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Abstract: The widespread application of heterogeneous cloud computing has enabled enormous advances in the real-time 
performance of telehealth systems. A cloud-based telehealth system allows healthcare users to obtain medical data from 
various data sources supported by heterogeneous cloud providers. Employing data duplications in distributed cloud databases 
is an alternative approach for achieving data sharing among multiple data users. However, this approach results in additional 
storage space being used, even though reducing data duplications would lead to a decrease in data acquisitions and real-
time performance. To address this issue, this paper focuses on developing a dynamic data deduplication method that uses 
an intelligent blocker to determine the working mode of data duplications for each data package in heterogeneous cloud-
based telehealth systems. The proposed approach is named the SD2M (Smart Data Deduplication Model), in which the main 
algorithm applies dynamic programming to produce optimal solutions to minimizing the total cost of data usage. We implement 
experimental evaluations to examine the adaptability of the proposed approach.
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1  Introduction

Heterogeneous cloud computing has been the driving 
force behind the dramatic growth of various distributed 
applications, including telehealth systems[1,2]. Multiple 
emerging techniques have resulted in the development 
trends of cloud-based telehealth systems becoming 
increasingly diverse, depending on the service 
demands and the technologies that are employed[3,4]. 

Data duplication is one of the problems presented by 
distributed data storage on the cloud side. In general, 
for the purpose of data recovery, data are repeatedly 
stored on different servers that are geographically 
distributed[5–11]. However, this approach leads to 
large volumes of additional data being stored with a 
concomitant waste of storage capacity, which not only 
causes overconsumption of computing resources but 
also has a negative impact on the environment [12, 13].
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Therefore, the need to reduce storage waste caused 
by unnecessary repeated data storage is urgently 
required for the contemporary deployment of cloud-
based telehealth systems[14]. This requirement is 
also related to the data collection features of many 
telehealth applications, such as the consistent 
generation of sensor data and continuous data 
updates[15–17]. These aspects of data generations 
can lead to increasingly large data storage capacity 
needs when the number of users in telehealth 
systems becomes large, even though some of the 
stored data are rarely used. The main challenge is 
finding a solution to reduce the storage space used 
by redundant data when applying distributed data 
duplication techniques for ensuring data security[18].

To solve this problem, we propose our solution 
named the SD2M (Smart Data Deduplication 
Model). We consider data deduplication to be an 
effective alternative technique for achieving an 
efficient and functional data storage mechanism. 
Our approach is based on a method we developed to 
create optimal solutions by assigning data packages 
to distributed cloud databases. The data package 
distribution depends on a few parameters, including 
the execution time, hash collision probabilities, and 

storage constraints. Data distribution management 
���������������?������������
������������������������
creating data deduplication plans are variables such 
that the objective effectively translates into solving an 
NP hard problem.

Fig.1 represents the architecture of SD2M for 
telehealth systems. It shows that our solution involves 
adding a new cloud-based functional unit named 
the SA (Smart Assigner). All data collected from 
telehealth sensors are intended to be sent to the SA 
before data duplication operations commence. The SA 
applies an optimal algorithm such that the acquisition 
of the data duplication plan is based on addressing 
multiple constraints. After filtering by the SA, data 
are stored in a distributive manner in the cloud 
servers, to which multiple telehealth applications 
involved in a user group would have access. Because 
of performance concerns, our approach is not 
intended to remove all repeated data storage; thus, 
data duplication would only be prevented to a partial 
extent. The data deduplication plan depends on the 
available storage resources, which will maximize the 
storage performance by considering both the usage 
frequency and the type of content.

The main contributions of our work include:

Figure 1  Architecture of smart data deduplication model for tele-health systems
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) We propose an approach using optimal solutions 
to maximize the value of the stored data when 
considering the hash collision probabilities and 
storage availabilities under the time constraints.

2)  Our solution is a performance-oriented 
implementation for current cloud-based telehealth 
systems to achieve real-time services when constrained 
cloud storage is applied.

3) The problem solved in our work is an NP hard 
problem. The core algorithm used in our proposed 
approach is based on dynamic programming, which is 
designed to create optimal solutions for the proposed 
problem.

The remainder of this paper follows the structure 
below. Section 2 synthesizes updated findings from 
recent relevant research work. Section 3 describes a 
motivational example that explains the mechanism of 
the proposed approach. Section 4 defines the major 
problem and illustrates our proposed algorithms. We 
present our experimental evaluations in Section 5. 
Finally, Section 6 concludes our work.

2  Related work

In this section we review data duplication and 
deduplication to acquire a solid theoretical foundation 
and to distinguish our work from prior research. 
Data deduplication, an optimization technique for 
data storage, is often considered a form of intelligent 
compression that entails only storing unique data rather 
than retaining large volumes of redundant data carrying 
the same content. The main trade-off between data 
duplication and deduplication involves a few aspects, 
including data recovery and security, efficiency, and 
storage capacity. We address these four main aspects 
in our review and briefly describe the ability of our 
approach to successfully address these matters.

Contemporarily, cloud service providers intend 
using distribution-based data duplication methods to 
guarantee data recovery, which is also one of the core 

values of cloud services[19, 20]. One of the approaches 
is to use a routing algorithm to reduce the amount of 
redundant data. For example, Boafft[21] is a method 
that uses data similarities to remove unnecessary data 
from cloud storage systems. Our method follows a 
different approach in that it intends to ensure data 
retrieval performance. Any data removals may lead 
to a reduction in data acquisition, even though the 
data can be obtained by the correct pointers. Thus, 
our aim is to partially remove abundant data to 
achieve maximum performance using the available 
resources.

Other researchers concentrated on performance-
oriented solutions[22,23] rather than reducing storage 
costs[24]. Mao, et al[25] proposed an approach that 
used two-pronged methods to reduce the overhead 
associated with deduplication. Data selection for 
duplication purposes depends on a few parameters, 
���
��������������������������
��������������������
scheme. Xia, et al[26] developed a method that used a 
near-exact approach by comparing data similarities 
to eliminate a high degree of duplication. However, 
this approach could not achieve optimal solutions 
and would require further improvement. Contrary 
to this approach, our solution could provide optimal 
solutions with the additional advantage that the 
considered parameters were distinct.

Another  research group showed that  data 
deduplications can be achieved by estimating data 
usage. Fu, et al[27] proposed an application-aware 
data deduplication method that depended on the 
local application usage for determining the data 
storage requirements. This work proved that data 
can be classified in terms of the usage determined 
by application configurations. Our approach uses a 
similar mechanism and produces a data deduplication 
plan based on data utilization.

Recent studies were devoted to exploring security 
issues[28–30] resulting from dynamic updates of data 
deduplications[31,32]. Other scholars attempted to 
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address these security concerns by developing a 
convergent key scheme. Wen, et al[33] presented a 
session-key-based security mechanism to prevent 
data from being exposed to adversarial activities when 
data deduplications required frequent updates. This 
scheme used a convergent key-sharing method to 
achieve group combinations, together with avoiding 
the use of gateways, to ensure data users can verify the 
correctness of the data. Li, et al [34]proposed another 
method of secure convergent key management. This 
approach outsourced key management to the cloud 
side, thereby reducing the risk by obviating the need 
for data users to manage any keys. These previous 
explorations provided theoretical support for securing 
our deduplication approach.

In summary, our approach is distinct from all prior 
related work, and constitutes an improvement based 
on other researchers’ findings. Our work focuses 
on fully applying available storage resources and 
maximizing the performance by partially reducing 
the amount of redundant data. The proposed approach 
uses an optimal algorithm that is described in the 
following sections.

3  Motivational example

This section provides a motivational example that 
describes the working mechanism of the proposed 
model. There are two options for data packages, 
namely, Non-Dedu (Non-Deduplication) and Dedu 
(Deduplication) options. Each option has two 
working modes. For Non-Dedu, the first working 
model is to store the data without using distributed 
storage; the other working mode is to store the data 
by using distributed storage. For Dedu options, the 
first working model is to use a weak hash table for 
achieving deduplication; the other working mode 
is to use a strong hash table. A strong hash table is 
expected to lower the risk of hash collisions, even 
though the approach is more time consuming. Tab.1 

presents a parameter-mapping table that displays all 
parameters in the four working modes for each input 
data package.

Our objective is to output all optimal solutions to 
minimize the hash collision probabilities that match 
the requirements of the telehealth applications within 
the potential execution time range. We achieve this 
goal by transforming Tab.1 into Tab.2, which is a 
machine-friendly input table. We name the input table 
the B-Table. In the table, we pair up the hash collision 
probabilities with their corresponding required cloud 
storage space. As seen in Tab.2, data package D1 
has two working modes when the available time 
length is 5, including (0.1, 30) and (0.4, 2). It means 
that the data package can be stored with either a 0.1 
hash collision probability attaching to 30-unit cloud 
storage or a 0.4 hash collision probability attaching to 
2-unit cloud storage.

In addition, we start creating a D-Table derived 
from the B-Table. The process of creating the D-Table 
depends on the sequence of the data package inputs. 
In this example, we assume that the order in which 
data packages are input is from D1 to D4. The first 
row is created when data package D1 inputs into the 
D-Table. We keep the pairs of optimal solutions to a 
minimum to minimize the hash collision probabilities 
and the required cloud storage. The second row is 
created when the second data package D2 is added 
and only optimal solution pairs are stored in the table. 
The same processes continue until all data packages 
are added to the table.

In addition, we use a backward-forward tracking 
method to produce optimal solutions, according to the 
requirements. Fig.2 represents an example of creating 
a backward-forward track for optimal solutions under 
timing constraint 10. In this example, we point out 
that there might be a variety of pairs that can be used 
as output. The cloud telehealth applications can use 
any pair listed in the table in terms of the application 
���������������������������
���������������������
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for solution selections in this provided motivational 
�`�������	
���������������������
��������������@ ���
0.02], ( ���H�Hx2������@ ���H�HF2����������������
�
�
means that the highest probability tolerance is 0.02, 
0.04, and 0.01, respectively.

In order to represent the tracks in the back-
ward direction, we use boxes of different colors to 
mark the selected pair and lines with arrows to 
represent the backward-forward track. The boxes 
and arrow lines in red, green, and blue color 

Figure 2  Backward-forward tracking to create optimal solutions by using dynamic programming

Table 1  Parameter table for mapping the four working modes. (WM/Mi: Working Mode; Non-Dedu: Non Deduplication; 

Dedu: Deduplication; T: Time; Pr: Hash Collision Probability; St: Required Storage Space Level; Di: Data Package)

data WM
Non-Dedu Dedu

T Pr St T Pr St

D1

M1 2 0.5 10 3 0.4 2

M2 5 0.1 30 6 0.1 2

D2

M1 1 0.6 5 2 0.3 1

M2 4 0.1 15 7 0.05 1

D3

M1 2 0.7 15 3 0.5 3

M2 7 0.2 45 8 0.15 3

D4

M1 1 0.8 12 2 0.6 2

M2 3 0.1 30 6 0.1 2

Table 2  B-Table: mapping table for inputs

1 2 3 4 5 6 7 8

D1 — (0.5, 10) (0.4, 2) (0.4, 2) (0.1, 30)
(0.4, 2) (0.1, 2) — —

D2 (0.6, 5) (0.3, 1) (0.3, 1) (0.1, 15)
(0.3, 1)

(0.1, 15)
(0.3, 1)

(0.1, 15)
(0.3, 1) (0.05, 1) —

D3 — (0.7, 15) (0.5, 3) (0.5, 3) (0.5, 3) (0.5, 3) (0.2, 45)
(0.5, 3) (0.15, 3)

D4 (0.8, 12) (0.6, 2) (0.1, 30)
(0.6, 2)

(0.1, 30) 
(0.6, 2)

(0.1, 30)
(0.6, 2) (0.1, 2) — —

T 1 2 3 4 5 6 7 8 9 10

(0.01,17)
(0.02,3)

(0.01,45)
(0.025,11)
(0.12,3)

(0.03,31)
(0.04,17)
(0.06,7)
(0.12,3)

(0.03,3)(0.05,25)
(0.15,11
(0.24,7))

(0.12,3)(0.15,11)
(0.24,7)

(0.1,2)(0.1,30)
(0.4,2)

(0.4,2)

(0.3,15)

(0.4,2)(0.5,10)D1

D2

D3

D4

(0.015,34)
(0.02,20)
(0.02,18)
(0.03,10)
(0.06,6)

(0.007 5,44)
(0.012,40)

(0.033 6,34)
(0.036,8)

(0.010 5,56)
(0.015,48)
(0.045,16)
(0.072,12)

(0.021,46)
(0.025,28)
(0.042,22)
(0.075,14)
(0.12,10)

(0.021,60)
(0.06,26)
(0.09,20)

(0.035,40)
(0.06,6)

(0.075,14)
(0.12,10)

(0.105,26)
(0.15,18)

(0.084,38)
(0.12,30)

(0.168,42)

(0.21,30)
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represent the optimal solution tracks for the first 
range ( ��� H�HK2�� �
�� ������� ������ @ ��� H�Hx2��
and the third range ( ���H�HF2�� �������������	
��
corresponding probabilities are 0.012, 0.036, and 
0.007 5, respectively, with the required cloud storage 
of 40, 8, and 44, respectively.

Tab.3 represents all optimal solution pairs 
shown in the output D-Table. The cloud-based 
telehealth applications can determine the plan of data 
deduplication based on the hash collision probability 
tolerance and available cloud storage space. The next 
section describes the main concepts in our proposed 
model, as well as the main algorithm. 

4  Concepts and the proposed algo-

rithm

We illustrate the proposed problem in Definition 1 
that defines the inputs, output, and objective of the 
problem.
Definition 1 Minimizing storage and probabilities 
(MSP) problem: Inputs include the number of the 
input data packages Nd, with each data package 
represented as Di ), execution time of a data package 
under working mode Mi for non-deduplication 
option T $��ÄZ���

Mi , hash collision probability rate of 
a data package under working mode Mi for non-

T optimal solutions

6 (0.168, 42)

7 (0.084, 38) (0.12, 30)

8 (0.021, 60) (0.06, 26) (0.09, 20)

9 (0.010 5, 56) (0.015, 48) (0.045, 16) (0.072, 12)

10 (0.007 5, 44) (0.012, 40) (0.033 6, 34) (0.036, 8)

11 (0.003 4, 70) (0.006, 36) (0.015, 30) (0.024, 22) (0.036, 8)

12 (0.002 1, 76) (0.002 5, 58) (0.004 2, 52) (0.007 5, 44) (0.009, 36) (0.010 5, 28) (0.012, 18) (0.018, 12) (0.036, 8)

13 (0.001 5, 64) (0.002, 50) (0.002 1, 48) (0.003, 40) (0.006, 36) (0.007 5, 16) (0.009, 8)

14 (0.000 7, 90) (0.001 5, 36) (0.004, 32) (0.006, 8)

15 (0.005, 78) (0.007, 62) (0.001 25, 44) (0.002 5, 30) (0.003, 22) (0.006, 8)

16 (0.000 5, 50) (0.001, 36) (0.002, 22) (0.002 1, 20) (0.003, 12) (0.006, 8)

17 (0.000 35, 76) (0.000 7, 62) (0.000 75, 58) (0.001 4, 48) (0.001 5, 8)

18 (0.00025, 64) (0.000 35, 48) (0.000 7, 34) (0.001 25, 16) (0.001 5, 8)

19 (0.000 2, 120) (0.000 25, 36) (0.000 5, 22) (0.001, 8)

20 (0.000 15, 78) (0.000 35, 48) (0.000 375, 44) (0.000 375, 44) (0.000 9, 22) (0.001 4, 20) (0.001 8, 8)

21 (0.000 15, 50) (0.000 25, 36) (0.000 35, 20) (0.000 9, 12) (0.001, 8)

22 (0.000 1, 106) (0.000 2, 92) (0.000 25, 8)

23 (0.000 75, 64) (0.000 15, 50) (0.000 25, 36) (0.000 375, 16) (0.000 45, 8)

24 (0.000 75, 36) (0.000 15, 22) (0.000 3, 8)

25 (0.000 1, 78) (0.000 25, 36) (0.001, 8)

26 (0.000 75, 36) (0.000 25, 8)

27 (0.000 75, 8)

Table 3  Example of D-Table listing all optimal solutions under all potential timing constraints for the motivational example. 

Time range: 6~27.
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deduplication option T $��ÄZ���
Mi , required cloud storage 

level of a data package under working mode Mi for non-
deduplication option T $��ÄZ���

Mi , execution time of a 
data package under working mode Mi for deduplication 
option T Dedu

Mi , hash collision probability rate of a data 
package under working mode Mi for deduplication 
option T Dedu

Mi , required cloud storage level of a data 
package under working mode Mi for deduplication 
option T Dedu

Mi , the timing constraint TC.
The output is a data deduplication plan that 

determines the working mode for each data package.
The proposed problem is to determine the optimal 

solutions required to obtain the minimum cloud 
storage and its corresponding lowest probability.

To solve the problem, we develop an optimal algorithm 
named the OSP (Optimal Storage and Probability) 
algorithm. The algorithm is designed to minimize the 
required amount of cloud storage by considering the 
minimization of the required storage space and its 
corresponding hash collision probability under a certain 
timing constraint in a cloud-based telehealth system. 
The input of the OSP algorithm is a B-Table that maps 
all required variables in a machine-friendly manner. 
The OSP algorithm outputs a D-Table that creates the 
optimal solutions under the configured constraints. 
The main procedures of the OSP algorithm produce a 
D-Table in the sequence of the data package inputs.

The pseudo-code of the OSP algorithm is provided 
in Algorithm 1. The main phases of the OSP 
algorithm include:

1) Initialize the D-Table and input B-Table in it. 
We use the timing constraints to create the constraint 
row and add the pairs consisting of probability and 
storage space.

2) The first row is created by filling up all pairs 
attached to the first data package D1 used as input. 
We compare all possible pairs and only retain the 
optimal solution pairs. Those non-optimal solutions 
are removed. The comparisons are based on both 
probabilities and storage.

3) We repeat the same operations on other in-
putted data packages until all data packages are added 
to the table. This process is accomplished by using a 
���������������	
����������������������������������
in the last row of the input data package.

4) We output the optimal solutions by considering 
�
�����������������������������Z�	�����

Algorithm 1  OSP Algorithm
Require: B-Table
Ensure: D-Table
1: D1, j�ÆBTable1,j

2: /*Input data from B-Table to D-Table*/
3: for  Working Options: WOi , i>1
4: for  Storage: St j
5: for  Storage: St k in BTablei,k

6: if DiÄF��jÄk!= null
7: Calculate Di, j by pairing DiÄF�jÄk with BTablei,k

8: end if
9: end for
10: Remove all non-optimal solutions from 

D-Table
11: /* Consider both storage and probability */
12: end for
13: end for
14: return D-Table and output the optimal solution 

����������
������������������������

The time complexity of Algorithm 1 is T(n)= 
O(mpq). In O(mpq), m refers to the number of input data 
packages, p refers to the configured timing constraint 
that can be considered the number of columns in 
the D-Table, and q refers to the average number of 
probability-storage pairs in each cell of the D-Table. The 
next section presents some of the experimental results 
obtained from our laboratorial evaluations.

5  Experiment and the results

In this section, we present selected evaluation results 
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from our experiments. The experimental evaluations 
were designed to examine the performance of SD2M 
in various dimensions under timing constraints, 
mainly covering hash collision probabilities and 
storage levels. We developed a simulator named 
SD2M-SIM. The hardware employed in our 
experiments was a processor (Intel(R) Xeon(R) CPU 
E52687W v4 @ 3.00 GHz), with 64.0 GB memory.

In addition, we designed a variety of experimental 
configurations in order to assess the performance 
of SD2M for different application scenarios. The 
configuration of the probability range used a read-
friendly order of magnitude for the purpose of 
comparisons, which used random probability values 
in order to simulate a broad range of application 
situations. We also ran a greedy algorithm in our 
simulator for comparison with SD2M. We provide the 
most important experimental settings here:
Setting 1  We configured the number of input data 
packages as 4. The parameters of the data packages 
were varied in order to simulate cloud-based 
telehealth application scenarios in which different 
types or sizes of data packages might be required.
Setting 2  We configured the number of in-put data 
packages as 8. The parameters of the data packages 
were varied with the same consideration as Setting 1.

The reason for configuring different input data 
packages was twofold. First, we intended to test 
the performance differences when using the SD2M 
approach with data packages of various sizes used 
by telehealth systems, as well as comparing its 
performance with that of the greedy algorithm. 
Second, we aimed to test the relation between the 
proposed approach and the diversity of the input data 
packages.

Fig.3 displays 10 groups of experimental results 
to compare the hash collision probabilities when the 
same timing constraints were applied under Setting 1. 
The average SD2M hash collision probability was 
16.98%. According to our collected data, the average 

probability of SD2M was 23.02% lower than that of 
the greedy algorithm. Fig.4 shows the comparison 
results of the required storage levels when using the 
same timing constraints under Setting 1. The average 
storage level of our approach was 13.4, which is 
29.25% lower than the average storage level obtained 
by using the greedy algorithm.
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Figure 3  Comparison of hash collision probabilities using 

the same timing constraints under Setting 1
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Figure 4  Comparison of required storage levels using the 

same timing constraints under Setting 1

Fig.5 compares the results of the hash collision 
probabilities when the same storage availabilities 
were applied under Setting 1. The average probability 
gained from using SD2M was 17.42%, which is 
33.88% lower than the probability gained from 
using the greedy algorithm. Fig.6 further compares 
the required execution time when the same storage 
availabilities were applied under Setting 1. We found 
that the average execution time of our approach was 
11.5, which is 27.75% lower than that of the greedy 
algorithm.
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Figure 5  Comparison of hash collision probabilities by 

applying the same storage availabilities under Setting 1
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Figure 6  Comparison of the required storage levels by 

applying the same storage availabilities under Setting 1

Furthermore, we present a few experimental 
results for Setting 2 from Fig.7 to Fig.10. Fig.7 shows 
the results of comparing hash collision probabilities 
when the same timing constraints were applied. 
Our observations indicated that the advantage of 
using our approach was that it is simplified and 
most probabilities gained from using SD2M were 
lower than the probabilities gained from the greedy 
algorithm. The average probability of using SD2M 

under this setting was 3.24%, which is 54.52% lower 
than that of the greedy algorithm.

Additionally, Fig.8 shows the experimental results 
obtained by comparing the required storage levels 
when the same timing constraints were applied. As 
�
�������
����������
����������������������������
�
improved compared to the results obtained with the 
settings used previously. The average storage level 
was 29.9, i.e., 29.42% lower than that achieved with 
the greedy algorithm.
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Figure 8  Comparison of required storage levels using the 

same timing constraints under Setting 2

Finally, Fig.9 presents a comparison of the 
hash collision probabilities when the same storage 
availabilities are employed. We found that the average 
of the probability by using our approach was 2.76%, 
which is 56.81% lower than that obtained with the 
greedy algorithm. Fig.10 presents a comparison of 
the required execution time when the same storage 
availabilities are configured. The average execution 
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Figure 7  Comparison of hash collision probabilities using 

the same timing constraints under Setting 2
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Figure 9  Comparison of hash collision probabilities by 

applying the same storage availabilities under Setting 2
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time when using our approach was 21.9, i.e., 24.64% 
lower than that of the greedy algorithm.
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Figure 10  Comparison of required execution time applying 

the same storage availabilities under Setting 2

In summary, based on our data collections and 
evaluations, we noticed that the hash collision 
probabilities could be influenced by the number of 
input data packages. The probabilities had a negative 
relationship with the number of input data packages 
when both the SD2M and greedy algorithms were 
applied. Overall, the performance of our proposed 
algorithm was superior to that of the greedy algorithm 
because of the creation of an optimal solution.

6  Conclusions

This paper proposed a novel approach for data 
deduplication designed for cloud-based telehealth 
systems. The proposed approach considered 
three important performance parameters of data 
deduplication, including execution time, hash 
collision probabilities, and data storage space. The 
proposed approach, named SD2M, was supported 
by the algorithm we developed using dynamic 
programming. Our approach produces optimal 
solutions for obtaining the lowest hash collision 
probability and the required cloud storage under 
the specified timing constraints. Our experimental 
evaluations proved the correctness and effectiveness 
of our approach.
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