
CORRECTION OF CONCEPTUAL SCHEMAS

C. SOUVEYET* C. ROLLAND**

* Laboratoire MASI, Universite Pierre et Marie Curie

4 place JUSSIEU, 75235 PARIS, FRANCE

Fax : + 33-1-46-34-19-27

** Universite de la Sorbonne

17 rue de la Sorbonne, 75231 PARIS cedex 05, FRANCE

Abstract :

This paper presents the interim results of a research project

aimed at the prototyping of an automatic tool, Rubis, to aid in

the development of, validate and correct the conceptual

specification of information systems.

The Rubis systems allows a designer to specify an information

system using the Proquel language and to subsequently execute

the specification in order to prototype the design.

We present the control rules which enable the diagnosis of the

final specification, called an R-Schema, and describe the help

available to assist the designer in correcting mistakes and

anomalies detected during the diagnosis.

152

Introduction

In this paper we introduce an environment called Rubis [ROL88] [LIN88b],

which aims to aid the designer in designing information systems. The

Rubis system provides the designer with:-

a model and associated high level development language, Proquel, to

aid in the development of the specification of the R-Schema,

specifying the static, dynamic and temporal aspects of the

information system,

functions to determine the correctness of the R-Schema by running

various checking rules on it, called the Validation Module

functions to assist in the correction of any errors highlighted by

the checking phase, called the Correcting Aid Module

a prototyping mechanism allowing the execution of the specification

on test cases, thus validating the dynamic aspects of the

application. This is seen as an aid in improving the dynamic aspect

of the final application,

various interfaces to modules implementing the above functions.

The paper is structured as follows:-

Part II discusses the Rubis architecture and functionality

Part III discusses the checking rule architecture, the checking rule

taxonomy and the control levels used in checking the correctness of

the R-Schema

Part IV discusses the Correcting Aid Module.

We conclude with a conclusion in Part V.

II Rubis Architecture and Functionality

As shown in figure I, the Rubis system has four components as follows:-

i. The R-Sch@m@: it describes the information system, and is stored

in the Meta-base.

153

2. The R-Schema desian interfaces: the Menu Interface, the Graphical

Interface and the Proquel Interpreter.

$, The Drototypina toQls: the Application Monitor, the Event

Processor, the Temporal Processor, and the Proquel Interpreter.

4. The validatina tools:the Validation Module and the Correcting Aid

Module.

-11
..-9

~ ~ ~" "~ "- helping to
.~ ~ . ~ecif, icaIT~/ /checking "c~re<

 oou I Oraoh,ca, I I
interface interface Correcting

Validation Aid Module
module

I I prototyl~ing
quelry

I Application
monitor

I processor

Proquel interpreter

Relational D.B.M.S.

Prototype~"~
ATABASE

Figure 1 : Architecture of the Rubis system

II,~ Th@ R-Schema

The R-Schema is based on the model used in the Remora methodology

[ROLL.82] [ROLL.87], and describes both static aspects (structure) and

dynamic aspects (behaviour) of the application. It is stored in

relational form [COD.70] in the Meta_base, and is the focal point of

interaction between the designer and the Rubis system.

The static aspects are modeled using objects, representing entities or

entity associations in the real world (e.g. client, invoice, loan,

etc.), and ~ntegrity constraints associated with these objects.

154

The constraints are classified in different classes; referential

constraints, cardinality constraints, and domain constraints.

The ~ynamig aspects are modeled using :

- operations which represent elementary actions on an object (e.g.

add a new client, modify an order, etc.),

- events which represent elementary state changes in the system at

which time some operations must be triggered (e.g. when an order

arrives, insert the order into the database, reserve the requested

goods, prepare the delivery, etc.). The state change description of

an object is defined in the event predicate.

A distinction is made between external events, which model the arrival

of a message from the real world, internal events, which model

elementary state changes of an object, and %¢mporal events, which

represent temporal conditions under which certain processing is

triggered.

__----------9 external message

external event occuring
EVl ~ with the arrival of the

external event
c5/,kg4

~ I ~ ~ triggering condition
of the operation op13

the object modified by
the operation op13

~ ~ internal event, occuring
with the particular
state change of the
object OB2

E V 7 , . z ~ / ~"

o

..... ~ exampletransitionOf dynamic

Figure 2 : a representation of a dynamic graph

The Temporal aspects of the application are modeled using the temporal

functions and types of the Rubis Temporal Model [NOB.88] .

The R-Schema is therefore a collection of relations, events, and

155

operations defined for an application using Proquel specifications. The

content of the R-Schema can be illustrated using a graph (Fig 2). Such a

representation introduces the dynamic transitions of the application,

showing their sequences and precedences. A dynamic transition is

composed of (I) an event, (2) all operations triggered by the event, and

(3) all references to objects modified by these operations. This

corresponds to an elementary database transaction, since by definition a

Rubis dynamic transition is atomic and must maintain database coherency

across database coherency across database changes.

II.2 Desian Tools

Th~ Menu Interface allows the insertion, modification and deletion of

different components of the R-Schema. Components are manipulated by the

designer filling in forms during the specification process.

The Graphical Interface gives a great freedom to the designer during the

acquisition stage of the specification of the R-Schema. It integrates a

Graphical Editor which facilitates the drawing of the static and dynamic

schemas.

The Proauel Interpreter is a design tool and a prototyping tool. Proquel

[LIN.88a] is a specification language, a data manipulation language and

a programming language. As a design tool, the Proquel Interpreter

provides statements to insert, modify, and delete components of the R-

Schema. The next section describes the Proquel interpreter as a

prototyping tool.

II,3 PrototvDinu Tools

The Application Monitor allows the definition of the end-user interface.

It automates the generation of data input screens, corresponding to each

external event defined by the designer, from the specification text of

these events. This text serves to specify the structure of the received

message, and hence it may be used as a specification of the end-user

screen. The associated event generated screens allow for the inputting

of data test cases to test the correctness of the R-Schema behaviour.

The Temporal Processor manages all temporal aspects of the application,

including :

156

-handling attributes of type 'TIME' (timestamps, dates,

chronological order, calendar conversion, etc..),

-historical processing,

-evaluating expressions using temporal functions and types,

-automatic recognition of temporal events (absolute dates, periodic

events, events times relative to other events, etc..).

The Event ProGessQr drives the prototype. It facilitates the execution

of the R-Schema by sequencing and synchronizing dynamic transitions,

including :

-handling instances of external and temporal events,

-evaluating the triggering conditions of operations,

-controlling the execution of operations when the triggering

condition is satisfied,

-recognition of internal event instances,

-managing the transaction aspects of the application.

The Proauel Interpreter is viewed here, as a prototyping tool. It is

used by each of the other modules, but in particular by the event

processor for the execution of operation, condition, and event predicate

texts.

The relatiQn~l DBM$ [BOUF.86] is the foundation of the Rubis system. It

manages the relations in the prototype database as well as the relations

in the Meta-base containing the R-Schema.

II.4 The Validation Tools

The Validation MQdule performs the validation of the R-Schema, detecting

situations which are either incorrect or probably incorrect.

The Correctinq Aid MQdule aids the designer to correct the anomalies

detected by the Validation Module.

R-Schema diagnosis requires a set of checking rules, which are presented

in the next section. We, then describe two other aspects, the strategy

used in anomaly detection, and the help provided to the designer in

correcting these anomalies.

157

~
o

i ~
 .

C
o

..
 r~ (1
)

ct
 I W

uJ

O
.

d)

03

I-
,-

co
nc

ep
tu

al s
ch

em
a

sta
tic

 sc
he

m
a

dy
na

m
ic s

ch
em

a
ev

en
t

ca
teg

or
y -

-I
~-

in

te
rn

al e
ve

nt

ob
jec

t
dy

na
m

ic
tra

ns
itio

n
tem

po
ra

l e
ve

nt

I
I

I
I

I
'"-

--~
'~

~
co

nd
iti

on
s

fa
ct

or
s

op
er

at
io

ns

ob
jec

t
ob

jec
t

at
tr

ib
ut

es
..

I
,.

...
...

.
re

fe
re

nt
ial

s
~

~
.~

,
e~

' en
t

~
~

.o
pe

r
A

0
op

tlo

n
co

de

n~
m

~
•

m
[e

gn
iy

co

ns
tra

in
ts

~1

~
co

ns
tra

in
ts

/

"/
'

/
ex

ter
na

l e
ve

nt

/
I

I
I

m e
ssa

g e -
--i.,

.....
-'~"

 ~
att

rib
ut

e
do

m
ai

n
id

en
tif

ie
r

~
~

-

co
nd

iti
o/

nn

n c
od

e
na

me

(y
/n

~.
...

../
~

J
--

-'%
:a

cP
'r

er

a~

.-

op
er

at
io

n n
am

e

I
I

I
-

I
I

co
nd

iti
on

co

nd
iti

on

co
nd

iti
on

ev

en
t c

od
e

I
. ,

_

,
tri

gg
er

s
co

de

na
me

I

as
ce

ria
ln

eo

pr
ed

ica
te

I

ob
je

ct

7
I

I
I

l
--

m

od
ifie

d o
bje

ct

tex
t

__

op
er

at
io

n te
xt

ev
en

t n
am

e
I

~
I

I
I

I
I

I
fac

to
r

fac
to

r
fac

to
r

ou
tp

ut

tri
gg

er
ed

tri

gg
er

ed

tri
gg

er
ed

co

de

na
me

te

xt

pa
ra

m
et

er
s

op
er

at
io

n
co

nd
iti

on

fac
to

r

C
o

 ~

0
3

m
 m

0 [a

r
~

O
 ~
h

O

O
 o)

c
t

0 0 0 c
t H

.h

I:l

The checking rule can be viewed as a predicate which must be satisfied

by the R-Schema. In this section, we present the taxonomy of these

rules, the implementation of them and the control levels at which they

belong.

III.l The Checkina Rules Architecture

The aim of this architecture is to provide the Validation Module with

the sequence of control rules to be checked at the requested level

explained below (cf section III.4) .

The strategy, we have chosen, is to model the static aspects of all

components to be controlled and to associate to each component the set

of checking rules which validate it. We have used on one hand, the

aggregation, generalization and association constructors of semantic

models [BRO.82] [BRO.83] [CAU.88] to model the static aspects of the R-

Schema, whilst on the other hand, we have used the "encapsulation"

notion defined in the object-oriented approach [PIN.88], to associate

the checking rules to the component which they validate. The figure 3

illustrates the principal static part of the Meta-base which is checked.

For each constructor (aggregation, generalization and association), we

define a checking rule strategy. Consequently, this hierarchical

organization of components implicitly defines the control execution

order. We illustrate this mechanism by an example of an "aggregate"

component.

Consider the sub-set illustrated by th@ following figure :

.•R1 (2)
R2(1)

conceptual R3(1)
schema

I I
R36(1) q static dynamic E R15(1)

schema schema R16(2)

Figure 4 : representation of an aggregate component

This defines the component "conceptual schema" as an aggregate of two

components "static schema" and "dynamic schema".

159

On the "static schema", we take the control rules which validate the

static part without reference to the dynamic part. For instance,

rule R36 is a method attached to "static schema" which expresses

that "when two objects have the same identifier, we must

integrate both objects attributes in the only one object".

On the "dvnamic schema", we take the control rules which validate

the dynamic part without reference to the static aspects. For

instance, the rules RI5 and RI6 express respectively that "Each

dynamic transition of an internal event must depend

chronologically on an dynamic transition of an external or

temporal event" and "When two dynamic transitions of

internal events ascertain state changes of the same object,

their predicates must be exclusive".

Qn ~he "concePtual schema", we take the rules which validate the

relationship (or reference) between "static schema" and "dynamic

schema". For instance, the rules RI, R2 and R3 are attached to

"conceptual schema". The expression of these rules are :

R1 : "Each object in the "static schema" must also exist

in the "dynamic schema".

R2 : "Each object on which an event is ascertained, must

be defined as an object in the static schema".

R3 : "Each object modified by an operation must be

defined as an object in the static schema".

The execution order of controls for "conceptual schema" is simply

deduced from the component structure. We execute the control attached to

the "static schema" and the controls attached to the "dynamic schema" in

any order and when the components are correct, we execute the control of

"conceptual schema" to validate the cross-references between "static

schema" and "dynamic schema". We illustrate this mechanism by the

following example.

If we define the following R-Schema :

-The objects OBI, OB2 and OB3 are described, but OBI and OB2 have

the same identifying attribute,

-Two events EVI and EV2 are defined. EVI is an external event which

triggers the operation OPI and EV2 is an internal event which

ascertains the state change of the object OB2 and triggering the

operation OP2.

-Two operations OPI and OP2 are defined and they modify respectively

OBI and OB4.

160

OP2

/

Figure 5 : The dynamic part of the R-Schema

The validation of the "conceptual schema" at level 2 will occur as

follows:

We apply the rules attached to the components of the conceptual schema"

Rule R36 is not respected on the "static schema" because OBI and OB2

have the same identifying attribute and the rule RI5 is not respected

because the internal event EV2 does not depend on an external or

temporal event. So, the "conceptual schema" is incorrect. If we correct

this schema as follows :

-the event EV2 ascertains the state change of the object OBI, then

the R-Schema satisfies rule RI5,

-the changing of the identifying attribute of the object OB2 implies

that it becomes different from the identifying attribute of OBI,

then the R-Schema satisfies rule R36.

OP1 ~ ~ OP2m(~

Figure 6: Graphical representation of the corrections

When we re-run the checking of the R-Schema, an error is detected by

rule R3 because the operation OP2 modifies the object OB4 which is not

defined as an object in the static part. If we correct the definition of

the operation OP2 for modifying the object OB3, the "conceptual schema"

becomes correct.

161

A similar approach, is applied for the "set" cQmmonent and the "Qeneric"

component. In the case of the "set" component, illustrated by the figure

7, the checking module translates the "set" structure by on the one

hand, the iterative control function which validate each set members

(for instance, we check each "dynamic transition"), and on the other

hand, the execution of controls attached to the "set" component (for

instance, we check the correctness of "dynamic schema").

F R15(1)
dynamic
schema L R16(2)

R26(1)

dynamic
transition R27(1)

R28(1)

Figure 7 : Schema of a set component

The case of a "generic" structure, illustrated by figure 8, is more

complex.

event

internal external temporal
event event event

R67(0) L . R68(2) R65(0)

Figure 8 : Schema of a generic component

We attache to the "specialized" component the rules which allow the

validation of :

-its own components,

-the relationships between them,

-the relationships between the components of the "generic" item and

162

the components of the "specialized" item which correspQnds to it.

This structure is translated by a checking function which first runs the

controls attached to the "generic" component (e.g. we check the

component "event") and then the controls attached to the "specialized"

component which corresponds to it (e.g. we check the "specialized"

component "internal event" or "temporal event" or "external event").

The advantages of this architecture are :

-it provides a control triggering strategy which is systematic and

modular,

-Rubis model extensions or Meta-base improvements are easily

integrated into the Validation Module as a direct result of the

flexible representation.

-the performed controls are independent of what interface is used to

input the part of R-Schema, so the Rubis architecture can integrate

new interfaces without any modification of the Validation Module.

!II.2 Rule Taxonomy

We distinguish four rule classes :

- conformance rules,

- consistency rules,

- completenes~ rules,

- accuracy rules.

This taxonomy is similar to that found in TODOS [PER.88] .

Conformance rules ; perform the "syntactic" checking of the H-Schema.

We means by this term the syntax of the model and the specification

language.

conformances rules

uniqueness existence domain model" Proquel
rules rules rules rules text

rules

Figure 9 : Hierarchy of conformance rules

163

In this class, we can see five sub-classes shown by the previous figure.

Uniaueness rules : verify the uniqueness of a schema component. For

instance, "the event code must be unique in the set of event

codes" or "the attribute name of an object must be unique in

the set of object attribute names".

Existence rules : check that each R-Schema component is defined. For

instance, "the name of the object which is modified by the

operation must be defined in the operation specification".

Domain rules : check the value of a schema component according to

the domain definition. For instance, "An event type is either

'internal event' or 'external event' or 'temporal event'"

and "an operation type is either 'INS' or 'UPD' or 'DEL'".

model rules : correspond to cardinality rules between components of

the R-Schema. For instance, "an event must trigger at least one

operation" or "an operation must modify at most one object".

Proauel text rules : express that for each component of the R-Schema

expressing Proquel text, must be correct according to the syntax of

the Proquel language. In other words that means these texts must be

validate by the Proquel Interpreter. For instance, "an event

predicate must be correct according to the Proquel syntax".

~onsistency rules : check that there is no contradiction in the

specifications and that no contradiction can be deduced from the R-

Schema.

consistency rules

/
implicit consistency
parameter based on

consistency the model

comportemental
consistency

Figure I0 : Hierarchy of the consistency rules

164

We can decompose this class as the hierarchy illustrated by the

following figure.

We present three examples of consistency rules.

The first is associated to the notion of "CONTEXT" in Proquel. We

use the implicit parameter "CONTEXT" to refer to the object instance

on which an event can be ascertained. The following control can be

expressed : "each field prefixed by "CONTEXT" and used in the

operation text must correspond to an attribute of the object

on which the event triggering operation is ascertained". This

rule belongs to "imPlicit parameter consistency" sub-class.

The second example can be seen, for instance, when an object is

accessed with modify statements in condition text, whereas "a

condition text should not modify an object's state". This

control checks the consistency between the content of Proquel

condition text and the condition definition in the model. It belongs

to the sub-class "consistency based on %h~ mo4@l".

The last case is deduced from the specification when we can have

contradictory behaviours of the application in the same

specification. This defines the "comoortemental consistency" sub-

class. As an example of this sub-class, consider the following R-

Schema illustrated in figure ii : in the dynamic transition of the

event, an unconditional operation OPI sets an attribute of OBI to 2,

whereas another unconditional operation OP2 sets the same attribute

to 5.

OBl.att=2 ~ OBl.att=5

Figure II : graphical representation of dynamic transition

165

Rubis does not recognize execution order between operations

belonging to the same dynamic transition. The execution of OPI

before that of OP2, or of OP2 before that of OPI, or their parallel

execution must give the same result. It is evident, in this example,

when EVI is fired, the final value of "att" depends on the execution

order of OPI and OP2. The indeterminate result of the dynamic

transition is a proof of specification inconsistency. The following

rule detects this kind of inconsistency :

R31 : "When an object instance is modified by more than one

operation in the same dynamic transition, the triggering

conditions must be mutually exclusive".

The detection of these types of inconsistencies can not be automated

from the Proquel specification as they are data dependent. This is

an interactive rule which can not be implemented using the Proquel

language because we want to use a graphical way to explain the

situation to the designer.

CqmDleteness rules : verify that there is no isolated or missing

component of the R-Schema. We propose the decomposition of this class as

follows :

completeness rules

isolated missing concept
concept rules
rules

Figure 12 : Hierarchy of the completeness rules

For example, "an operation must be triggered by at least one

event". This rule belongs to "isolated concept rule" sub-class.

Another case corresponding to "missing concept rule" sub-class is,

"the name of the object which is modified by an operation

and mentioned in the operation specification must be defined

as an object with type 'object'"

Accuracy rules : detect probable inconsistencies in the R-Schema

concerning the accuracy of the specifications as they relate to the

application.

166

These rules point out some critical situations to the designer enabling

them to be examined in more detail, thus determining whether or not

these situations to the designer are in fact correct.

For example, the vivacity of a dynamic graph is a notion taken from

the quasi-vivacity of Petri Net Theory [BRA.83], [BER.79] . This

control is expressed by the rule RII "each operation that may be

triggered by an event may be processed", we define a dynamic

transaction as the dynamic transition of an external or temporal

event, and with the dynamic transitions of subsequent internal

events depending chronologically on the dynamic transition of the

preceding event. The rule is checked by presenting each dynamic

transaction to the designer and confirming the occurrence

feasibility of each internal event and each operation belonging to

this dynamic transaction.

Let us consider a second example, the analysis of the dynamic

circuits. A dynamic circuit is defined by the following rule : "when

an event depends chronologically on itself, we detect a

dynamic circuit. It is 'infinite', if the sequence of

related events is infinite. This happens when all the

operations belonging to this circuit are unconditional and

when event predicates are always true after the operation

execution. The infinite circuit is not necessarily incorrect

but it is forbidden in the Rubis system because it can not

be prototyped". This rule is checked by presenting each dynamic

circuit to the designer and its correctness being confirmed.

III.3 Implementation of these rulQ~

We have tried to limit the programming work with the definition of the

generic type according to the hierarchy as presented previously. For

example, consider the hierarchy of the completeness rules illustrated by

figure 12. In our case, the "is-a" hierarchy expresses more the

genericity notion issued from abstract data typed languages like ADA

[BAR.88] [BOO.88] than inheritance notion coming from object-oriented

languages as Smalltalk [PIN.88] [MEY.88] .

So, the "Missing Concept" rule and "Isolated Concept" rule are two

generic types of rule on which we associate a program model representing

the rule. Then, we adapt this program model to the particular situation

of R26, for example, by instantiation of input parameters defined in

this program model described below.

167

The program model is a Proquel function as shown in figure 13.

FUNCTION missing concept_rule ($type_mc : STRING,
$relation_mc : RELATION NAME,
$attributemc : ATTRIBUTE_NAME,
$type_wmc : STRING,
Srelation_wmc : RELATION_NAME,
$attributewmc : ATTRIBUTE_NAME,
Sattribute id wmc : ATTRIBUTE_NAME)

VAR $result : BOOLEAN;
VAR Sx : TUPLE;
BEGIN
FOE EACH Sx IN (SELECT [$attribute_wcm], [$attribute id wcm]

FROM [$relation_wcm])
DO BEGIN

IF (NOT EXISTS [$relation_mc]
WHERE [$attribute_mc]=[$x.attribute_wmc])

THEN BEGIN
$result:=FALSE;
affichage_erreur($type__mc,$x.attribute_wmc,

Stype_wmc,$x.attribute id wmc);
END;

ELSE $result:=TRUE;
END;

RETURN ($result);
END;

[$y] : corresponds to the value of the variable Sy

Figure 13 : Proquel Function of the "Missing Concept" rules

The following defines the meaning of the input parameters of the program

model in figure 13 :

-$type__mc represents the type of the 'missing concept',

-$relat£om_mc represents the Meta-base relation (or table) where

the 'missing concept' ($type_mc) is stored,

-$attribute__mc represents the identifier attribute of the previous

relation ($relation_mc),

-$type wmc represents the type of the 'concept' which refers the

'missing concept' ($type_mc),

-$relatiom wmc represents the Meta-base relation where the previous

concept ($type_wmc) is stored,

-$attribute ~mc represents the attribute w~ich refers the 'missing

concept' ($type mc) in the previous relation ($relation_wmc),

-$attribute id wmc represents the identifier attribute of the

relation represented by $relation_wmc.

168

The program corresponding to the rule R26 consists to the following

instantiation :

-$type mc : 'operation' is the missing concept,

-$relation mc : 'ope' is the Meta-base relation name where is stored

all the operations,

-$attribute_mc : 'opn' is the attribute name in the relation 'ope'

which represents the operation code,

-$type_wmc : 'event' is the concept where 'operation' is referred

and misses,

-$relation wmc : 'trigger' is the Meta-base relation name where are

stored the operations triggered by events,

-$attribute_wmc : 'opn' is the attribute name in the relation

'trigger' which refers the operation triggered by a given event,

-$attribute id wmc : 'evtn' is the attribute name in the relation

'trigger' which represents the event code.

We apply this principle for all rules which are automated and we use the

Proquel language to implement these rules.

III.4 Control Levels

In this section, we present the definition of three control levels

according to three successive development stages of the R-Schema. Then,

we describe how we trigger these different levels.

The basic principle which must be respected by the Validation Module is

to accept the incomplete specifications because the design process is

incremental. Nevertheless, a satisfying level is insured at certain

development stages of the R-Schema. We ihave determined the three

following levels :

Level ~ is the imposed level on all the specification interfaces. We

have chosen to trigger only a sub-set of conformance rules for keeping

the flexibility of each interface given to the designer. For instance,

if we define an operation which modifies the object OB2 and OB3, the

rule which says that "an operation modifies only one object", is

not respected. In this case, the zeroth level of control is not

verified.

169

Level 1 corresponds to the development of the complete conceptual schema

where all the executable texts of condition, operation, factor and event

predicate are not necessary defined. We check here :

-the conformance rules which do not belong to the previous level and

do not concern executable texts,

-the completeness rules which do not concern executable texts,

-the consistency rules which do not need executable texts.

For instance, consider the R-Schema where an operation modifies the

object OBI, is defined and this operation is not triggered by any event.

This incorrect feature is detected by the rule R26 which expresses that

"an operation must be triggered at least by one event". This

incompleteness is recognized at this level.

Lev@l 2 corresponds to the development of the executable complete

conceptual schema. At this level, all the checking rules based on

executable Proquel texts are run, in addition to the rules of the

preceding levels. For instance, consider the R-Schema where the object

OBI used in the text of the condition C2, is not defined. This error is

detected at this level by the rule R30 which expresses that "each

object used in the text of condition must be defined".

Each higher level subsumes the lower levels. The triggering of the

different level controls is either automatic or when the designer wants

to check the R-Schema.

Level 0 checking is automatically performed when an specification is

entered with any design interface. The level 2 checking is either

automatically performed when the designer activates the prototyping

tools or when the designer wants to check the specification. Level 1

checking is performed when the designer wants to check the R-Schema.

Levels 1 & 2 can check the entire R-Schema or just a part of it. The set

of controls can be decomposed to the controls on the static or dynamic

schemas.

;V Correctinq Aid Module

We limit this section to the presentation of the basic principles of the

correcting help provided to the designer in the Rubis system and to the

brief presentation of the organization of the suggested corrections.

The aim is to assist the designer to correct the errors of the R-Schema

highlighted by the checking module.

170

In general, it is possible to identify two causes of errors, a

misunderstanding of the theory underlying and a bad implementation of

this theory. The Correcting Aid Module integrates two kinds of help

corresponding to two errors classes :

-if a misunderstandina of the Rubis model concepts or ProQuel

l.anmuaae constructions is the cause of errors, we help the designer

by giving the concept definition corresponding to the detected error

and providing a set of examples and a set of exercises for

correcting the situation. This solution is taken from the "tutoring

software" in which the learning strategy is composed of three items:

definitions, examples and exercises [LEF.84] . We provide this

help for each checking rule. For the errors detected by the

conformance rules, this help allows to the the designer to correct

the R-Schema. This is provided when the designer requests it because

of a failure to understand the reasons for the highlighted error.

-if a bad d@$iqn Qr bad usaae of mQdel concePtS, is the cause of

errors, we help the designer by the answer to the following

question:

What are the changes to be made to correct this situation ?

For each detected error, we suggest to the designer a set of

possible corrections. The designer can choose one of them or

refuse the proposed suggestions. This help is provided when the

designer requests it because of the failure to understand how to

correct the situation.

For implementing the suggested corrections, we apply the same approach

used to implement the checking rules. We use the hierarchy of rules

described previously (cf section III.2) and we define for each generic

type of rules a set of possible corrections which is implemented by a

model program. This model program will adapt to the particular mistakes

detected by the checking rules by the different values taken by the

input parameters.

We illustrate this approach by the example of the completeness mistakes.

The hierarchy of the completeness mistakes is the same as that of

completeness rules : "missing component" mistakes and "isolated

component" mistakes.

When we have a mistake detected by the "missing component" rule, we can

suggest two possibles corrections :

-if the missing component is useful, we define it,

171

-if the component may cause a referential error by erroneously

referring to a non existent component, so we correct the reference.

We can adapt this general situation with the different values of the

following input parameters to the mistake detected by a checking rule :

- tm : type of the missing component,

- itm : instance of the type defined by tm,

- tom : type of component where tm is referred,

- itom : instance of the type defined by tom,

- trel : type of the relationship between the types tm and tom.

Let us consider the sub-set of the R-Schema where is defined :

-the objects OBI and OB3,

-the internal event EVI occurring on the state change of OBI and

triggering the operation OPI shown in following figure 14,

-the operation OPI modifying the object OB2.

EV1

Figure 14 : Dynamic graph of the R-Schema

A mistake is detected by the rule R2 because the object OB2 modified by

the operation OPI is not defined. Each mistake detected by the rule R2

is adapted from the general situation by the following instantiation :

-the type of the missing component (tm) = 'object',

-the type of the component where 'tm' is referred (tom) =

'operation',

-the type of relationship between 'tm' and 'tom' (trel) = 'modified

by'.

In our particular mistake, we adapt the help associated to the rule R2

with the following values of the input parameters :

-the instance of the missing object (itm) = 'OB2',

-the instance of the operation where the object is referred (itom) =

'OPI'

So, we apply this approach for all mistakes detected by the Validation

Module.

172

V Conclu@ion

In this paper, we have presented the Rubis system which provides :

-a model and a specification language to aid in the development of

the specification of the R-Schema,

-a module to determine the correctness of the R-Schema,

-a module to assist in the correction of any mistake detected by the

previous module,

-a prototyping mechanism to allow the execution of the specification

on test cases,

-various interfaces to input the specification in the Rubis system.

we have discussed in more detail the checking rule architecture and the

checking rules taxonomy. Then we have presented the principles of the

Correcting Aid Module.

These two modules are integrated in the Rubis system implemented in the

SUN 3/60 workstation.

The perspective of this work is, on the practical way, to achieve the

implementation of these two modules and, on the theorical way to improve

the Correcting Aid Module to the architecture of "intelligent tutoring

software" [NIC.88] where the module adapt the help to the designer which

uses it. Our goal is also to integrate more checking rules in the

Validation Module like the quality heuristics for R-Schema improvements

or checking rules based on the knowledge of the application domain

described in [WOH.88].

ACKNOWLEDGEMENTS : We wish to thank Bob Jansen for reading and

commenting this paper.

[BAR.88] BARNES J. : "Programmer en ADA" , InterEditions (ed), 1988.

[BER.79] BERTHOMIEU B. " Analyse structurelle des r6seaux de PETRI :
m6thodes et outils ", Th@se de Docteur Ing6nieur, Toulouse,
1979.

[BOO.88] BOOCH G. : "Ing@ni6rie du logiciel avec ADA, InterEditions
(ed), 1988.

[BOU.86] BOUFARES F.,ELKABBAT J., JOMIER G.,OUNALLY H. : " Le
syst@me de Bases de Donn@es Relationnelles PEPIN3", Rapport
de Recherche ISEM N°34, Univ. PARIS SUD, Mai 1986.

[BRA.83] BRAHMS : " Th6orie et pratique des r6seaux de PETRI",
Masson (ed) 1983.

173

[BRO.82] BRODIE M.L., SILVA E. : "Active and Passive Component
Modelling : ACM/PCM", in [CRI.82] .

[BRO.83] BRODIE M.L. : "On the development of Data Models", in On
Conceptual Modelling, Perspectives from Artificial
Intelligence, Databases, and Programming Languages, Edited
by Brodie M.L., Mylopoulos J., Smidt J.W., Springer-
verlag, 1983.

[CAU.88] CAUVET C. : " Un mod@le et un outil d'aide ~ la conception
des syst@mes d'information ", Th@se de doctorat de
l'universit6 Paris VI, 1988.

[CRI.82] " Information Systems Design Methodologies : a comparative
Review", Olle T.W., Sol H.G., Verrijn-Stuart A.A. (eds),
North-Holland (pub), 1982.

[LEF.84] LEFEVRE J.M. : " Guide pratique de I'E.A.O.", Cedric
Nathan, 1984.

[LIN.88a] LINGAT J-Y., COLIGNON P., ROLLAND C. : "Rapid Prototyping
: the PROQUEL Language", Proc. of the 14 th VLDB
Conference, Los Angeles, 1988.

[LIN.88b] LINGAT J-Y : " RUBIS : un syst@me pour la sp6cification et
le prototypage d'applications Bases de Donn@es ", Th£se de
doctorat de l'universit6 Paris VI, 1988.

[MEY.88] MEYER : " Objected-Oriented Software Construction ",
Interactive Software Engineering, 1988.

[NIC.88] NICAUD J.F., VIVET M. : "Les tuteurs intelligents :
r@alisation et tendances de recherche", TSI vol 7, 1988.

[NOB.88] NOBECOURT P., ROLLAND C., LINGAT J-Y. : " Temporal
Management in an Extended Relational system ", BNCOD6.
Conference, England, July 1988.

[ROLL.82] ROLLAND C., RICHARD C. : " The REMORA Methodology for
Informatiion systems Design and Management " in [CRI.82].

[ROLL.87] ROLLAND C., FOUCAUT 0., BENC{ G. : " Conception des
syst6mes d'information : la m@thode REMORA ", Eyrolles

(ed), 1987.

[ROLL.88] ROLLAND C., CAUVET C., NOBECOURT P., PROIX C., COLIGNON
P.,LINGAT J-Y., SOUVEYET C. : " The RUBIS system ", CRIS88,
Computerized Assistance during the Information System Life
Transition, September 1988.

[SMI.77a] SMITH J.M., SMITH D.C.P. : " Database Abstractions :
Aggregation", Comm. of ACM, Vol i0, n°6, 1977.

[SMI.77b] SMITH J.M., SMITH D.C.P: : " Database Abstractions :
Aggregation and generalization", ACM Trans. on Database

Systems, Vol 2, n°2, 1977.

[WOH.88] WOHED R. : "Diagnosis of conceptual schemas", IFIP WG2.6/
WG8.1 Working Conference on "the role of Artificial
Intelligence in Databases and Information Systems", Canton,

July 1988.

174

