinds of privacy leakage.
Besides, VetDroid"" utilizes a dynamic taint tracking
by generating specifications for sensitive operations.
However, it mainly focuses on the application logic

rather than the triggering condition of each operation.

4.2 Privacy source identification

Identifying sensitive user input is a prerequisite
for privacy protection. Traditional work mainly
focuses on identify sensitive data acquired through
well-defined system APIs. For example, PScout"”
implements a static analysis tool for Android
source code and generates a complete permission-
to-API mapping by a version-independent analysis.
SUSI®¥ proposes a machine-learning approach and
categorizes additional sources and sinks which are
not included in previous research. However, this kind
of work only label those well-defined data, but user
input data through an UI (User Interface) also faces
the threats of privacy leakage.

As reported in Refs.[34-36], the adversaries
can steal sensitive user input by exploiting the
vulnerabilities in target system. For example,
malicious apps use very similar Uls to steal users’
bank accounts and passwords. Additionally, benign

apps do not encrypt their sensitive data and write



plaintext contents into files which are not well-protected.

Research work in side channels””

[38]

and content-pollution
vulnerabilities”" also proved that adversary can
stealthily obtain sensitive user input.

3 claims that user-

Given its importance, Ulpicker
inputted privacy data needs protection urgently. Unlike
those well-defined data which can be automatically
labeled by analyzing critical APIs, sensitive data from
user inputs cannot be recognized if we do not interpret
the context and semantics of apps’ Uls. To solve this
problem, prior work!"” *” propose approaches which
rely on manually labeling of the input contents which
needed to be protected. This is inconvenient and
ineffective to protect user privacy in a large amounts of
apps. Another approach”” is to label all user inputs as
sensitive and should be protected, which is much more
imprecise and introduces lots of false positives.

With an observation that most privacy-related Ul
elements are well-described in layout resource files
or annotated by relevant keywords on Ul screens,
UIPicker”™ and SUPOR™" respectively proposes an
approach for automatically labeling sensitive user
input data, by combining of several natural language
processing, machine-learning, and program analysis

techniques.

4.3 Hardware-associated approach and
trust zone

Some researchers leverage hardware-based features
for protecting the privacy and security of sensitive
data. Usually, they implement a TEE (Trusted
Execution Environment) by proposing a hardware-
enforced isolated execution environment for security-
critical code, which can provide a safe haven for
storing and processing sensitive data. The general
concept behind TEEs is that this “trusted,” or “secure,”
world, can be verified using techniques such as secure

t[42]

or authenticated boo and can be leveraged to

maintain a root of trust on the device, even when the

“normal,” or “non-secure,” world is compromised.
The most popular of these approaches, based on their
market dominance, is ARM’s TrustZone'***.

As the smartphone continues gaining popularity,
many web services are using OTPs (One-Time
Passwords) to verify the authentication of mobile
users. As a convenient solution, mobile devices can
install software-based OTP generators as software
apps, and use these OTPs to communicate with remote
web services. Commonly, this kind of software-
based OTPs do not introduce additional burden to
mobile device. However, they cannot ensure the
confidentiality of generated passwords, as the OTP
software can be attacked by the adversary. Moreover,
if the mobile OS (Operation System) crashes, the
software-based OTP will not work. Hardware-based
OTPs can solve these security problems, but it may
need the mobile user to carry a physical token for
generating secure OTPs, which will be much more
inconvenient when there are several tokens needed.

In order to combine the flexibility of software
OTPs and the security of hardware OTPs, TrustOTP"*"
proposes an OTP solution based on ARM TrustZone.
Because of the using of ARM TrustZone technology,
mobile users do not need to carry additional physical
tokens. Since TrustOTP is a hardware-based
solution, it does not suffer from the attacks which are
commonly in the mobile OS and can work correctly
when the mobile OS crashes. TrustOTP argues that it
is convenient to configure multiple OTP algorithms
and instances for each application and do not need to
modify the mobile OS.

In this work, we compared and analyzed prior
research relating to privacy leakage and protection.
The numerous parties corresponding to the users’
privacy data complicate building a comprehensive

mobile protection system. In our view, the current



approach, wherein each component attempts to
manage its own privacy protections, cannot ensure
complete protection of user privacy. Besides,
most of the approaches are heavy-weighted,
causing poor performance when multiple privacy
protection modules are enabled. Thus, we believe the
effectiveness as well as the performance should be re-
evaluated, to establish a comprehensive solution for
privacy protection. Furthermore, we have proposed
several potential research directions, as well as the
major challenges.

1) The principle for judging privacy leakage can be
further amended.

2) New privacy source. With the great popularity
of mobile devices, excluding those discussed in this
paper, additional types of user data should be labeled
as sensitive information, such as pictures and videos.

3) New technologies for large-scale analysis. It
remains difficult to conduct a fast, large-scale, and
precise analysis for detecting privacy leakage in
Android applications. Besides, only a few existing
approaches can accommodate detection-evasion

technologies.
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