An Algebraic Language Processing Environment

Teodor Rus, Tom Halverson, Eric Van Wyk, and Robert Kooima

Department of Computer Science, The University of lowa, lowa City, IA 52242

1 Introduction

Problem domains evolve, so it seems natural that the languages of problem
solving need to evolve as well. The theme of our research is that the task of
language design and implementation should be made a realistic endeavor for a
larger group of computer users thus supporting the evolution of the language with
the problem domain. This can be accomplished by creating a language processing
environment in which methodologies and tools are provided that simplify and
ultimately automate many of the language processing tasks. This reduces the
effort necessary on the part of the language designer to develop a language and
create language processing tools. Since the language itself is the key to problem
solving, this is a prerequisite to further progress.

A language is a communication mechanism which provides a framework in
which one can create statements which have meaning. In the realm of computer
systems, a language is a notation used to express computations. The notation
is referred to as the syntax, while the computation is the semantics. Computer
language manipulation implies a specification aspect, a processing aspect, and a
usage aspect: specification allows communicators to construct valid phrases that
may be used to denote computing abstractions; processing concerns algorithms
that recognize phrase validity, discover the computing abstractions denoted by
a phrase, and perform meaning-preserving mappings of a phrase within a lan-
guage and between languages; usage is the process of problem solving using
computer languages. A language processing environment is a set of integrated
tools that supports these aspects of computer language manipulation. Though
these aspects of language manipulation are intimately related, historically they
have been developed into software systems by different people using different
approaches. Our project advocates a unifying framework for dealing with lan-
guages in which all aspects of language manipulation are formally specified.
Specifications should formally define syntax and semantics by the same specifi-
cation rules and should be used to automatically generate language processing
tools, thus removing most of the usual programming burden from the developer.
This simplifies the problem solving process and assures that correct specifications
produce correct implementations. In addition, the language developer, as well
as the language user, should be able to build processing systems incrementally
and interactively.

Our vision of a language processing environment has resulted in the con-
tinuous development and evolution of the TICS (Technology for Implementing
Computer Software) project. This project demonstrates many unique specifica-
tion and processing components as well as new methods of integration which are



based on the algebraic concepts of compositionality, incrementality, and mod-
ularity. Publications, tutorials, and demonstration materials may be found at
http://www.cs.uiowa.edu/~rus. This methodology shows great promise: it has
been applied to problems in a wide range of areas including syntactic[1] and
semantic[2] analysis, language to language translation[3, 4], and the integration
of model checking algorithms into the compiler as tools used for code optimiza-
tion and parallelization|[5, 6].

2 Specification

A language specification should formally describe the language syntax, seman-
tics, and the relationship between them. In our framework, the signature of an
operation in the source language algebra is described by a specification rule writ-
ten in the well understood BNF notation r : Ag = tgA1t1Asts ... Apt,, where
A;, 0 < i < n, are parameters called nonterminal symbols and ¢;, 0 < 7 < n,
are fixed strings called terminal symbols. A collection of computation laws or
interpretations of that signature which embeds the source algebra operations
into various target algebras is attached to each specification rule. Thus, the syn-
tax and the semantics of a language construct are specified by the same rule.
While the BNF notation is common, our interpretation is not. We interpret each
parameter A;, both as a semantic domain, in which A; is a set of computation ob-
jects denoted [A;], and as a syntactic domain, in which A; is the set of language
phrases denoted [A;]. Furthermore, each w € [A;] represents a computation
object ¢, € [A;]. Accordingly, each BNF rule is interpreted both as the signa-
ture of a syntactic operation oty ...t, : [A1] X [A2] X ... x [4,] — [Ao] whose
computation law is toty...t, (w1, wsa, ... w,) = towitiws ... th_1wpt, € [Ao],
for each w; € [A;], 1 < i < n, and as the signature of a semantic operation
tot1 ... tn : [A1] X [A2] x ... x [4,] — [Ao] whose computation law depends on
the language processing purpose.

For each processing purpose, the computation specified by the semantic op-
eration totq ... t, : [A1] x [A2] x ... x [A4,] — [Ao] is represented by a semantic
macro associated with the BNF rule. Algebraically this macro is a derived opera-
tion embedding the language objects specified by the BNF rule into the language
that supports the operations used in the macro-operation. In programming jar-
gon, semantic macros are similar in form to conventional macros[7]. The differ-
ence results from the purpose of these macros. Conventional macros are used to
extend the source language with user defined constructs; our macros are used
to implement the source language by expressing the semantics of its valid con-
structs using parameterized constructs of the target language. The parameters of
a semantic macro are valid target language constructs that implement the com-
ponents of the source language constructs. Thus, the target image of a construct
is built by the macro processor in a compositional manner as the source language
construct is recognized. Consequently, semantic macros are automatic program-
ming mechanisms that generate target programs from target components in a
manner similar to that in which source language programs are generated as alge-



braic expressions by operations in the source language algebra. As an example,
language translation operations are defined as computation laws performed by
the operation toty ...t, : [A1] X [A2] X...x[A,] — [Ao] where objects ¢; € [A;]
are target images of the constructs w; € [4;], 1 <4 < n, and the result is the
target image of the construct w € [Ag] such that w = tow; ... t,_1wyt,. Hence,
this macro is a derived operation in the algebra of the target language and it
embeds the language of [Ag] into the target language by constructing the target
image of w in terms of the target images of its components.

The macro-processor of semantic macros does not interfere with the parser
of the source language because it is used for target image generation. Semantic
macro-processors perform actions similar to those performed by the assembly
language macro-processors since they produce correct pieces of target code from
correct target code components. In addition, a semantic macro processor may
check semantic properties of source and target language constructs, such as type,
to determine exactly what should be produced as the result of the macro ex-
pansion. In other words, a semantic macro is more than just a substitution of
the parameters. This has proven quite useful and powerful in a wide range of
applications, as seen above.

Thus, the specification methodology we advocate is to combine a collection
of compositional specification fragments into a specification rule. This takes the
form of a syntactic rule and a group of zero or more macros, each for a particular
language processing purpose such as mapping to a target language, defining the
semantics of the construct in terms of the semantic of construct components, or
constructing a graph representation of the computation.

3 Processing

Language processing tasks encompass such activities as recognizing the validity
of language phrases, discovering the meaning of a message by creating an un-
derstandable representation of the intent of the communication, and mapping
phrases or representations into other forms. As alluded to in the introduction,
this takes the shape of extracting information from the specification rules to
guide the activities of various algorithms. For example, the BNF rules are pre-
processed to collect context information[1] which is used to guide the behavior
of the parser to determine if its input is a construct of the language. As an aside,
a jumping pattern matching parser[4] is used for construct recognition. It is a
bottom up recognizer which may make reductions (rewriting) anywhere in the
input as long as the validity of the input is maintained. Also, each macro in the
specification is processed by the TICS system itself to create an internal, usable
form. This processing produces the computation law that guides the semantic
interpretation of the signature. When the macro is expanded, it will perform the
intended language processing action such as translation or optimization.

This mechanism of developing language processing tools raises the issue of
compositionally building a valid language phrase from valid subphrases. Since in
our case, macros are used to map valid source language constructs to valid target



language constructs, this issue becomes one of how to combine target language
fragments while maintaining the validity of the result. This mechanism of tar-
get code generation ensures correct bootstrapping of language implementation
where individual language processing tools are generated automatically from the
specification rules.

4 Integration

The objective is to use a combination of the language processing tools to operate
with language elements to achieve a given goal such as syntax analysis, semantic
analysis, dataflow analysis, and program translation.

The BNF portion of a specification rule describes the syntax of source lan-
guage constructs. It is used to generate the parser which we call a language
recognizer because it can incrementally recognize the validity of any language
construct in its input. When the parser recognizes the validity of a construct
in the input using a rule r, it will perform a rewriting. Also, it communicates
this information to other tools which deal with the macros. The integrating en-
vironment is a data structure we have tentatively termed an Abstract Parse
Tree (APT) which is constructed by the recognizer. Each node in the APT is
labeled by the rule r that was used to construct it, and its children are the APT
nodes for the parameters on the right hand side of r. Each macro is provided
with a hook on the APT so that it can attach the information generated dur-
ing macro-expansion that is carried along for access during further processing
activity. The APT node is given to a macro integration function to properly
activate the macro processing and the recognizer may continue in parallel with
the macro-processing since it does not partake in this activity. The integration
function describes how to use various macros to achieve the goal.

The APT represents the syntactic structure of the input, while each macro
creates a graph representation of the computation whose nodes are attached to
the APT and whose edges are semantic relationships between the nodes as con-
structed according to the goal of the macro. For example, the semantic analysis
macros generate a structure which hangs on the APT and represents the seman-
tics of the construct recognized by the node. The interpretation of this structure
is the transition system embodying the computation of the construct. The opti-
mization macros generate another data structure superposed on the APT which
represents a model of the computation encapsulated in the construct recognized
by the APT node; the nodes of this structure are processes and the edges are
dependences among these processes. The code generation macros superpose over
the APT yet another structure whose nodes are the target code representing the
computations at that node. In this way, all of the macros operate in a common
environment, yet no restrictions are placed on what they do.



5 Demonstration

Our vision of a language processing environment becomes a unifying framework
for dealing with languages. The TICS system provides tools and methodologies to
simplify the task of developing a language and implementing language processing
tools. A system demonstration, to be sketched below, will provide an insightful
look at the advantages inherent in the use of our approach.

First the syntax of a simple block structure language will be developed. From
this, we can construct a recognizer which decides the validity of a language
phrase. Further, we associate a semantic macro with each rule developed so far
to demonstrate the semantic analysis by mapping each construct into a repre-
sentative transition system. This specification is used to generate a tool which
performs the semantic analysis task. The two tools are then integrated and the
result of this integrated tool will be a transition system superposed on the APT.
Next, we associate another macro with each rule to describe a graph representa-
tion of the programs written in this language. We may now integrate the resulting
tool with the recognizer and semantic analyzer obtaining a tool which creates
the model of the program over which we may apply a model checking algorithm
to discover program properties[5, 6]. Finally, yet another semantic macro may
be attached to each rule to describe how to construct a target language image of
the construct defined by the rule in terms of the target images of the construct’s
components. Automatically, we could create a tool to demonstrate all of the
major language processing tasks: validation, understanding, and mapping.

The value of this experiment resides in the fact that the results can be reused
in real-life language processing. We will show how is this carried out on subsets
of such languages as C, Java, and Fortran.

References

1. T. Rus and T. Halverson. Algebraic tools for language processing. Computer Lan-
guages, 20(4):213-238, 1994.

2. T. Rus. Algebraic processing of programming languages. In A. Nijholt, G. Scollo,
and R. Steetskamp, editors, Twente Workshop on Language Technology, pages 1-42,
University of Twente, Enschede, The Netherlands, 1995.

3. T. Rus. Algebraic construction of compilers. Theoretical Computer Science, 90:271—
308, 1991.

4. J.L. Knaack. An Algebraic Approach to Language Translation. PhD thesis, The
University of Iowa, Department of Computer Science, lowa City, A 52242, Decem-
ber 1994.

5. T. Rus and E. Van Wyk. Integrating temporal logics and model checking algo-
rithms. In Fourth AMAST Workshop on Real-Time Systems, Proceedings, Lecture
Notes in Computer Science, 1231. Springer-Verlag, May 21 1997.

6. T. Rus and E. Van Wyk. A formal approach to parallelizing compilers. In STAM
Conference on Parallel Processing for Scientific Computation, Proceedings, March
14 1997.

7. D. Weise and R. Crew. Programable syntax macros. ACM SIGPLAN Notices,
28(6), 1993.



This article was processed using the IXTEX macro package with LLNCS style



