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A b s t r a c t  

EPOS 1 is an instrumentable, kernel Software Engineering Environment 
(SEE). It consists of facilities for management of versioned p r o d u c t s  (config- 
urations) through file-based workspaces attached to a versioned DBMS. EPOS 
will also manage the associated software development processes  (tasks), be- 
ing the subject of this paper. 

The E P O S - O O E l l  semantic data model can describe deriver tools, hu- 
man actors, tasks and subtasks, projects, and triggers/notifiers; as well as 
normal software products. EPOS-OOER incorporates object-oriented ERA 
modelling, extended with tasking (PRE, POST, CODE) and simple type con- 
structors (FORMALS, DECOMPOSITION). Customization is done through 
versioning of task types in project-specific workspaces. 

Static task knowledge is expressed by types and subtyping, and is used 
for reasoning, planning, scheduling and execution of activities. Dynamic task 
knowledge is expressed by a versloned task network with a horizontal (tempo- 
ral) and a vertical (decomposed) dimension. Tasks are connected to products 
by normal relationships. 

Keywords: Object-Oriented ERA Model, Planning, Software Configura- 
tion Management, Software Process Management. 

*Address: Division of Computer Systems and Telematics (DCST), Norwegian Institute of Tech- 
nology (NTH), N-7034 Trondheim, Norway. Phone: +47 7 593444, Fax: +47 7 594466, Email: 
conradi@idt.unit.no. 

1EPOS, Expert System for Program and (~Og ~) System Development, is supported by the Royal 
Norwegian Council for Scientific and Industrial Research (NTNF) through grant ED0224.18457. 
Do aot confuse with the German real-time environment of the same name [Lem86]! 
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1 I n t r o d u c t i o n  

Experience with SEEs indicates that  an open architecture is crucial to avoid strait- 
jacketing effects. Both new and old tools must be accommodated, and relevant 
company or project policies should be explicitly stated, enforced, reasoned about 
- and changed. This puts high demands on the expressivity and flexibility of the 
underlying formalism. 

A software product is described by many interrelated and evolving software com- 
ponents. A software configuration management (CM) tool is therefore needed to 
control the evolution of such systems. Most CM tools are marginally aware of the 
underlying software processes and their management (PM). Such a development 
process is often described in terms of the product (what), while the process (man- 
ual or automatic) can specify how and why a version of a product is constructed. 
In other words: the CM and PM areas should be integrated. Much work has re- 
cently been spent on PM in order to understand, model, execute ("enact") and 
record the operations performed on a product. Such operations or processes range 
from simple tool invocations to high-level design and project-related activities per- 
formed by human actors. A perpetual argument in the PM area has been human 
creativity vs. automation [Leh87]. 

SeVeral generic or meta-models for PM have been introduced. These can be in- 
stantiated or customized into a more specific process model, e.g. a waterfall, spiral 
or project-specific model. This puts high demands on the dynamics and generality 
of the underlying type system. 

The EPOS PM approach is to integrate: 

• Static process programming as in ARCADIA [TBC*88] and IPSE 2.5 [OR86]. 

• Dynamic (sub)contracts as in ISTAR [Dow87]. 

• Rule-based reasoning as in MARVEL [KF87] and ALF [B'89], 

• Networked tasks with dynamic triggering ~ l~ OSMOSE (Petri net model) 
[DGS89], and to some extent PCMS [HM88] and NOMADE [BE87]. 

• Subtype refinement as in Process-Oriented CM [BL89]. 

Some more high-level structuring is needed, but we are only describing the kernel 
facilities and basic type system. 

The ensuing sections of this paper are as follows. First the EPOS architecture and 
basic CM model of EPOS are summarized. Then the overall PM model and the 
associated Activity Manager are presented. Then follows a more formal t reatment 
of our object-oriented ER model, EPOS-OOER, with emphasis on PM-relevant 
type properties, type constructors and project-specific versioning. Lastly, some 
present problems and ideas on future work are given. 
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2 EPOS Background 

2.1 E P O S  A r c h i t e c t u r e  

The main  E P O S  components  are: 

* A semant ic  d a t a  model ,  EPOS-OOER.  

• An advanced CM system, p.t .  on top of the  INGRES relat ional  DBMS 
[SWKH761. 

• An Activity Manager and Planner for P M  suppor t .  The Act iv i ty  Manager  
includes a Builder. 

• A set of EPOS suppor t  tools, such as a Product Editor and a Maintainer's 
Assistant. 

• A User Interface, based on the X Window System. 

• Local, checked-out workspaees or configurations (files, da tabases  in special for- 
mats ) ,  accessed by  misc. programming tools. 

EPOS will run on Unix workstat ions,  using INGRES,  X Windows,  C + + ,  and 
Prolog.  See [CDrG*89] for more details.  

2.2 Change-Orlented Versioning and Related CM 

We have adop ted  the change-oriented model  (COM) to versioning [Ho188] 
[LDC*89] [LCD*89]. Here, a functional change involving several  (related) com- 
ponents  is descr ibed by  a single, global option. COM resembles and generalizes 
condi t ional  compila t ion,  and is fundamenta l ly  different from more conventional,  
version-oriented models  (VOM). Most  most  da tabase  (DB) i tems can be  u n i -  
f o r m l y  v e r s i o n e d  from a technical  poin t  of view. Some COM concepts are: 

• Option: Essentially a boolean variable to describe a functional change (external 
property), such as MachineSun or BugFixCommandA. It is not an object attribute 
as in VOM, rather a non-versioned(!) entity with its own attributes: DateTime, 
V a l i d i t y ,  Name, etc. 

• Validity: Boolean expression over options to describe valid combinations of options. 
It corresponds to attribute constraints in VOM. 

• Fragment: Basic information item, such as a relational tuple or a text line. 

• Visibility: Boolean expression attached to each fragment of Versioned0bj instances. 

• Version: It consists of all fragments where the visibility evaluates to True for the 
given version-choice. A version is not an instance itself, but the result of a functional 
evaluation! 

• Version-cholce: A set of (option,value) bindings to describe which version an appli- 
cation task wishes to see. A version-choice is complete if a unique version of the DB 
is produced. 

• Version-description: High-level DB query, that maps to a low-level version-choice, 
which defines a specific version-view or version of the DB. 

• Product-description: Tuple of (Root objects, ER types), that  maps to a product-view 
or product closure on the DB. The product is described by SysBody and similar entity 
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types. Note, that all DataEnt i ty  instances have a long Contents field, represented 
by an external file. 

• Con.fig-description: Generic (Product-description, Version-description), that maps to 
a config-vicw closure on the DB. 

• Specific, primary configuration: a config-view to be used as a workspace by developers 
or tools. 

• Specific, derived configuration: can be produced by the Builder as Deriv.Config := 
Build( Product-view( Version-view( DB ) ) ). 

• Change job: An edit-update task that controls a long transaction associated with a 
workspace, thus linking CM to PM. 

• Ambition: A non-complete version-choice associated with a change job. It identifies 
the set of version-choices where new changes are going to be visible. 

To interface old tools, the only viable solution is to cheek-in and cheek-out local 
workspa~:es of files and related DB information. This corresponds to the copy- 
modify-merge paradigm in NSE and PACT [Sun88] [Bu187]. An example of two 
coordinated workspaces is shown in figure 1. Here, workspace WSt belongs to 
Project Pc .  This is a subproject of project PA that  controls workspace WS2. Each 

Figure 1: Central DB with checked-out workspaces, WS~ 

workspace or configuration is controlled by a change job and its configuration 
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description. A workspace is divided in three: product DB, task network, and 
project knowledge base (KB, with types and various other descriptions). 

3 P M  in E P O S  

3.1 General Demands for Generic PM Support 

Our goal is a common, system-interpretable formalism to describe software devel- 
opment processes. The model must cover: 

* Deriver tools: their description (pre/post-conditions, inputs/outputs,  tool 
switches) and aggregation. 

• Human actors in an open-ended way. 

• "Active" relationships to express change propagation by triggers. 

• Chained tasks for horizontal life-cycle phases, revision lines, or derivation 
graphs. 

• Subtask hierarchies to describe vertical work decomposition. 

• Complex interactions between tasks and tools/users. 

• Special project tasks to control workspaces with project-specific information 
(e.g. types). 

3.2 A S u r v e y  of  t h e  P M  M o d e l  

Our activation mechanism is coarse-level and mainly descriptive, based on PRE- 
and POST-conditions in types. Such conditions seem to flexibly express the ac- 

tivity rules for PM. They are also well-suited for static, forward and backward 
reasoning without executing the CODE. 

The CODE associated to a task instance is responsible for causing its POST- 

condition to become True, and thus cause ("fire") other PRE-conditions to become 

True etc. The POST/PRE coupling therefore serves as a dynamic synchronization 
mechanism. The CODE of a task may re-execute, repeating the PRE/POST 
pattern above. 

The experience with unrestricted "firing" of unbound rules and triggers 2 in 
databases, AI applications, and syntax editors [HN86] made us sceptic to such so- 
lutions. In our case, direct task communication is limited to relationship-connected 
neighbor tasks (4.5.1), and can thus describe traditional message passing and no- 
tification. Note the analogy with Petri nets [Rei85]. Note also that  task execution 
can occur at any network node, not only at the leaves - cf. ISTAR. This distin- 
guishes the network from a finite state machine, where only one node at a time is 
active. 

2We may, of course, consider a task with a PRE-condition and an imperative CODE as a 
%rigger ~, with syntax IF -- THEN -- . Note also, that the EPOS task type corresponds to a 
conventional AI rule. 
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Dynamic subtask creation allow for considerable freedom in organizing the software 
work, and alleviates the limitations of static CODE in instantiated tasks. There 
are FORMALS and DECOMPOSITION properties (constraints) to regulate the 
structure of the task network. 

3.3 The Activity  Manager and Planner 

Management of task types and instances is done by the EPOS Activity Manager 
(AM). and its associated Planner [Mu189] [LC89]. High-level or more complicated 
tasks must be delegated to human actors. Generally, we will have a high-level goal 
to achieve, and a product DB and a project KB as the starting point. 

The relations between the Activity Manager and types, tasks and products are 
shown in figure 2: 
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The Activity Manager consists of: 

• A Type Manager (TM) to construct and modify specific TaskEnt i ty  subtypes. 

The TM cooperates with a project manager or another meta-user. 

• An Instance Manager (IM) to dynamically create, edit, and delete task in- 
stances; and to manage horizontal and vertical composites of such. The FOR- 
MALS and DECOMPOSITION information from task types will be used to 
automatically construct new and type-validated task structures. 

The IM cooperates with the Planner or a user to handle simple tasks (tool 
activations), and with a meta-user for more complex tasks (e.g. projects). 

• An Execution Manager (EM) to interpret, execute, control and record task 
instances - while obeying the static task knowledge. E.g., tools must be called 
correctly, with dynamic checking of parameters if necessary. 

The EM cooperates with tools, users, the Builder (an EM component), and the 
Planner. Possible error situations must be monitored for alternative actions, 
and may include replanning and re-execution. 

The Planner will: 

• Offer product-level assistance such as construction of the empty derivation 
graph - a plan - for the Builder, cf. [HC88]. The plan may be incomplete, and 
a TaskSta te  attribute of the planned tasks may reflect this. 

• To some extent offer project-level assistance about task or work decomposition, 
work plans, etc. 

• Utilize static, method-specific type knowledge about legal task communication 
and combination patterns. This is expressed by PRE, POST, FORMALS 
and DECOMPOSITION properties. This knowledge will be combined with 
information from the product DB. Only the non-temporal aspects of PRE- 
and POST-conditions will be considered, excluding comparison of DateTime 
timestamps, or scheduling rules like <Compile between 24 : 00 and 06: 00>. 

• Replan upon execution failures. 

• Assess the impact of changes. 

• "Learn" by putting generalized PM types back into the KB. 

The Planner will borrow ideas from MARVEL, the AGORA PLANNER [BLA88], 
the domain-independent IPEM [AS88], and case-based planning. 

4 E P O S - O O E R ,  The Semant ic  D a t a  Mode l  

A common, semantic data model for CM and PM is sought, since there is much 
interaction between the two areas. E P O S - O O E R  represents a unification of 
ER [Che76] and object-oriented (OO) modelling, and allows general subtyping. 
The use of low-level pointers instead of general relationships in OO models has 
been remedied [Rum87]. From semantic network models we have been inspired by 
uniform handling of entities and relationships [TL82]. 
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4.1 Available Type Properties 

Multiple subtyping is specified through SIMULA-style prefixing. We will not define 
the schema notation formally, as the examples should be self-explanatory. The 
repertoire of type properties is explained in the following sections. 

4.1.1 D O M A I N S  and  A T T R I B U T E S  

Attributes belong to given domains, and represent passive variables or active PRO- 
Cedures (methods). Domains are declarable, and include scalars, text strings, 
pointers (REFs, see below), PROCs, and pre-defined ones like Bool. A REF-value 
is the value of the 0bj Id attribute of the referred object (see RootER type below). 
REFs are restricted to non-Pers i s ten t0bjs ,  temporary PROC parameters, and 
access functions for CONNECTION data (4.1.2). In task types externally callable 
PROCs are constrained to functions without side-effects, i.e. functional attributes. 
Initialization is provided by = < in i t -va lue> .  CONST means read-only or system- 
maintained variables. 

Inheritance means that the supertypes' global attributes and domains are inherited 
into the subtypes. Multiple names in the supertypes are resolved by bottom-up, 
left-right search. A local name will always hide or overload the global one. 

An example of a type definition with domains and attributes is: 

TYPE RootER ffi ~ No prefixing supertypes. 

DOMAINS 

DT ffi String; ~ A domain definition. 

ATTRIBUTES 

Four system-maintained attributes: 

ObjId : CONST <64-bits> = ...; ~ Unique and immutable. 

TypeId : CDNST 'REF TYPE' = ...; ~ 'Is-a' relationship. 

DateTime: CONST DT = ...; ~ Create time. 

Primary : CONST Bool = . . . ;  ~ Prim/Deriv? 
New : PROC (--)=--; % In meta-type? 
Delete : PROC () =--; ~ Similarly. 

Read : PROC (--) ..... ; ~ On attrs also 

Write : PROC (--)=--; ~ Make version? 

Select : PROC (--)ffi--; ~ Very general. 

END-TYPE RootER; 

4.1.2 C O N N E C T I O N  

Types with no CONNECTION property are implicitly called en t i ty  types. In- 
versely, a CONNECTION implicitly identifies a binary re la t ionsh ip  type, that 
connects two entity types 3. Only single type inheritance is allowed at the user 

Sin ER terminology, roles should have been used here. - And the debate whether relationships 
should have identity and TypeId or not, is still going on! 
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level, starting from the Relationship type below. Inheritance may constrain car- 

dinalities and related entity subtypes, and may rename the access functions. 

An example of a basic relationship type is: 

Versioned0b~, PersistentOb~. GenRelationship TYPE Relationship ffi ~ NB! 
CONNECTION 

Accl : Entity1(ll..ul) <-> Acc2 : Entity2(12..u2); 
Defines a binary relationship between Entity1 and Entity2 
with access functions Accl and Acc2, and 
with cardinalities ll..ul:12..u2 - or ul:u2 in short. 
ui ffi * means unbound cardinality, and SE~ after ui means ordering. 
NB: The suffixes in Entity1 and Entity2 only serve to distinguish 

these from one another! 
Also. li ffi 0 and ui = * at this general type level! 

ATTRIBUTES 
Closure: PROC ( - - )=- - ;  ~ Special DB op. 

END-TYPE Relationship; 

Named access functions (Accl and Acc2 above) are implicitly available to the "re- 

lated" entities, but formally defined in the connecting relationship type. Assuming 

a cardinality of *:i, Accl could be defined in Entity2 with domain 'SET(REF 

Entityl) '. With a cardinality I:*, the domain of Accl could be 'REF Entityl'. 

"CONNECTION data" may be stored inside the related DB entities as pointers 

or sequences of such for reasons of efficiency. 

A short-hand notation for simple relationship types, implicitly prefixed by 
Relationship is offered: 

RELATIONSHIP-TYPE 
RelType = Ace1 : Entityl(ll..ul) <-> Acc2 : Entity2(12..u2); 

4.1.3 C O D E  

This is a piece of program code expressed in an imperative programming language, 
executed by the Activity Manager. CODE is primarily used in TaskEnt i ty  types, 
but may be used for initialization of non-tasks. However, such instances axe not 
"active" tasks in the O0  sense. 

The CODE language is no t  concurren t ,  as all triggering is implicitly expressed 
by PRE- and POST-conditions. The CODE language is a restricted Unix shell 
language. STOP means task termination. Shell variables such as $<name> can 
be accessed. In to  (AccFunc ,X) means insertion of X into a relationship. INNER 
means execution of the subtype's CODE. It will be appended in the CODE part, if 
missing. Type inheritance implies concatenation, using SIMULA's INNER mech- 
anism. 
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4.1.4 PRF_~ a n d  P O S T - c o n d i t i o n s  

As mentioned, a task waits for its PRE-condition to become True before (re- 
)activation of its CODE part. After each activation, the POST-condition must 
be fullfilled. PRE and POST are intended for task types, but can be envisaged 
as initialization and termination constraints elsewhere. Type inheritance is by 
conjunction (A), starting from True in the TaskEntity type. 

PRE- and POST-conditions are formulas in first-order predicate logic, with the 
following predicates and functions: 

ALL(x:accftmc!cond) 
SET(x:accfnnc!expr) 
CL0SURE(accf~.uc) 
CL0b-RIRE(x.accfunc) 
NOTIFY(set) 
tl SUBTYPE_OF t2 
setl IN set2 
x WITHIN (.values.) 
MIN(values),MAX(--) 
ANDIF, ORELSE 

True, i f  valid for  a l l  x 
s e t  of  a l l  e x p r ' s  
closure from curr.obj (def. in Relationship) 
closure from x obj 
DB change-message  
subtype t e s t  
s u b s e t  member t e s t  
s c a l a r  range t e s t  
minimum, maximum 
McCarthy and/or 

For technical reasons, the PRE-condition is split into two parts: PRE_STATIC 
used by the Planner and PRE_DYNAMIC used by the Execution Manager. We 
have not yet found it necessary to split up the POST-condition similarly. 

The PM types (4.5) contain examples of PRE- and POST-conditions. 

4.1.5 F O R M A L S  and  D E C O M P O S I T I O N  cons t ruc to r s  

Both specify simple type templates, and are restricted to TaskEnt i ty  type and 
subtypes. Type inheritance rules are as for attributes, although we have considered 
various schemes of subtype-constraining semantics [CW85]. 

F O R M A L S  constrains the indirect, horizontal chaining of tasks, i.e. the legal 
types of actual task parameters. These parameters are expressed by the GenInpute 
and Gen0utputs relationships between TaskEnt i ty  instances and their inputs and 
outputs (4.5.1). 

An example of a FORMALS specification is: 

TaskEntity TYPE TaskX = 
FORMALS 

a:C_Source * Sb:C_Include -> c:DerivEntity 

This means that TaskX instances take one input of type C_Source and a variable 
number of inputs of type C_Include (because of the starting S-sign in the parameter 
name), and produce one output of type Der ivEnt i ty  - or subtypes thereof for all 
these types. All parameter types must be subtypes of Ent i ty ,  i.e. no relationships 
can be processed by tasks. The default FORMALS specification is: 
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Sin : E n t i t y  -> Sour : E n t i t y  

i.e. no constraints at all. CHECK_IN_FORMALS and CHECK_OUT_FORMALS 
predicates are available for use in PRE/POST-conditions, see Sec. 4.5.1. 

D E C O M P O S I T I O N  constrains vertical task breakdown, i.e. the SubTasks rela- 
tionship between parent and children tasks (4.5.1). 

An example of a DECOMPOSITION specification is: 

TaskEntity TYPE TaskY = 
DECOMPOSITION 

CHOICE(SEQ(ta:TI,tb:T2), PAE(tc:T3,td:T4), tseq:REPERTOIEE(TS,T6,T7)); 

This means that possible children of TaskY instances may be either instances of 
T1 and T2 executing in sequence, instances of T3 and T4 executing in parallel, or 
any number of instances of TS/T6/T7 executing in parallel (PAR is implicit). The 
default is REPERTOIRE (TaskEnti ty) ,  i.e. no constraints. 

The Activity Manager and Planner uses DECOMPOSITION for automatic gener- 
ation of children tasks after creating a parent task, and so on. To avoid redundancy 
with In to  (Children,  NEW T a s k E n t i t y ( . . . ) )  in the CODE part, the DECOM- 
POSITION should be empty, if the parent task explicitly generates or kills its 
children tasks. In case of a SEQ specification, synchronization of children tasks 
will be checked and possibly enforced by the Planner. 

4.1.6 E X E C U T A B L E  

This identifies the logical name of the associated OS-tool of a deriver task. Such a 
tool can be considered an "external" PROC, possibly shared by many similar task 
types. Upon workspace initialization, a "soft link" between the type object(s) and 
the selected Executable instance will be established. 

4.1.7 I N V A R I A N T  

This is a formula in first-order predicate logic, specifying an assertion over certain 
DB instances. It should always be True. Type inheritance is by conjunction (A). 
Sec. 4.5.5 contains an example of an INVARIANT. 

4 . 2  P r e - d e f i n e d  T y p e s  

A type semi-lattice of some of the pre-defined types is shown in figure 3, with the 
system-defined ones above the dotted line: 

For a real project, all the main types have much more subtypes than indicated. 
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Figure 3: EPOS type semi-lattice 

4.3 G e n e r a l  C o m m e n t s  on E P O S - O O E R  

DB instances of any type can be created, by NEW Type(List  of <AttrName = 
Value>). Entity instances are often called "objects". 

The types are represented as normal DB objects or TypeDescrs (4.4), available for 
dynamic interpretation. There are no meta-types. 

The non-PROC ATTRIBUTES and CONNECTION part of EPOS-OOER is called 
the CM-part. The rest is called the PM-part, since such properties are stored at 
the type level and are implemented by the Activity Manager. This PM-part can 
be versioned (4.6). 

Note, that EPOS-OOER is not quite "unified": There are limitations on the use 
of pre-defined types as supertypes. E.g. P e r s i s t e n t 0 b j  and Versioned0bj (2.2) 
mostly serve as keywords, GenRelationship subtypes are restricted to simple in- 
heritance, and Option cannot be used as a supertype at all. Type properties 
beyond domains and attributes are only relevant for TaskEnt i ty  subtypes. 

An alternative conceptual base would have been more specialized type categories 
- DATAENTITY, RELATIONSHIP and TASKENTITY - and a more closed data 
model. 
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4.4 On Task / Tool modell ing 

The OO ERA modelling in EPOS-OOER follows conventional patterns. The prob- 
lem has been the modelling of tasks and tools, where the solutions have changed 
fundamentally over the last year. We will repeat the relevant arguments and ra- 
tionale for the uninitiated reader. 

The main PM type is now TaskEnt i ty  (4.5.1). A TaskEnt i ty  instance describes 
a potentially active process or task. Its CODE part may execute its own program, 
and indirectly that  of its children. The low-level, more specialized Der ive r  tasks 
may directly call passive OS-tools, so-called Executables ,  through a procedural 
envelope with given file parameters. Static tool aggregation is done by DECOM- 
POSITION of associated task types. Versioning of OS-tools is done by the normal 
CM mechanisms, and versioning of task types is explained in Sec. 4.6. 

We have also had problems in modelling formal parameters and task/tool tem- 
plates. Both these imply type-level "relationships" or constructors to express con- 
straints, which are not easily expressible in an ER framework: 

• Formal parameters were initially expressed by ad-hoc P roc Inpu t s  and 
P roc0u tpu t s  ~meta-relationships" to connect a TaskEnt i ty  type with its le- 
gal input and output types. The type information of such formal parameters 
could then be matched against the types of the actual parameters. 

It  remains a problem to compactly express shared formal parameters between 
similar deriver tasks. We may need a separate signature type ("arrow" type) 
for this. 

• High-level templates for task/tool aggregates and task networks may assume 
type composites at the meta-level. 

Instead of having a more sophisticated type apparatus on the meta-lcvel, we have 
introduced the FORMALS and DECOMPOSITION properties. However, we have 
no separate Template type to describe more generalized type composites. 

FORMALS and DECOMPOSITION are internally implemented by system- 
maintained "shadow types", TypeDescrs, at the instance level. Such TypeDescrs 
facilitate, in principle, any kind of high-level typing through arbitrary type rela- 
tionships or constructors 4. 

Some more technical arguments have been: 

* An EPOS Der ive r  task is an abstraction of an activation of a real OS-tooL 
Such an OS-tool is called by issuing a command line (a script) to the OS, with 
proper tool name, tool switches and file parameters. 

• Tool envelopes are needed to hide OS details and to provide project instru- 
mentation and error treatment.  

* Tools cannot be expressed as traditional OO "methods" (PROCs) in such 
types. This is because the tools may be shared by several task types and 

4EPOS-OOER only supports "Subtype_0f' ', FORMALS and DECOMPOSITION type 
constructors. 
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possibly independently produced and versioned by the surrounding OS - cf. 
EXECUTABLE property and next item. 

• Tool  s w i t c h e s  cannot easily be modelled by traditional parameters, due to 
varying number and special semantics. E.g., some switches cause extra output 
to be produced, so that different '~deriver variants" must be defined with 
appropriate FORMALS 5. Centralized control over default tool switches is also 
desirable. 

• Tool a g g r e g a t e s  a r e  needed to hide details, using DECOMPOSITION to ex- 
press super-tools. 

• Lastly a reminder: We do n o t  want to model all  the "hairy" semantics (to put 
it mildly!) of the OS-tools. Only the essential parts for basic tool management 
need be covered. 

There are three different task/tool breakdowns, all N:M: 

• The static type semi-lattice. 

• Static task/tool type aggregates through the DECOMPOSITION constructor. 

• Dynamic decompositions of task instances through a SubTasks relationship, 
obeying the DECOMPOSITION constraints. 

4.5 T h e  m a i n  P M  T y p e s  

4.5.1 The  T a s k E n t i t y  T y p e  

TaskEnt i ty  has an Actor subtype (4.5.2) to execute an interactive or automatic 
tool, a Proj ec t  subtype (4.5.5), and more specialized subtypes. 

As mentioned, the CODE in a task instance is executed when the PRE-condition 
evaluates to True. A task serves as a e o r o u t i n ¢  - with an implicit, embedding loop 
around the outermost CODE part. The task execution environment is assumed to 
be cheap - probably co-routines in the Activity Manager, plus forking of real OS 
processes to execute OS-tools. 

The TaskEnt i ty  definition is: 

Entity TYPE TasEEntity = 

DOMAINS 

TaskStates = ENUM(Created, Initialized, Waitin E, Ready, 

Active, Terminated, Deletable); 

Eagerness = ENUM(Busy, Periodic, Opportunistic, ...0 Seldom, Lazy); 

ATTRIBUTES 

TaskState : TaskStates = Created; 

BatchTool :CONST Bool = . . . ;  ~ Deriver? 
Parallel :CONST Bool = True; ~ PARallel? 

PRE 
CHECK_IN_FORMALS(Inputs) ~ Type-check inputs. 

SIndeed, the Unk CO-compeer maybe used both ~ a pre-processor, comp~er, link~ ~sembler, 
. . . -  and with different FORMALS withm these categor~s! 
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CODE ~ Coroutine: 
DO % Implicit DO. 

<Initial CODE part>; 
INNER; 
<Final CODE part>; 

0D; ~ Implicit 0D. 

POST 
CHECK_OUT_FORMALS(Outputs) ~ Type-check outputs. 
AND ALL(o:Outputs ! o.Primary = NOT BatchTool) ~ Deriver condition. 
AND ('Success' OR 'Failure') ~ Outcome predicate. 

END-TYPE TaskEntity; 

RELATIONSHIP-TYPE 
SubTasks =Parent :TaskFmtity(O..*) <-> Children:TaskFmtity(O..*SEq); 
GenInputs =GInNode :TaskEntity(O..*) <-> Inputs :Entity(O..*SEQ); 
GenOutputs=GOutNode:TaskEntity(O..*) <-> Outputs :Entity(O..*SEq); 

Name attributes of GenInputs  and Gen0utputs actual parameters are omitted for 
sake of clarity. 

4.5.2 T h e  A c t o r  T y p e  

Actor  is a trivial TaskEnt i ty  subtype; not shown. It  has two subtypes, an De r ive r  
(4.5.3) and I n t e r a c t o r  (4.5.4). 

4.5.3 T h e  D e r i v e r  T y p e  

As mentioned, the Deriver type represents a deriver tool. Its CODE part is a shell 

script to prepare, activate, control, and record an OS-tool activation. This is done 

through "INNER'-subtyped envelopes of Pre/Post-Actions. Such actions may 

include "invisible" control and accounting functions, as in GENOS [GEC87]. The 

logical name of the OS-tool is given by the EXECUTABLE property. Default tool 
switches will be provided from the global CurrProject. "CruciaF tool switches, 
affecting the FORMALS, are contained in a local DeriverSwitches attribute. 

This attribute and the marcher PROC attribute (see 5.1.1) will be redefined by 

subtypes. 

A Deriver definition with a busy rebuild rule is: 

Actor TYPE Deriver = 
ATTRIBUTES 

Analyzed : DateTime; 
DeriverSwitches: String = 'xx'; 
Matcher: PROC () ..... 
Too01d : FROC () Bool = 
BEGIN 

MAX(SET(i:Inputs ! i.DateTime)) > 
MIN(SET(o:Outputs ! o.DateTime)) 

END TooOld; 

Last derivation. 
Redefined in subtypes. 
Make derivation graph. 

Checking timestamps within 
a configuration. 
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PRE ~ Busy build in local config: 
TooOldO AND CurrProject.Rederiv_Policy() ffi Busy 

EXECUTABLE 'xx' ~ Redefined in subtypes. 
FORMALS - - -  ~ The same. 
CODE 

<Check derivation cache>; 
<PreAction>; ~ Shell script. 
CalI-DS-TooI(<EXEC~'rABLE-name>, 

DeriverSwitches, CurrProject.DefaultSwitches, 
<file parameters>); 

INNER; ~ Extra subtype actions. 
<PostAction>; ~ Shell script. 
<Update derivation cache>; 
<Assemble product statistics>; 
<Report to PM recording tool>; 

POST 
<Extra assumptions on output parms> AND <Success and failure modes> 

END-TYPE Deriver; 

A coarse description of success and failure modes must be supplied. Note, that 

each project may define its own rederivation policies (PRE-conditions) or CODE 

parts. 

A deriver is typically a compiler, link editor, text formatter etc. We can envisage 

a Compiler subtype, with a CC=Compiler subtype of this etc. 

4 .5 .4  I n t e r a c t o r  T y p e  

Interactor is an Actor subtype representing an interactive tool activation, cou- 
pled to a Role instance. The Interactor definition may look like: 

Actor TYPE Interactor ffi 
PRE 

<Input changed> 
CODE 

<Call some role/tool pair, e.g. a Maintainer + Assistant>; 
END-TYPE Interactor; 

A Role represents a "canonical" person, emphasizing authorization, job position, 

and general project attachment. The Role will again be connected to specific 

Person(s), having responsibility of certain software components. 

4.5 .5  P r o j e c t  T y p e  

Project is a TaskEntity subtype to emphasize the productive aspect. A project 

specifies a project KB connected to a workspace. A new project instance, e.g. 

CurrProject, may be created in the workspace of its parent project. The 

new project will inherit the parent's workspace, and in addition create a nested 
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workspace of its own. In principle, the project KB can be changed on-the-fly! See 
Sec. 4.6 for binding mechanisms to achieve flexible project tailoring. 

The project KB should contain the following information: 

• A con f i g -de s e r i p t i on  (2.2) for the current DB transaction in the local 
workspace. This may include a traditional DB view, with rights and ca- 
pabilities. 

• A coarse O S  description~ specific or low level OS-tool information, such as file 
bindings, environment flags, default OS-tool set including tool switches (e.g. 
-I <directory_name> to compilers) . . . .  

• Subpro jec t s ,  and allocation of per s ons  and  resources  - as in ISTAR. 

• Pro jec t - spec i f i c  rules and  policies,  through various PM types, task/tool tem- 
plates, invariants, project-pervasive attributes, °.. 

Ex. Project policies for C u r r P r o j e c t  = Proj ectX. 

Project  TYPE ProjectX ffi 
ATTRIBUTES 

DefaultSwitches : String; ~ Used above. 
Rederiv_Policy : PROC () Eagerness = BEGIN Busy END Rederiv_Policy; 

PRE 
ProjectAccount <> NIL AND ProjectLeader <> NIL ~ Def. elsewhere. 

CODE 
<Create subtasks>; 

POST 

DECOMPOSITION 

REPERTOIRE('Approved-task-types') % Special INVARIANT. 
INVARIANT 

Expresses policies: All documents created shall bef of (sub)types 
approved by the project. 

ALL(x:CLOSURE(Children).Outputs 
! x. TypeId SUBTYPE_OF 'Approved-document-types') 

END-TYPE ProjectX; 

4 . 5 . 6  E x e c u t a b l e  T y p e  

This is a Da t aEn t i t y  subtype, and specifies BinaryProgs, S h e l l S c r i p t s ,  or other 
OS-tools. 

4.6 Projec t  Customizat ion of Typing 

Some possible binding mechanisms are: 

• S t a t i c  i nher i t ance  in the task type hierarchy, i.e. project-specific subtyping .  

This may lead to a proliferation of subtypes and mutual constraints on correct 
subtype selection, cf. option validities and figure 4. 
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• Type parameterization and instantiation of generic project types, as an alter- 
native to subtyping. 

• Project versionin~, a generalization of subtyping, which is easy to achieve 
in our COM model from a technical point of view. However, we want es- 
sentially non-versioned types/DB-schemas to prevent a semantic explosion of 
sub-universes in the DB [SZ86]. 

• Dynamic inheritance in the task instance hierarchy, or along any given rela- 
tionship. 

• Dynamic instrumentation of the Activity Manager through special couplings 
to CurrProject, cf. CurrProject. Rederiv_Policy used by the Builder. 

s 

INSTANC~S~ ,'" 

PA selects TA and TTA, and PB selects 33t and TI'B. 
That is, a coupling from the instance world to the type world, 

Figure 4: Consistent choice/version of subtypes 

The EPOS solution is to use the system-maintained TypeDescr instances (4.4) 
to express limited type versioning within the workspace of a project, i.e. of the 
P M - p a r t  only. This guarantees some minimum DB stability. 

A comment on the EPOS model of type versioning: It may seem primitive to let a 
set of boolean or scalar options "parameterize" our type system. However, we want 
to version an entire collection of types and other control information at the same 
time. Alternative approaches with sophisticated type parameters in addition to 
subtyping (cf. Eiffel [Mey88]) are more complex but still insufficient. In contrast, 
our scheme uses the existing versioning and workspace mechanisms in EPOS, i.e. 
it has a low human and computer cost. 
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5 Appl icat ions  of the  P M  Mode l  

5.1 Act ive  Relat ionships,  Derived Objects and the Builder 

5.1.1 Ac t i ve  R e l a t i o n s h i p s  a n d  the  D e r i v a t i o n  G r a p h  

An intuitive modelling of "active" relationships is to associate triggers (rule- 
coupled tools) with relationship types. Since we do not allow n-ary relationships 
with possible task decomposition, we must insert extra task entities between the 
"N:M'-related objects, see next paragraph. 

The conversion from a dependency graph with ~pure" relationships to a derivation 
graph with inserted task nodes is language-specific. It is taken care of by the 
marcher PROC in the Der ive r  subtypes. For instance, GenInputs in a derivation 
graph must represent the transitive closure of the relevant inputs for programming 
languages like C, Pascal and Fortran (large, but shallow graph). That  is, the 
Der ive r  step to compile a C-program X.c will require the "body" file X.c, the 
"interface" file X.h, and all .h files that these two files transitively include. This 
closure is not necessary for languages like Ada and Modula, having separately 
compiled interfaces (smaller, but deeper graph). 

5.1.2 D e r i v e d  Ob j ec t s  

Derived objects are different from primary objects. A derived object of type E n t i t y  
is stored as a versioned, functional Der ivResu l t  "attribute" in an instance of 
D e r i v E n t i t y  type (not defined here). This instance represents a possibly empty 
version group of derived objects. Different tools operating on the same input 
objects must be described by different derived objects and derivation graphs. 

When requested by an application, the versioned Der ivResu l t  attribute may be 
regenerated, using the available derivation graph. This corresponds to lazy build. 
The Der ivResu l t  attribute identifies the derived output, its inputs, and tool ver- 
sion and tool switches used. There is an accompanying, versioned DateTime at- 
tribute. 

The set of non-empty versions of the Der ivResu l t  attribute can be treated as 
a global cache of derived objects, and is subject to user policies for deletion; see 
ODIN [Cle88]. It  is important to share attribute versions between configurations 

- i.e. smart  recompilation! - by "increasing" attribute visibilities [Lie89]. 

5.1.3 The Builder 

The Builder operates in the current or LOCAL workspace (2.2). It is really a part 
of the Activity Manager, which also has created or planned the derivation graph 
of task objects. An example of a derivation graph is: 

The Builder will generate a complete, derived configuration - upon explicit re- 
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t 

LEGEND: 

Oenlnputs and Ge~Outputs Reletionships 

. . . . . . .  T~kBody Rel~onshlps 

Figure 5: A derivation graph 

quest (lazy, backward chaining), or when triggered by project-specific rules (busy, 
forward chaining). Error handling is difficult, e.g. to interpret compilation errors 
sensibly. Suppose that we want to nightly rederive the outdated objects, caused 
by DB-changes in the LOCAL workspace: 

Deriver TYPE LocalDeriver = 
PRE Z Note PRE-concatenation by subtyping. 

NOTIFY(Inputs) AND (Inputs IN LOCAL) AND 
ClockTime() WITHIN (.24:00 .. 06:00.) 

END-TYPE LocalDeriver;  

Such a policy could also have been defined in CurrProject.Rederiv_Policy 
(4.5.5). 

5.2 Subtasking and Task Sequencing 

The task-subtask hierarchy, as illustrated in figure 6, covers many different pur- 
poses. 

Projects fit nicely into the task hierarchy due to the definition of P r o j e c t s  as a 
T a s k E n t i t y  subtype. This implies tha t  projects may  be decomposed into subpro- 
jects, and that  they have a limited lifespan. 

Task transition chains can be used to describe phases or revisions of software 
components  at a more detailed level: 

* Horizontal life-cycles, such as (Requirements. Specification, Design, Imple 
mentation, Testing, Release, Delivery). 
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• Revision lines, such as edit, review and test operations on individual objects 
within a lifecycle phase. S t a t u s  attributes with values such as ( I n i t i a l ,  
Experimental . . . . .  Finished,  In tegra ted ,  Approved) are suitable for com- 
posites like a configuration. 

Q 
i . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

0 
, UNSEQI/F.NCED, SI/STASKS I 

LFA3ENI~. 
I~ PROJECr 
O TASIC PERPORMED BY HUMAN 
[ ]  TASK PEIL-q)RMED BY DERIVER 

INPL~JOUTPUT OPJFJ~I" 

(~- -~- -(~ TASK DECOMPOSITION 

C ~ )  (SUB)TASK SEQUENCING 

Figure 6: General Subtasking 

Below is an example of task modelling of a development task, with 5 subtasks of 
the requirements specification phase: 

Pro~ect TYPE DevelopJob = 
PRE ~ Assumes exis tence 

Parent <> NIL ANDIF ~ of InformalReqSpec. 
Parent. InformalReqSpec.Status >= Experimental ~ Note '>='. 

CODE 

POST 

ALL( rt:Children ! rt.TypeId SUBTYPE_OF ReqTask 
ANDIF rt. Status >= Approved) 

AND 

ALL( tt:Children ! tt.TypeId SUBTYPE_OF TestTask 

ANDIF tt. TestLog.Status >=Approved) ~ TestLog=produced doc. 
AND 

ALL( dr:Children ! dt. TypeId SUBTYPE_0F DeliverTask 

ANDIF dt. Status= Finished) 

129 



DECOMPOSITION 
SEQ(ReqTask. ImplTask, TestTask, ReleaseTask, DeliverTask) 

END-TYPE DevelopJob; 

6 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The EPOS PM model provides both a dynamic and a static view of description, 
planning and execution of software processes. The model covers deriver tools, 
human actors, high-level projects and low-level tool activations, task transition 
networks, and project and task decomposition. Both type and instance hierarchies 
can be used to express task knowledge. 

The CM and PM areas are connected through a common data model, EPOS- 
OOER. CM is coupled to PM through change jobs associated with config- 
descriptions, and through more detailed revision tasks. Likewise, PM-relevant 
control information is contained in a project KB, which is versioned (i.e. controlled 
by CM) to allow easy project customization and evolution. 

All in all, we think that the proposed PM support is a fruitful basis for continued 
work in the area. Still, there are many issues to be pursued: 

• A more powerful, imperative CODE language. 

• The well-suitedness of PRE/POST-conditions for for general task synchroniza- 
tion. Consider a task that can be activated in three different ways, identified 
by PRE-conditions B1, B2, and B3. This has to be written as: 

PRE 

B1 OR B2 OR B3 OR - - -  
CODE 

IF B1 THEN Code1 

ELSEIF B2 THEN Code2 

ELSEIF B3 THEN Code3 

ELSE ---; 

• More high-level type templates for task/tool patterns. See e.g. [ENE87] on 
graph grammars. 

• A more generic and possibly dynamic data model, to avoid proliferation of 
trivial subtypes each time e.g. a new programming language is added. This 
resembles versioning of task types according to the current project. 

• Better formalization of projects, and their workspaces for long transactions. 

• Overall methodologies for project and process modelling. 

• Better modelling of CASE-like meta-tools with internal tool policies. 

• Planning: heuristics, intertwined planning and execution, knowledge repre- 
sentation, and KB support. 

• Industrial scenarios and trial use. 

Only a prototype EPOS implementation will be built in Trondheim, and only of 
the basic CM and PM system. On the other hand, CM has high priority within our 
industrial partners, Sysdeco and Veritas Research, so that future industrialization 
seems assured. 

130 



A c k n o w l e d g e m e n t s  

Thanks to P. Lavency et al. from Philips Research in Brussels on PM, and to J. 
Mfiller from the Techn. Univ. of Karlsruhe on the Planner design. 

R e f e r e n c e s  

lASS81 

[B'89] 

[BE87] 

[BL89] 

[BLA88] 

[Bu187] 

[c'89] 

[CDrG*89] 

[Che76] 

[Cle88] 

[cw8~] 

[DGS89] 

Jos~ A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and 
monitoring. In Proe. of AAAI'88, pages 83-88, 1988. 

K. Benali et al. Presentation of the ALF project. In Prelim. Proceedings from 
lnt'l Conf. on SDEF, Berlin, 9-11 May 1989, page 23 p., May 1989. 

Noureddine Belkhatir and Jacky Estublier. Software management constraints 
and action triggering in the ADELE program database. In [NS87], pages 44- 
54, 1987. 

Yves Bernard and Pierre Lavency. A Process-Oriented Approach to Configu- 
ration Management. In [IEE89], 1989. 14 p. 

Roberto Bisiani, F. Lecouat, and Vinzenco Ambriola. A Planner for the au- 
tomation of programming environment tasks. In Proc. of the 21st Annual 
Hawaii International Conference on System Sciences, pages 64-72, Hawaii, 
USA, January 1988. 

PACT: The initial PACT Environment. Bull, Louveciennes, France, Septem- 
ber 1987. 

Reidar Conradi et al. EPOS Day Compendium - 1 Nov. 1989. Technical 
Report, DCST, NTH, Trondheim, Norway, October 1989. NTtt, 23 Oct 1989, 
174 p. 

Reidar Conradi, Tor Martin Didriksen, Bjern Gulla, H£vard Eidnes, Even- 
Andr~ Karlsson, Anund Lie, Per HarMd Westby, Svein Olav Hallsteinsen, Per 
Holager, and Ole Solberg. Design of the kernel EPOS software engineering 
environment. In Proe. from Int'l Conf. on System Development Environments 

Factories, Berlin, May 1989. 16 p., Rev. Oct. 1989. Forthcoming as a 
Springer LNCS. 

P. P.-S. Chen. The entity-relationship model - -  towards a unified view of 
data. A CM Transactions on Database Systems, 1(1):9-36, March 1976. 

Geoffrey M. Clemm. The Odin specification language. In [Win88], pages 144- 
158, 1988. 

Luca CardelIi and Peter Wegner. On Understanding Types, Data Abstraction, 
and Polymorphism. Computing Surveys, 17(4):471-521, 1985. 

Wolfgang Deiters, Volker Gruhn, and Wilhelm Schgfer. Systematic develop- 
ment of software process models. In Carlo Ghezzi, John A. McDermid (Eds.): 
Proc. of ESEC'89 - the Pnd European Software Engineering Conference '89, 
Warwick, UK, September 1989. Springer Verlag LNCS 387, p. 100-117. 

131 



[Dow87] 

[ENE87] 

[GECgT] 

[rICES] 

[HenS8] 

[HM88] 

[HN86] 

[ao1883 

[IEE89] 

[KFS7] 

[Lcsg] 

[LCD*89] 

[LDC*89] 

[Leh87] 

Mark Dowson. ISTAR and the contractual approach. In Proc. of the 9th 
A CM-SIGSOFT/IEEE-CS Int'l Conference on Software Engineering, Monte- 
rey, CA, USA, pages 287-288, April 1987. 

Proc. 8rd Int'l Workshop on Graph Grammars and their Application to Com- 
puter Science, Warrenton, VA, USA, 1987. 

GENOS, GEC Software's IPSE. GEC Software, London, UK, May 1987. 

Dennis Heimbigner and Steven Crane. A graph transform model for configu- 
ration management environments. In [Hen88], pages 216-225, 1988. 

Peter B. Henderson, editor. Proc. of the 8rd ACM SIGSOFT/SIGPLAN 
Software Engineering Symposium on Practical Software Development Environ- 
ments (Boston, 28-30 Nov 1988), 257 p., November 1988. In ACM SIGPLAN 
Notices 24(2), Feb 1989. 

Toni Haque and Juan Montes. A Configuration Management System and more 
(on Alcatel's PCMS). In [Win88], pages 217-227, 1988. 

A. Nico Habermann and David Notkin. GANDALF: software development 
environments. IEEE Transactions of Software Engineering, SE-12(12):1117- 
1127, December 1986. (Special issue on GANDALF). 

Per Holager. Elements of the Design of a Change Oriented Configuration 
Management Tool. Technical Report STF44-A88023, 95 p., ELAB, SINTEF, 
Trondheim, Norway, February 1988. 

IEEE/ACM, editor. Proc. of the 11th International Conference on Software 
Engineering, Pittsburgh, USA, May 1989. 

Gall E. Kaiser and Peter H. Feiler. An architecture for intelligent assistance 
in software development. In Proc. of the 9th A CM-SIGSOFT/IEEE-CS lnt'l 
Conference on Software Engineering, Monterey, CA, USA, pages 180--188, 
April 1987. (on MARVEL). 

Chunnian Liu and Reidar Conradi. Planning Software Development Processes 
in EPOS. October 1989. In [C'89]. 

Anund Lie, Reidar Conradi, Tor M. Didriksen, Even Andr4 Karlsson, Svein O. 
Hallsteinsen, and Per Holager. Change Oriented Versioning in a Software En- 
gineering Database. In Proc. of 2nd lnt'l Workshop on Software Configuration 
Management, Princeton, USA, October 1989. ACM SIGSOFT Engineering 
Notes, Vol. 17, Number 7 (Nov. 1989), pp. 56-65. 

Anund Lie, Tor M. Didriksen, Reidar Conradi, Even Andr4 Karlsson, Svein O. 
Hallsteinsen, and Per Holager. Change Oriented Versioning. In Carlo Ghezzi 
and John A. McDermid, editors, Proe. of ESEC'89 - the ~nd European Soft- 
ware Engineering Conference 'g9, Warwick, UK, pages 191-202, September 
1989. Springer Verlag LNCS 387. 

M. M. Lehman. Process models, process programming, programming sup- 
port. In Prec. of the 9th ACM-SIGSOFT/IEEE-CS Int'l Conference on Soft- 
ware Engineering, Monterey, CA, pages 14-16, March 1987. (Response to an 
ICSE'9 Keynote Address by Leon Osterweil). 

132 



[Lem86] 

[LieS9] 

[Mey88] 

[Mu189] 

[NS87] 

[OR86] 

[Rei85] 

[Rum87] 

[Sun88] 

[SWKH76] 

[SZ86] 

[TBC*88] 

[TL82] 

[Win88] 

P. Lempp. Integrated computer support in the software engineering environ- 
ment EPOS - possibilities of support in system development projects. In 
Proe. 12th Symposium on Microprocessing and Microprogramming, Venice, 
pages 223-232, North-Holland, Amsterdam, September 1986. 

Anund Lie. Outline Design of the EPOS Database. Draft, DCST, NTH, 
Trondheim, Norway, April 1989. 

Bertrand Meyer. Eiffel: a language and environment for software engineering. 
The Journal of Systems and Software, 199-246, 1988. 

Jiirgen Miiller. Process Management Using AI Planning Techniques. Technical 
Report 29/89, EPOS report 86, 117 p., DCST, NTH, Trondheim, Norway, 
June 1989. (MSc Thesis). 

Howard K. Nichols and Dan Simpson, editors. Proe. of the First European 
Software Engineering Conference (Strasbourg, Sep 1987), LNCS 289 Springer 
Verlag, 404 p., September 1987. 

Martyn A. Ould and Clive Roberts. Modelling iteration in the software pro- 
cess. In Mark Dowson, editor, Proc. of the 3rd International Software Process 
Workshop, Breckenridge, Colorado, USA, November 1986. 

Wolfgang Reisig. Petri Nets - An Introduction. Springer-Verlag, 161 p., 1985. 

James Rumbaugh. Relations as semantics constructs in an object-oriented la- 
nguage. In Proe. of the A CM SIGPLAN Conference on Object-Oriented Prog- 
ramming Systems, Languages and Applications (OOPSLA "87), pages 466--481, 
Kissimmee, Florida, October 1987. In ACM SIGPLAN Notices 22(12), Dec 
1987. 

Network Software Environment: Reference Manual. Sun Microsystems, Inc., 
2550 Garcia Avenue, Mountain View, CA 94043, USA, part no: 800-2095 
(draft) edition, March 1988. 

Michael Stonebraker, E. Wong, P. Kreps, and G. Held. The design and imple- 
mentation of INGRES. ACM Trans. on Database Systems, 1:189-222, 1976. 

Andrea H. Skarra and Stanley B. Zdonik. The management of changing types 
in an object-oriented database. In Proc. of the A CM SIGPLAN Conference on 
Object-Oriented Programming Systems, Languages and Applications (OOPS- 
LA '86), pages 483-491, Portland, Oregon, 1986. In ACM SIGPLAN Notices 
21(11), Nov 1986. 

Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. 
Selby, Jack C. Wileden, Alexander L. Wolf, and Michael Young. Foundations 
for the Arcadia environment architecture. In [Hen88], pages 1-13, 1988. 

Dionysios C. Tsichritzis and Frederick H. Lochovsky. Data Models. Prentice 
Hall, 343 p., 1982. 

Jiirgen F. H. Winkler, editor. Proe. of the A CM Workshop on Software Ver- 
sion and Configuration Control (Grassau, FRG, 27-29 Jan 1988), Beriehte 
des German Chapter of the ACM, Band 30, 466 p., B. O. Teubner Verlag, 
Stuttgart, 1988. 

133 


