
Deciding Combinations of Theories

ROBERT E. SHOSTAK

SRI International, Menlo Park, Cahforma

Abstract. A method ~s g~ven for dec~dlng formulas in combinations of unquantified first-order theories.
Rather than couphng separate decision procedures for the contributing theories, the method makes use
of a single, uniform procedure that minimizes the code needed to accommodate each additional theory.
It ~s apphcable to theories whose semantics can be encoded within a certain class of purely equational
canonical form theories that ~s closed under combination. Examples are given from the equational
theories of integer and real anthmeUc, a subtheory of monadic set theory, the theory of cons, car, and
cdr, and others. A discussion of the speed performance of the procedure and a proof of the theorem
that underhes ~ts completeness are also g~ven. The procedure has been used extensively as the deductive
core of a system for program specificaUon and verifcation.

Categories and Subject Descriptors- D.2.4 [Software Engineering]: Program Verificationmcorrectness
proofs; verification; F 3 1 [Logics and Meanings of Programs]' Specifying and Verifying and Reasoning
about Programs--mechamcal verification; F.4.1 [Mathematical Logic and Formal Languages]: Mathe-
matical Loglcmmechamcal theorem proving

General Terms: Algonthms, Verification

AddlUonal Key Words and Phrases: Decision procedures

1. Introduct ion

Much attention has been given in the last few years to the problem o f developing
decision procedures for applications in program verification and mechanical p roof
of theorems in mathematics . It often happens, in these applications, that the
formulas to be proved involve diverse semantic constructs. Verification conditions
for programs, for example, often mix ari thmetic with data structure semantics.
Accordingly, a num ber of procedures have been developed (such as those of
Jefferson [2] and the author [7]) for particular m i x e s of theories. One of the most
general results along these lines is given by Nelson and Oppen [4] in their work on
simplification using cooperating decision procedures. Th¢~ central idea, here, is that
procedures for diverse unquantif ied theories in a certain class can be hooked
together so as collectively to decide a formula involving constructs f rom each. The
coupled procedures communica te by passing back and forth information they
individually derive about equality among terms.

The method described in this paper also addresses the problem of deciding
combinat ions of theories. Rather than connecting separate procedures for the
consti tuent theories, however, it is based on a single, un i form procedure that

This research was supported m part by the National Science Foundation under Grant No. MCS 79-
04081 and by the Air Force Office of Scientific Research under Contract No. F49620-79-C-0099.

Author's addless" Computer Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo
Park, CA 94025
Permission to~..o~y without fee all or part of th~s material ~s granted provided that the copies are not
made or distributed for d~rect commercial advantage, the ACM copyright notice and the title of the
pubhcation and its date appear, and notice is given that copying is by permission of the AssoclaUon for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0100-0001 $00.75

Journal of the Asu~ctaUon for Computing Machinery, Vo| 31, No 1, January 1984, pp 1-12

2 ROBERT E. SHOSTAK

localizes the mechanism particular to each constituent to a relatively small amount
of code. As a result, new semantic constructs can be incorporated quite easily. The
method also obviates the explicit computation of entailed equality information
required by the distributed approach, and the redundant representation of this
information in the separate procedures.

The method is applicable to theories whose semantics can be expressed inside a
certain class of purely equational canonical form theories. The class has the property
that the canonizing functions of arbitrary members can be combined to obtain a
canonizing function for their union. The decision procedure extends the congruence
closure methods [1, 5, 6] that have been used for the pure theory of equality. The
extension depends upon a notion of semant ic signature that generalizes the earlier
concept of signature to accommodate the semantics of the canonical form theories.

The method is useful for a surprisingly rich class of constructs. We give examples
from integer and real arithmetic, the theory ofrecursive data structures, a subtheory
of monadic set theory, and the first-order theory of equality. The procedure has
been used intensively in a major verification effort [8] over the course of several
months, and has been found to give good speed performance.

The next two sections characterize the class of theories to which the method is
applicable, and prove that it is closed under combination. Section 4 gives the
decision procedure and exemplifies its operation. Sections 5 and 6 discuss perform-
ance issues and an extension of the method that treats nonconvex theories. The
last section gives a proof of the theorem on which the procedure is based.

2. o-Theories and Algebraic Solvabil i ty

The procedure described in this paper operates over a subclass of certain unquan-
tiffed first-order equational theories called o-theories. Such theories have both
interpreted and uninterpreted function symbols. Terms whose outermost function
symbol is interpreted are themselves said to be interpreted, and all other terms
(including variables) are said to be uninterpreted. The distinguishing feature of o-
theories is that each has an effective canonizer, i.e., a computable function o from
terms to terms such that a purely interpreted (i.e., containing no uninter-
preted function symbols) equation t = u is valid in the theory iff o(t) --- o(u). The
canonizer o must act as an identity on uninterpreted terms, must be idempotent
(i.e., o(o(t)) = o(t)), and must have the property that the arguments of each
interpreted canonical term must themselves be canonical.

The semantics of o-theories are defined with respect to o-interpretations, i.e.,
Herbrand interpretations that respect o in the sense that for each interpreted term
t = f(t~ , tn), v(t) = o(f(v(tO v(tn))), where v(t) is the value of t in the
interpretation. Note that these semantics say more than that two terms must be
equal in all interpretations if they have identical canonical forms; they also say that
certain terms (for example, distinct canonical constants) must be unequal in all
interpretations.

A simple example of a o-theory is the equational theory of addition and
multiplication by constants over the reals. Each term in this theory can, of course,
be reduced to a linear expression of the form a~x~ + a2x2 + . . . + a,,x, + c (n >>_ 0),
where each a, is a nonzero real constant, each x, is a variable, and c is a real
constant. By specifying some criterion for ordering the xi's (alphabetic ordering,
for example), removing unity coefficients, and discarding c if c -- 0, a suitable o
can be defined. Note that the theory can trivially be enriched with uninterpreted
function symbols.

Deciding Combinations o f Theortes 3

The decision procedure we will describe operates on a-theories with a s~eial
property we call algebraic solvabihty Such theories have a solverma computable
function that takes a purely interpreted equation (no uninterpreted symbols other
than variables) e(say t = u) as input, and returns either true, false, or a conjunction
of equations. The returned formula must be equivalent to e and must be either
true or false if e has no variables. Moreover, the equations (if any) in the returned
formula must all be of the form x, = t,, where the x,'s are distinct variables of t (or
u if t has none) that do not occur in any of the t,'s.

Returning to the example of real linear arithmetic, a suitable solver is trivially
provided by conventional algebraic manipulation; solving 3x + 2y -- 2x + 4, for
example, gives x = - 2 y + 4.

At first glance, one might expect that algebraic solvability is such a strong
criterion that there are no nontrivial theories other than, say, theories over fields,
that satisfy it. Surprisingly, this is not so. As the following examples suggest,
algebraic solvability is characteristic of many constructs one encounters in practice.

Example 1. The convex theory o f cons, car, and cdr. First consider the theory
of cons, car, and cdr with the following axiomitization:

car(cons(x, y)) -- x,
cdr(cons(x, y)) = y,

cons(car(x), cdr(x)) -- x.

Using the first two of these axioms as rewrite rules, one can always reduce a term
in the theory to a canonical form in which cons is not an argument of either car
or cdr.

A solve function for this theory is given by the algorithm shown in Figure 1.
Note that the algorithm introduces new (existentially quantified) variables. The
chief function of the main routine solve is to grind the left side of the given equation
(represented as an ordered pair) down to a variable; the auxiliary function solvel
(which takes two terms and returns a term) takes over from there, and attempts to
eliminate that variable from the right side. The routine resolve, called by solve, sees
to it that no equations in the returned conjunction have the same left side.

Consider, for example, the action of the algorithm on the equation

cons(car(x), cdr(car(y))) = cdr(cons(y, x)).

The two sides are first canonized to obtain

cons(car(x), cdr(car(y))) -- x.

This equation is then reduced to the two equations

car(x) = car(x), cdr(car(y)) = cdr(x).

The first of these reduces to true and is, in effect, discarded. The second becomes

car(y) = cons(a, cdr(x)),

where a is a new variable, and then (recursing again)

y = cons(cons(a, cdr(x)), d),

which is then returned.
It is not difficult to show that the algorithm satisfies the criteria for a solver. The

reader might find it amusing to prove that it always terminates.

4 ROBERT E. SHOSTAK

solve((t, u))
t <--- a(t);
u ~ a(u);
ift = u return true;
if t contains no variable swap t and u;
if t still contains no variable return false;
let a and d be fresh variables (new on each call);
if t is of the form:

car(tO then return solve((tj, cons(u, d)));
cdr(t l) then return solve((t l, cons(a, u)));
cons(it, t2) then

return resolve(solve((tl, car(u))) A solve((t2, cdr(u))));
else return (t, solvel(t, u));

solvel(x, u)
u ,.-- ,(u);
ifx = u or x does not occur in u return u;
fix occurs in u as an argument of cons or ifu is not a cons

return from solve with false;
let a, d be fresh variables (new on each call);

replace car(x) by a and cdr(x) by d in u;
return cons(solvel(a, car(u)), solvel(d, cdr(u));

resolve(c)
unul c contains no two equations of the form v = tj, v = t2 do

remove v = t2 from c; c ~- c ^ solve((t~, t2));
return c;,

FIG. I. Solver for car, cdr, and cons.

The familiar nonconvex theory of cons , car, and cdr, with the distinguished
element ni l and the additional axiom

ni l ~ cons (x , y)

can also be treated, as discussed in Section 6.
The more general theory of recursive data structures can be handled using a

straightforward generalization of cr and the so lve algorithm just given. []

E x a m p l e 2. I n t e g e r l inear a r i t hme t i c . The a described earlier for real linear
arithmetic can be used here as well. A so lve function is provided by a method for
reducing linear Diophantine equations that is based on the Euclidean algorithm.
For example, the equation

17x - 49y = 30

is solved by ths method to obtain

x - - 4 9 z - 4 , y = 1 7 z - 2 ,

where z is a new variable. The theory o f linear congruences can be treated in a
similar way. []

E x a m p l e 3. " V e n n d i a g r a m " m o n a d i c se t theory . Formulas in this theory are
constructed from set variables and the empty set under set inclusion, union,
intersection, and complement. As is well known, such formulas can be encoded in
a purely equational theory with only set variables, the empty set, and the union
operator +. The encoding represents each set variable in the given formula by the
union of its disjoint constituent pieces in the Venn diagram corresponding to the
variables of the formula. Referring to Figure 2, for example,

A N B = B U C

Deciding Combinations of Theories 5

A

) C FIG. 2. Example from "Venn diagram" theory,

becomes

$2 "1" $3 -'~ (Sz @ $3 @ $4 + $6) dr ($3 "l- $4 + S5 "4" $7).

Similarly, A _C B becomes s~ + s5 -- (I,.
It is easy to see that terms in the encoding theory can be canonized simply by

ordering the set variables in some way and eliminating redundancies.
A solver for the encoding theory is also easy to construct. One simply replaces

each side of an equation with its a-form and cancels variables occurring on both
sides. If the two sides thereby become identical, true is returned; otherwise, the
conjunction

A v, =,I,.

is returned, where the v,'s are the remaining variables. []

Example 4. The unquantified first-order theory of equality. This theory has no
interpreted function symbols at all. a is therefore just the identity function. The
solve function merely returns true if the given equation is an identity, and acts as
an identity otherwise. []

Until now we have been concerned with solve functions for equations with only
purely interpreted terms. In the next section and in the procedure itself it will be
necessary to deal with equations that may have uninterpreted terms other than
variables. The notion of solver is extended to deal with such equations in the
following way.

We will say that a solver for a a-theory T is a computable function that takes an
arbitrary equation e(say t --- u) over T as input and returns either true, false, or a
conjunction of equations. The returned formula must be equivalent to e and must
be one of true or false if e contains no uninterpreted terms. Moreover, the equations
(if any) in the returned formula must all be of the form u, = t,, where the ui's are
distinct uninterpreted subterms of t(or u if t has none) that do not occur in the t,'s
except possibly as proper subterms of uninterpreted terms.

Note that all the solvers we have talked about so far can be trivially extended to
satisfy the new definition simply by treating the maximally uninterpreted subterms
of a submitted equation as if they were distinct variables. For example, the equation

f(x) -- g(x + 2, f(x)) = O,

when solved in linear arithmetic, produces

f (x) = - l × g (x + 2 , f (x)) .

6 ROBERT E. SHOSTAK

Note that although f ix) occurs on the right-hand side of the result, it occurs only
as a proper subterm of an uninterpreted term.

3. Combining Theories

Algebraically solvable a-theories have the elegant and useful property that they can
be combined (provided they are compatible in a certain sense) without giving up
algebraic solvability.

One needs to be careful, of course, about what it means to combine theories.
Simply to say that the interpreted symbols of the combined theory are the union
of those of the constituents does not suffice. The semantics of mixed terms (terms
with symbols from different constituents) must be explicated, and conflicts that
may arise when the constituents share interpreted symbols must be resolved.

The most natural resolution (and the one we espouse) of the issue of mixed
terms is simply to assume that interpreted symbols from different theories have no
semantic interaction in the combined theory; if a function interpreted in T~ but
not in T2 is given an argument that is interpreted in T2 but not in TI, the effect is
to treat the argument as i f it were uninterpreted. For example, in the combination
of real linear arithmetic with the theory of cons, car, and cdr, we will have

a(car(cons(l + 1, nil)))= 1 + I.

We will consider that + is uninterpreted with respect to cons, car, and cdr, (and vice
versa) in the combined theory, and that 1 + 1 is therefore an uninterpreted subterm
of car(cons(l + 1, nil)).

It still remains to resolve the question of what happens if the constituent theories
share interpreted symbols. Here we will take the conservative stand of requiring
that the shared symbols have exactly the same semantics. More precisely, we will
say that T~ and T2 are compatible if for each term t in their combination whose
function symbol is interpreted in both, a~(t) = a2(t). We will consider only
combinations of compatible theories.

Note that as a consequence of the view that uninterpretedness is relative, the
purely interpreted terms of the combined theory are exactly the union of those
from the constituent theories; the action of the combined a on each such term is
the action of the a of the appropriate constituent. It is easy to check that the
combined o thus defined satisfies the requirements for a canonizer.

Given solvers for each of the constituent theories, one can be constructed for the
combination in the following way. Let T be the combination of Ti, . . . , Tr, and
let t --- u be an equation of T to be solved. If neither t nor u contains uninterpreted
terms, we return true if they have identical canonical forms and false if not. If t
has no uninterpreted subterms, t and u are exchanged, solve, is now applied to
t = u, where 7", is a constituent theory from which the function symbol of t derives.
Each equality in the resulting conjunction is then recursively replaced by its solution
until no left side of an equality occurs in a right side except as a proper subterm of
an uninterpreted term.

The idea is easily understood in the context of an example. Suppose the equation
to be solved is

5 + car(x + 1) -- cdr(x + 2) + 3.

First solving in linear arithmetic, we obtain

car(x + 1) = cdr(x + 2) - 2.

Deciding Combinations o f Theories 7

Note that whereas car(x + 1) is (relatively) uninterpreted in the original equation,
it is interpreted here. The solver for car, cdr, and cons is now applied to obtain

x + 1 = cons(cdr(x + 2) - 2, d),

where d is a new variable. Solving once more in linear arithmetic, we have

x = cons(cdr(x + 2) - 2, d) - 1.

As the left side x is an uninterpreted term that does not occur in the right side
except as a proper subterm of an uninterpreted term (x + 2), we are done.

4. The Procedure

We now give a refutation procedure for conjunctions of equalities and disequalities
in an algebraically solvable c-theory T. Formulas with arbitrary propositional
structure can be decided for validity by placing their negations into disjunctive
normal form and applying the refutation procedure to each conjunction; the
original formula is valid iff all conjunctions are unsatisfiable.

The procedure extends the congruence closure methods of Nelson and Oppen
[5], Downey et al. [1], and the author [6] for deciding purely uninterpreted
formulas. These methods all depend on computing a congruence relation that
provides a canonical form for each term represented in the relation. The procedure
we describe can be viewed as combining this canonial form for purely uninterpreted
terms with the c-form for interpreted terms to obtain a universal canonical form
for all terms. Crucial to the extension is a generalization of the notion of signature
that permits the two kinds of canonical forms to be merged.

The main algorithms of the procedure are process and canon, shown in Figure
3. Algorithm process is called on the set of equalities (each represented by an
ordered pair) occurring in the conjunction S whose satisfiability is to be determined;
if process returns unsatisfiable, the procedure halts with that conclusion. Other-
wise, for each disequality t 4~ u of S, canon(t) and canon(u) are computed. If
canon(t) = canon(u) for some such disequality, unsatisfiable is returned; otherwise,
satisfiable is returned.

As in the procedure described by Nelson and Oppen, a congruence relation is
developed (by process) using Tarjan's union and f ind primitives [9]. The canon
routine returns the canonical representation, in this relation, of a term to which it
is applied. Note from the specification of canon that two terms have the same
canon if they have the same signature. If a term is already represented in the
relation (i.e., canon has previously been called on a term with the same signature),
the existing canonical form is returned; otherwise, the signature of the term is
returned as its canon.

The solve routine is assumed to return a set (representing a conjunction). In
accordance with the definition given in the last section, the set must either be a
singleton containing one of true, false, or a set of equations whose left-hand sides
are uninterpreted. The right-hand sides are assumed to be reduced with respect to
a. Note that process uses the convention that el refers to the left side of an equation
e, and that e2 refers to the right side. The order of sides is important.

Note also that the union function (called in merge) is assumed always to change
f ind of its first argument. Initially, find(t) is assumed to be t for each term t.

Aside from the tree structure used to implement union andfind, two global data
structures are used: use and sig. For each canonical term t, use(t) is a list of terms
whose signatures have t as an argument. The list use(t) is maintained so that the

ROBERT E. SHOSTAK

process(eqset)
while eqset ~ 0 do

select and delete e from eqset;
s ~-- solve(canon(eO ffi canon(e2)); /* ej refers to the left side of e, e2 to the right side . /
while s * O do

select and delete e from s;
if e = t ree continue while;
if e -- false return unsatisfiable;
merge(e~, e2),

merge(h, t2)
t, ~--- find(t~); t2 ~--- find(t2);
fft~ = t2 return;
umon(ti, t2) / . f i n d (t t) is now t2 */
for u ~ use(tO do

if u ~s uninterpreted
replace h with tz in the argument list o f stg(u);
for v E use(t2) when sig(v) = stg(u) do

remove v from use(t2);
s ~-- s t3 solve(find(u) =find(v));

add u to use(&);
else i f f ind(u) ~ u

obtain u' from u by replacing t~ w~th t2 m the argument hst;
add u-= canonstg(a(u')) to s;

canon(t)
return(canonstg(stgnature(t)));

canonstg(w)
ff w is a constant return find(w);
else

say w = f (w , . . . , w~);
if w is interpreted replace each w, with canonslg(w,);
if w = stg(u) for some u ~ use(w3 return find(u);
else

for t from 1 to n do add w to use(w,);
stg(w) ~ w;
use(w) .--- 0 ;
return(w);

stgnature(t)
l f l Is a constant return t;
else return a(f(canon(h) canon(t~))) where t = f (h tn);

FIG 3. Mare routines of procedure.

signatures of its members are distinct and include the signatures of all represented
terms whose signatures have t as an argument. For each u in use(t), sig(u) gives
the current signature of u.

Figure 4 shows various stages in the application of the procedure to the conjunc-
tion

z = f (x - y) A x = z + y A - y • - (x - f (f (z)))

in the combination of the theory of real linear arithmetic and the pure theory of
equality. The solid arrows in each diagram represent the union-find structure (for
example, f ind(z) - - f (x + - 1 x y) in Figure 4a. The dotted arrows represent the
use structure; a dotted arrow from t to u indicates that u is a member of use(t).

The procedure first calls process on the equalities of the conjunction. The equality
z = f (x - y) is selected, canonized (giving z = f (x + - 1 x y)), and submitted to
solve. The canonized equality is its own solution, and so merge(z, f (x + - 1 x y))

Deciding Combinations o f Theories

z•l
f(x + -1 * V)

x + - I * y

l / %K-I.v
x ¢ \t

-1 y

(a)

9

f(x +- l -Y) + Y

/ ~ " ~ " ~ eqset = {< x + -1 *y, f(x + -1 *y) >}

I \

/ z / j ' x+ - l *Y 1

I w//~'\~, / I .-"" - - l * v / ~"'" 7", //
x # ~x /

I ,,,"
-1 y

(b)

FiG. 4.

f(x + -1 *y) + y

/
x)~- l .v //

¢ x i /

I xV /
-1 Y

(c)

SIG = f(f(x + -1 *y))

Application of the procedure to z = f (x - .v) A x = z + y A - y ~ - (x - f O e (z))) .

is invoked. Figure 4a shows the state after this call. The dotted structure results
from the call of canon on f i x - y).

The second equality x = z + y is next selected from eqset, canonized to obtain
x = f i x + - 1 x y) + y, and submitted to solve. Again solve has no effect, and
merge(x , f (x + - 1 x y) + y) is called. Note that inside the call, canonsig is invoked
on x + - 1 x y, yielding (as the reader should check)f ix + -1 x y).

The equation

x + - I x y = f i x + - I x y)

is then added to s. Figure 4b depicts the situation after this call.
Now merge(x + - 1 x y, f i x + - 1 x y)) is invoked as a result of the addition to

s. The effects of this call are shown in Figure 4c. Note that f i x + -1 × y) is added
to its own use list, and that s ig(f (x + -1 x y)) is updated to reflect the new
signature o f f (x + - 1 x y), n a m e l y f (f (x + -1 x y)). No new pairs are added to s,
so that call to process is complete.

The procedure next computes canon o f - y and - (x - f (f (z))) . Both calls produce
-1 x y, so the conjunction is unsatisfiable.

10 ROBERT E. SHOSTAK

5. Performance Issues

The procedure has been implemented in INTERLISP-10, and forms the deductive
core of a specification and verification system that provides mechanical support
for an extension of multisorted first-order logic [8]. This system has been used
intensively over the last year in a successful design proof effort for the SIFT [3,10]
fault-tolerant operating system. The effort involved the proof of literally hundreds
of formulas. We found that formulas occupying several pages of syntax would
usually be proved in less than a minute (provided they were true--otherwise this
could take substantially longer!).

The time complexity of the procedure naturally depends on the cost of invoking
the algorithms for a and solve. Since these costs typically tend to dominate, it is
impossible to analyze the performance of the algorithm without making specific
assumptions about the particular combination of theories to which it is applied. In
the purely uninterpreted case, the procedure becomes very similar to the E-
procedure mentioned earlier, whose worst-case time was determined by Nelson
and Oppen to be O(m2), where m is the number of edges in the graph of the
developed congruence relation. The differences are that use lists are not kept sorted
in our algorithm and that we use a special data structure sig to store the current
signatures of terms that represent signature classes. We have found that because
use lists are usually quite short, the time required to maintain sorted versions is
not worth the theoretical advantage in doing so. We have also found that the use
of the sig data structure provides a significant practical improvement, because it
eliminates having to compute signatures in the second for loop of the merge
routine.

We should point out that analytic measures can be quite misleading indicators
of performance in real applications. Our experience has been that such measures
are often less informative than more precise and objective characterizations of
performance, such as "blindingly fast."

6. Extension to Nonconvex Theories

The theories we have used to illustrate the procedure are all convex in the sense of
[4]. The notion of algebraic solvability can be straightforwardly generalized to
apply to nonconvex theories by permitting the equalities returned by a solver to be
embedded in arbitrary propositional structure as opposed to strict conjunctions.
The nonconvex theory of cons, car, cdr, and nil, for example, can be treated by
modifying the solve of Figure l to return an expression of the form

if u = nil then false e l se . . .

in the case where t is of the form cons(h, t2). Theprocess procedure given in Figure
3 must be modified to break the propositional structure returned by the solver
back down into disjunctive normal form.

7. Correctness o f the Procedure

It is easy to check by inspection that the procedure is sound, i.e., that two terms
with the same canon must be equal in any a-interpretation for S. This section gives
a proof of the theorem that underlies the procedure's completeness. The theorem
extends the result given in [6] for the pure theory of equality to a-theories.

Definition. We say that a congruence relation = over a set .~ of terms in a a-
theory T is a a-congruence relation if each equivalence class [t] in --- has a

Decid ing Combina t ions o f Theories 11

representative p(t) such that

(,) For each interpreted term t = f (h , . . . , tn) in T,

o(t) = a(f (p(t ,) , p(t,))).

Note that, interpreting the canon procedure as o and the set of represented terms
as ~ , the (,)-property just says that the canon of each interpreted term t must be
the semantic signature of t.

THEOREM. Let S be a a-unsatisf iable set o f equalit ies a n d disequali t ies over a
a-theory T, a n d let = be a a-congruence relation over a set _~ o f t e rms in T such
that t "" u f o r each equation t = u E S. Then there exis ts a disequal i ty t 4= u ~ S
such that t = u.

PROOF. We will suppose that there is no such disequality, and construct a a-
model for S. First, divide the Herbrand Universe of T into layers Ho, Hi, . . . ,
where Ho = ~ , and

H,+, = 11, tO {f i t , , t,)[t,, . . . , t= ~ H,}

for each function symbol f We say that the _@-height of a term t is the smallest t
for which t ~ H,.

The model .//g is constructed inductively by height. For terms t of height 0, we
let .g(t) = p(t). For terms t =f (t~ to), n >_ O, of height i > 0, we let

f ~{(v), if there exists a term v = f(vi vn)
of height < i such that .,g(vj) = .g(tj),

.//{(t) = 1 _ j _ n.

a(f(-//d(tO , Xd(tn))) otherwise.

It must be shown that M'is functionally reflexive, that is,

A .//{(t,) = .Jd(u,) D . /g(f (t , t,)) = / g (f (u , u,)),

and that ~{ respects a. Both these properties are straightforwardly proved by
induction on _@.height. The first follows directly from the manner in which the
model is constructed, the second from the (,)-property. []

ACKNOWLEDGMENTS. The author is grateful to D. Hare, P. M. Mdliar-Smith and
Richard Schwartz, all of whom helped to correct lacunae in the procedure.

REFERENCES

| . DOWNEY, P.J., SETm, R., AND TARJAN, R. Variations on the common subexpression problem. J.
ACM27, 4 (Oct. 1980), 758-771.

2. JEFFERSON, D.R. Type reduction and program verification. Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh, Pa., Aug. 1978.

3. MELLIAR-SMITH, P.M., AND SCHWARTZ, R.L. Formal specification and mechanical verificanon of
SIFT. A fault-tolerant flight control system. IEEE Trans Comput 31, 7 (July 1982), 616-630.

4. NELSON, G., AND OPPEN, D.C. Slmphfication by cooperating decision procedures. ACM Trans.
Prog Lang Syst 1, 2 (Oct. 1979), 245-257.

5. NELSON, G., AND OPPEN, D C. Fast deosion procedures based on congruence closure. J. ACM,
27, 2 (Apr 1980), 356-364.

6. SHOSTAK, R.E. An algorithm for reasoning about equahty. Commun. ACM 21, 7 (July 1978),
583-585.

12 ROBERT E. SHOSTAK

7. SHOSTAK, R.E. A practical decision procedure for arithmetic with function symbols. J. ACM 26,
2 (Apr. 1979), 351-360.

8. SHOSTAK, R.E., SCHWARTZ, R., AND MELLIAR-SMITH, P.M. STP: A mechanized logic for specifi-
cation and verification. In Proc. 6th Conf. on Automated Deduction, Lecture Notes in Computer
Science, 138, D.W. Loveland, Ed., Springer Verlag, New York, pp. 32-49.

9. TARJAN, R.E. Efficiency of a good but not linear set union algorithm. J. ACM22, 2 (Apr. 1975),
215-225.

! 0. WENSLEY, J., et ai., SIFT. Design and analysis of a fault-tolerant computer for aircraft control. Proc
IEEE66, 10 (Oct. 1978).

RECEIVED APRIL 1982; REVISED FEBRUARY 1983; ACCEPTED FEBRUARY 1983

Journal of the Assooatmn for Computing Machinery, Vol 31. No 1. January 1984

