CORRECTION OF CONCEPTUAL SCHEMAS

C. SOUVEYET", C. ROLLAND**

* Laboratoire MASI, Universite Pierre et Marie Curie
4 place JUSSIEU, 75235 PARIS, FRANCE
Fax : + 33-1-46-34-19-27

** Universite de la Sorbonne
17 rue de la Sorbonne, 75231 PARIS cedex 05, FRANCE

Abstract :

This paper presents the interim results of a research project
aimed at the prototyping of an automatic tool, Rubis, to aid in
the development of, validate and correct the conceptual

specification of information systems.

The Rubis systems allows a designer to specify an information
system using the Proquel language and to subsequently execute

the specification in order to prototype the design.

We present the control rules which enable the diagnosis of the
final specification, called an R-Schema, and describe the help
available to assist the designer in correcting mistakes and

anomalies detected during the diagnosis.

152

I __Iatreduction
In this paper we introduce an environment called Rubis [ROL88] [LIN88b],
which aims to aid the designer in designing information systems. The
Rubis system provides the designer with:-
a model and associated high level development language, Proquel, to
aid in the development of the specification of the R-Schema,
specifying the static, dynamic and temporal aspects of the

information system,

functions to determine the correctness of the R-Schema by running
various checking rules on it, called the Validation Module

functions to assist in the correction of any errors highlighted by
the checking phase, called the Correcting Aid Module

a prototyping mechanism allowing the execution of the specification
on test cases, thus validating the dynamic aspects of the
application. This is seen as an aid in improving the dynamic aspect
of the final application,
various interfaces to modules implementing the above functions.

The paper is structured as follows:-
Part II discusses the Rubis architecture and functionality
Part III discusses the checking rule architecture, the checking rule
taxonomy and the control levels used in checking the correctness of
the R-Schema
Part IV discusses the Correcting Aid Module.

We conclude with a conclusion in Part V.

As shown in figure 1, the Rubis system has four components as follows:-

1. The R-Schema: it describes the information system, and is stored
in the Meta-base.

183

2, The R-Schema design interfaces: the Menu Interface, the Graphical
Interface and the Prodquel Interpreter.

Th r i l1s: the Application Monitor, the Event

Processor, the Temporal Processor, and the Proquel Interpreter.

4, The validating togls:the Validation Module and the Correcting Aid
Module.

_ =R

= 1
— = = _ <\~ _helpingto ! rototypin
_ — — Specification . “checling ™ cqprect d ProoRng
- A/ ’ \ qu 'ry '
Menu Graphical \ l Application
interface interface \ Correcting monitor
. [
Validation \ Aid Module Event Temporal
module \ + processor | | Processor

Proquel interpreter

Relational D.B.M.S.

Prototype
DATABASE

META BASE

Figure 1 : Architecture of the Rubis system

II Th R-Schem

The R-Schema is based on the model used in the Remora methodology
[ROLL.82] ([ROLL.87], and describes both static aspects (structure) and
dynamic aspects (behaviour) of the application. It is stored in
relational form [COD.70] in the Meta_base, and is the focal point of
interaction between the designer and the Rubis system.

The static aspects are modeled using objects, representing entities or
entity associations in the real world (e.g. client, invoice, loan,

etc.), and integrity constraints associated with these objects.

154

The constraints are classified in different classes; referential

constraints, cardinality constraints, and domain constraints.

The dynamic aspects are modeled using

- operations which represent elementary actions on an object (e.g.
add a new client, modify an order, etc.),

- events which represent elementary state changes in the system at
which time some operations must be triggered (e.g. when an order
arrives, insert the order into the database, reserve the requested
goods, prepare the delivery, etc.). The state change description of

an object is defined in the event predicate.

A distinction is made between external events, which model the arrival
of a message from the real world, internal events, which model
elementary state changes of an object, and temporal events, which
represent temporal conditions under which certain processing is
triggered.

— __) external message
—

external event occuring
) with the arrival of the
external event

~—) triggering condition
of the operation opl3

- _> the object modified by
the operation opl3

internal e 2 i
- J.l:) e vent.: occuring
‘i with the particular
state change of the

object OB2

> cxample of dynamic
transition

Figure 2 : a representation of a dynamic graph

The Temporal a cts of the application are modeled using the temporal
functions and types of the Rubis Temporal Model [NCB.88] .

The R-Schema is therefore a collection of relations, events, and

1585

operations defined for an application using Proquel specifications. The
content of the R-Schema can be illustrated using a graph (Fig 2). Such a
representation introduces the dynamic transitions of the application,
showing their sequences and precedences. A dynamic transition is
composed of (1) an event, (2) all operations triggered by the event, and
(3) all references to objects modified by these operations. This
corresponds to an elementary database transaction, since by definition a
Rubis dynamic transition is atomic and must maintain database coherency

across database coherency across database changes.

II.2 Design Tools

The Menu Interface allows the insertion, modification and deletion of
different components of the R-Schema. Components are manipulated by the

designer filling in forms during the specification process.

The Graphical Interface gives a great freedom to the designer during the
acquisition stage of the specification of the R-Schema. It integrates a
Graphical Editor which facilitates the drawing of the static and dynamic

schemas.

The Proguel Interpreter is a design tool and a prototyping tool. Proguel
[LIN.88a] is a specification language, a data manipulation language and
a programming language. As a design tool, the Proquel Interpreter
provides statements to insert, modify, and delete components of the R-
Schema. The next section describes the Proguel interpreter as a

prototyping tool.
II.3 Prototvping Tools

The Application Monitor allows the definition of the end-user interface.
It automates the generation of data input screens, corresponding to each
external event defined by the designer, from the specification text of
these events. This text serves to specify the structure of the received
message, and hence it may be used as a specification of the end-user
screen. The associated event generated screens allow for the inputting

of data test cases to test the correctness of the R-Schema behaviour.

The Temporal Processoxr manages all temporal aspects of the application,

including

156

-~handling attributes of type 'TIME’ (timestamps, dates,
chronological order, calendar conversion, etc..),

~historical processing,

-evaluating expressions using temporal functions and types,

—automatic recognition of temporal events (absolute dates, periodic

events, events times relative to other events, etc..).

The Event Processor drives the prototype. It facilitates the execution
of the R-~Schema by sequencing and synchronizing dynamic transitions,
including

-~handling instances of external and temporal events,

-evaluating the triggering conditions of operations,

-controlling the execution of operations when the triggering

condition is satisfied,

-recognition of internal event instances,

-managing the transaction aspects of the application.

The Proquel Interpreter is viewed here, as a prototyping tool. It is
used by each of the other modules, but in particular by the event
processor for the execution of operation, condition, and event predicate
texts.

The relational DBMS [BOUF.86] is the foundation of the Rubis system. It

manages the relations in the prototype database as well as the relations
in the Meta-base containing the R-Schema.

1.4 The Validation Tools

The Validation Module performs the validation of the R-Schema, detecting

situations which are either incorrect or probably incorrect.

The Correcting Aid Module aids the designer to correct the anomalies

detected by the Validation Module.

R-Schema diagnosis requires a set of checking rules, which are presented
in the next section. We, then describe two other aspects, the strategy

used in anomaly detection, and the help provided to the designer in

correcting these anomalies.

157

based on the set of checking rules to contr

s

The Validation Module

the correctness of the R-Schema.

10108} LOPUOD uoyelado
siolawesed X8} aweu apoo palabbiy cm._wom_: pasabbuy
indino 10108} 10108} 10108} .
_ _ L aWeU s
ajeoipaid walgo
x9) uogelado | ; OUIELIO0SE
X8} uop x8] aweu o0 106611} PaLIEl P00 JuaAs
uonIpuoo uoNIpLOD uoRIPU0D
.. _ _
109iq0 paypow — _ _
0j08}
sweu uonesado — (u/A) aweu
uoneiado UoHpUOD
apoo uoiesedo | 8)nuapk uewop 8INQUNE
_4—1-abessow _
JUBAB JRUIBIXD
SIUIRLISUOD -
SIUNR.JISUOD AwBaiur 8pa0
suoiiesado Sfenusis)el sainquie 108igo 108100

S10108) SUOIIPUOD 1UsA

L | _ AN _ _ | B

\ 1uaAD |e20dWwa) /

uolsuel} oeuip 1000

ens feudlll € Aoboeyed
juane

BLBYDS Oneulp
BLIBYDS J1lElS

|

BWaYyos jenjdaeouod

Meta-Base design

Figure 3

158

The checking rule can be viewed as a predicate which must be satisfied
by the R-Schema. In this section, we present the taxonomy of these
rules, the implementation of them and the control levels at which they

belong.
L. } ol i Rul Archi !

The aim of this architecture is to provide the Validation Module with
the sequence of control rules to be checked at the requested level

explained below (cf section IITI.4).

The strategy, we have chosen, is to model the static aspects of all
components to be controlled and to associate to each component the set
of checking rules which validate it. We have used on one hand, the
aggregation, generalization and association constructors of semantic
models [BRO.82] [BRC.83] [CAU.88] to model the static aspects of the R-
Schema, whilst on the other hand, we have used the "encapsulation”
notion defined in the object-oriented approach [PIN.88], to associate
the checking rules to the component which they validate. The figure 3

illustrates the principal static part of the Meta-base which is checked.

For each constructor (aggregation, generalization and association), we
define a checking rule strategy. Consequently, this hierarchical
organization of components implicitly defines the control execution
order. We 1illustrate this mechanism by an example of an "aggregate"
component .

Consider the sub-set illustrated by thé following figure

R1{2)
R2(1)
conceptual R3(1)
schema
Ras(1) l static dynamic | RIS

schema schema
R16(2)

Figure 4 : representation of an aggregate component

This defines the component "conceptual schema" as an aggregate of two

components "static schema" and "dynamic schema”.

159

n_the " i hema”, we take the control rules which validate the
static part without reference to the dynamic part. For instance,
rule R36 is a method attached to "static schema" which expresses
that "when two objects have the same identifier, we must

integrate both objects attributes in the only one object".

i mi ", we take the control rules which validate
the dynamic part without reference to the static aspects. For
instance, the rules R15 and R16 express respectively that "Each
dynamic transition of an internal event must depend
chronologically on an dynamic transition of an external or
temporal event" and "When two dynamic transitions of
internal events ascertain state changes of the same object,

their predicates must be exclusive”.

n _the "con ual hema", we take the rules which validate the
relationship (or reference) between "static schema" and “"dynamic
schema”. For instance, the rules R1, R2 and R3 are attached to
"conceptual schema". The expression of these rules are
R1 : "Each object in the “static schema"” must also exist
in the "dynamic schema".
R2 : "Each object on which an event is ascertained, must
be defined as an object in the static schema”.
R3 : "Each object modified by an operation must be

defined as an object in the static schema”.

The execution order of controls for "conceptual schema” 1s simply
deduced from the component structure. We execute the control attached to
the "static schema" and the controls attached to the "dynamic schema”. in
any order and when the components are correct, we execute the control of
"conceptual schema" to validate the cross-references between "static
schema" and "dynamib schema". We illustrate this mechanism by the
following example.

If we define the following R-Schema

-The objects OBl, OB2 and OB3 are described, but OBl and 0OBZ2 have
the same identifying attribute,

—Two events EV1 and EV2 are defined. EV1 is an external event which
triggers the operation OP1l and EV2 is an internal event which
ascertains the state change of the object OB2 and triggering the
operation OP2.

-Two operations OPl and OP2 are defined and they modify respectively

OBl and OBR4.

160

Q @

OP1 OoP2

@) (=

Figure 5 : The dynamic part of the R-Schema

The validation of the "conceptual schema" at level 2 will occur as
follows:
We apply the rules attached to the components of the conceptual schema”.
Rule R36 is not respected on the "static schema" because OBl and OB2
have the same identifying attribute and the rule R15 is not respected
because the internal event EV2 does not depend on an external or
temporal event. So, the "conceptual schema" is incorrect. If we correct
this schema as follows
~the event EV2 ascertains the state change of the object OBl1l, then
the R-Schema satisfies rule R15,
-the changing of the identifying attribute of the object OB2 implies
that it becomes different from the identifying attribute of O0B1,
then the R-Schema satisfies rule R36.

2 G-@
EvV2

Figure 6: Graphical representation of the corrections

EV1

When we re-run the checking of the R-Schema, an error is detected by
rule R3 because the operation OP2 modifies the object OB4 which is not
defined as an object in the static part. If we correct the definition of
the operation OP2 for modifying the object OB3, the "conceptual schema”
becomes correct.

161

A similar approach, 1s applied for the "set" compopent and the "generic!
gomponent. In the case of the "set" component, illustrated by the figure
7, the checking module translates the "set" structure by on the one
hand, the iterative control function which validate each set members
(for instance, we check each "dynamic transition"), and on the other
hand, the execution of controls attached to the "set" component (for

instance, we check the correctness of "dynamic schema").

R15(1)

dynamic

schema
R18(2)

R26(1)
dynamic
transition R27(1)
R28(1)

FPigure 7 : Schema of a set component

The case of a "generic" structure, illustrated by figure 8, is more

event /[

complex.

internal external temporal
event event event

R \[R66(0) <[: R64(2)
67(0)
4[R68(2) R65(0)

Figure 8 : Schema of a generic component

We attache to the "specialized" component the rules which allow the
validation of
-its own components,

-the relationships between them,
~the relationships between the components of the "generic" item and

162

the components of the "specialized” item which corresponds to it.

This structure is translated by a checking function which first runs the
controls attached to the '"generic" component (e.g. we check the
component "event") and then the controls attached to the "specialized"
component which corresponds to it (e.g. we check the "specialized"

component "internal event" or "temporal event” or "external event}.

The advantages of this architecture are

-it provides a control triggering strategy which is systematic and
modular,

-Rubis model extensions or Meta-base improvements are easily
integrated into the Vvalidation Module as a direct result of the
flexible representation.

~the performed controls are independent of what interface is used to
input the part of R-Schema, so the Rubis architecture can integrate

new interfaces without any modification of the Validation Module.

III.2 Rule Taxonomy

We distinguish four rule classes
- conformance rules,
- consistency rules,
- completeness rules,
- accuracy rules.

This taxonomy is similar to that found in TODOS [PER.88],

Conformance rules : perform the "syntactic" checking of the R-Schema.
We means by this term the syntax of the model and the specification
language.

conformances rules

W\

uniqueness existence domain model* Proquel
rules rules rules rules text
rules

Figure 9 : Hierarchy of conformance rules

163

In this class, we can see five sub-classes shown by the previocus figure.

Unigueness rules : verify the uniqueness of a schema component. For
instance, "the event code must be unique in the set of event
codes" or "the attribute name of an object must be unique in

the set of object attribute names".

Existence rules ; check that each R-Schema component is defined. For
instance, "the name of the object which is modified by the

operation must be defined in the operation specification".

Domaip rules : check the value of a schema component according to
the domain definition. For instance, "An event type is either
'internal event' or 'external event' or 'temporal event'"

and "an operation type is either ‘INS' or 'UPD' or 'DEL'".

model rules : correspond to cardinality rules between components of
the R-Schema. For instance, "an event must trigger at least one

operation" or "an operation must modify at most one object".

Proguel text rules : express that for each component of the R~Schema
expressing Proquel text, must be correct according to the syntax of
the Proquel language. In other words that means these texts must be
validate by the Proquel Interpreter. For instance, "an event

predicate must be correct according to the Proquel syntax".

Consistency rules : check that there 1is no contradiction in the

specifications and that no contradiction can be deduced from the R-

Schema.

consistency rules

implicit consistency comportemental
parameter based on consistency
consistency the model

Figure 10 : Hierarchy of the consistency rules

164

We can decompose this class as the hierarchy illustrated by the

following figure.
We present three examples of consistency rules.
The first 1s associated to the notion of "CONTEXT" in Proquel. We

use the implicit parameter "CONTEXT" to refer to the object instance

on which an event can be ascertained. The following control can be

expressed : "each field prefixed by "CONTEXT" and used in the
operation text must correspond to an attribute of the object
on which the event triggering operation is ascertained”. This
rule belongs to Mimplici ram b nsi ncy" sub-class.

The second example can be seen, for instance, when an object 1is
accessed with modify statements in condition text, whereas "a
condition text should not modify an object's state”. This
control checks the consistency between the content of Proguel
condition text and the condition definition in the model. It belongs

to the sub-class "consistency based on the model™.

The last case is deduced from the specification when we can have
contradictory behaviours of the application in the same
specification. This defines the Mcomportemental nsistencv" sub-
class. As an example of this sub-class, consider the following R-
Schema illustrated in figure 11 : in the dynamic transitien of the
event, an unconditional operation OPl sets an attribute of OBl to 2,

whereas another unconditional operation OP2 sets the same attribute

to 5.

OP1 OP2

OB1.att=2 @ OB1.att=5

Figure 11 : graphical representation of dynamic transition

165

Rubis does not recognize execution order between operations
belonging to the same dynamic transition. The executicn of OP1
before that of 0OP2, or of 0OP2 before that of OPl, or their parallel
execution must give the same result. It is evident, in this example,
when EV1 is fired, the final value of "att" depends on the execution
order of OPl and OP2. The indeterminate result of the dynamic
transition is a proof of specification inconsistency. The following
rule detects this kind of inconsistency

R31 : "When an object instance is modified by more than one
operation in the same dynamic transition, the triggering
conditions must be mutually exclusive".

The detection of these types of inconsistencies can not be automated
from the Proquel specification as they are data dependent. This is
an interactive rule which can not be implemented using the Proquel
language because we want to use a graphical way to explain the

situation to the designer.

Completeness rules ; verify that there is no isolated or missing

component of the R-Schema. We propose the decomposition of this class as

follows

completeness rules

isclated missing concept
concept rules
rules

Figure 12 : Hierarchy of the completeness rules

For example, "an operation must be triggered by at least one

event". This rule belongs to "isolated concept rule” sub~-class.

Another case corresponding to "missing concept rule” sub-class is,

"the name of the object which is modified by an operation
and mentioned in the operation specification must be defined

as an object with type ‘'object'™.

Accuracy rules : detect probable inconsistencies in the R-Schema
concerning the accuracy of the specifications as they relate to the

application.

166

These rules point out some critical situations to the designer enabling

them to be examined in more detail, thus determining whether or not

these situations to the designer are in fact correct.
For example, the vivacity of a dynamic graph is a notion taken from
the gquasi-vivacity of Petri Net Theory ([BRA.83], [BER.79]. This
control 1s expressed by the rule R11 "each operation that may be
triggered by an event may be processed". We define a dynamic
transaction as the dynamic transition of an external or temporal
event, and with the dynamic transitions of subsequent internal
events depending chronologically on the dynamic transition of the
preceding event. The rule is checked by presenting each dynamic
transaction to the designer and confirming the occurrence
feasibility of each internal event and each operation belonging to

this dynamic transaction.

Let us consider a second example, the analysis of the dynamic
circuits. A dynamic circuit is defined by the following rule : "when
an event depends chronologically on itself, we detect a
dynamic circuit. It is 'infinite’, if the sequence of
related events is infinite. This happens when all the
operations belonging to this circuit are wunconditional and
when event predicates are always true after the operation
execution. The infinite circuit is not necessarily incorrect
but it is forbidden in the Rubis system because it can not
be prototyped". This rule is checked by presenting each dynamic

circuit to the designer and its correctness being confirmed.

IYY m m ion h rul

We have tried to limit the programming work with the definition of the
generic type according to the hierarchy as presented previously. For
example, consider the hierarchy of the completeness rules illustrated by
figure 12. In our case, the "is-a" hierarchy expresses more the
genericity notion issued from abstract data typed languages like ADA
[BAR.88) [BOO.88] than inheritance notion coming from object-oriented
languages as Smalltalk [PIN.88] [MEY.88].

So, the "Missing Concept" rule and "Isolated Concept" rule are two
generic types of rule on which we associate a program model representing
the rule. Then, we adapt this program model to the particular situation
of R26, for example, by instantiation of input parameters defined in

this program model described below.

167

The program model is a Proquel function as shown in figure 13.

FUNCTION missing_concept_rule ($type_mc : STRING,
$relation_mc : RELATION_NAME,
$attribute mc : ATTRIBUTE NAME,
$type_wme : STRING,
$relation wmc : RELATION_NAME,
Sattribute wmc : ATTRIBUTE_ NAME,
Sattribute_id wmc : ATTRIBUTE_NAME)
VAR $result : BOOLEAN;
VAR $x : TUPLE;
BEGIN.
FOR EACH $x IN (SELECT [$attribute_wcm], [$Sattribute_id wem]
FROM (S$Srelation_wcm])
DO BEGIN -
IF (NOT EXISTS [$relation_mc]
WHERE [$attribute_mc]=[$x.attribute_wmc])
THEN BEGIN
$result :=FALSE;
affichage_erreur($type_mc, $x.attribute_wmc,
$type_wmc, $x.attribute_id _wme):

END;
ELSE S$result:=TRUE;
END;
RETURN (Sresult):
END;

[$y] : corresponds to the value of the variable $y

Figure 13 : Proguel Function of the "Missing Concept" rules

The following defines the meaning of the input parameters of the program

model in figure 13

-$type_mc represents the type of the 'missing concept'’,

—-$relation_mc represents the Meta-base relation (or table) where
the 'missing concept' (Stype_mc) is stored,

-$attribute_mc represents the identifier attribute of the previous
relation ($relation_mc),

-$type_wmc represents the type of the 'concept' which refers the
'missing concept' ($type_mc),

-§relation_wmc represents the Meta-base relation where the previous
concept ($type _wmc) is stored,

-$Sattribute_wmc represents the attribute which refers the 'missing
concept' (Stype mc) in the previous relation ($relation_wmc),

-$attribute_id wmc represents the identifier attribute of the

relation represented by Srelation_wmc.

168

The program corresponding to the rule R26 consists to the following

instantiation
~$type_mc : ‘operation' is the missing concept,
-Srelation mc : ‘'ope' 1s the Meta-base relation name where is stored

all the operations,

-$attribute mc : 'opn' is the attribute name in the relation 'ope'’
which represents the operation code,

-$type_wmc : 'event' is the concept where ‘'operation' is referred
and misses,

-$relation wmc : 'trigger' is the Meta-base relation name where are
stored the operations triggered by events,

-Sattribute_wmc : 'opn' is the attribute name in the relation
'trigger' which refers the operation triggered by a given event,

-$attribute id wmc : 'evtn' is the attribute name in the relation

'trigger' which represents the event code.

We apply this principle for all rules which are automated and we use the
Proquel language to implement these rules.

1Ix.4 Ccontrol Levels

In this section, we present the definition of three control levels
according to three successive development stages of the R-Schema. Then,

we describe how we trigger these different levels.

The basic principle which must be respected by the Validation Module 1is
to accept the incomplete specifications because the design process is
incremental. Nevertheless, a satisfying level is insured at certain
development stages of the R-Schema. We have determined the three
following levels

Level 0 is the imposed level on all the specification interfaces. We
have chosen to trigger only a sub-set of conformance rules for keeping
the flexibility of each interface given to the designer. For instance,
if we define an operation which modifies the object OB2 and OB3, the
rule which says that "an operation modifies only one object", is

not respected. In this case, the zeroth level of control is not
verified.

169

Level 1 corresponds to the development of the complete conceptual schema
where all the executable texts of condition, operation, factor and event
predicate are not necessary defined. We check here

-the conformance rules which do not belong to the previous level and

do not concern executable texts,

-the completeness rules which do not concern executable texts,

~the consistency rules which do not need executable texts.
For instance, consider the R-Schema where an operation modifies the
object OBl, is defined and this operation is not triggered by any event.
This incorrect feature is detected by the rule R26 which expresses that
"an operation must be triggered at least by one event". This

incompleteness is recognized at this level.

Level 2 corresponds to the development of the executable complete
conceptual schema. At this level, all the checking rules based on
executable Proguel texts are run, in addition to the rules of the
preceding levels. For instance, consider the R-Schema where the object
OB1 used in the text of the condition C2, is not defined. This error is
detected at this level by the rule R30 which expresses that "each
object used in the text of condition must be defined".

Each higher level subsumes the lower levels. The triggering of the
different level controls is either automatic or when the designer wants

to check the R-Schema.

Level 0 checking is automatically performed when an specification is
entered with any design interface. The level 2 checking is either
automatically performed when the designer activates the prototyping
tools or when the designer wants to check the specification. Level 1
checking is performed when the designer wants to check the R-Schema.
Levels 1 & 2 can check the entire R-Schema or just a part of it. The set
of controls can be decomposed to the controls on the static or dynamic

schemas.

Iv_¢ £ Aid Modul

We limit this section to the presentation of the basic principles of the
correcting help provided to the designer in the Rubis system and to the

brief presentation of the organization of the suggested corrections.

The aim is to assist the designer to correct the errors of the R-Schema

highlighted by the checking module.

170

In general, it 1s possible to identify two causes of errors, a
misunderstanding of the theory underlying and a bad implementation of
this theory. The Correcting 2id Module 1integrates two kinds of help

corresponding to two errors classes

-if a misunderstanding of the Rubis model concepts or Proquel
language constructions is the cause of errors, we help the designer
by giving the concept definition corresponding to the detected error
and providing a set of examples and a set of exercises for
correcting the situation. This solution is taken from the "tutoring
software™ in which the learning strategy is composed of three items:
definitions, examples and exercises [LEF.84). We provide this
help for each checking rule. For the errors detected by the
conformance rules, this help allows to the the designer to correct
the R-Schema. This is provided when the designer requests it because
of a failure to understand the reasons for the highlighted error.

-if a bad design or bad usage of model concepts, is the cause of

errors, we help the designer by the answer to the following
question:

What are the changes to be made to correct this situation ?2
For each detected error, we suggest to the designer a set of
possible corrections. The designer can choose one of them or
refuse the proposed suggestions. This help is provided when the
designer requests it because of the failure to understand how to

correct the situation.

For implementing the suggested corrections, we apply the same approach
used tc implement the checking rules. We use the hierarchy of rules
described previously (cf section III.2) and we define for each generic
type of rules a set of possible corrections which is implemented by a
model program. This model program will adapt to the particular mistakes
detected by the checking rules by the different values taken by the
input parameters.

We illustrate this approach by the example of the completeness mistakes.
The hierarchy of the completeness mistakes is the same as that of
completeness rules : "missing component™ mistakes and "isolated
component” mistakes.

When we have a mistake detected by the "missing component" rule, we can
suggest two possibles corrections

-if the missing component is useful, we define it,

7

-if the component may cause a referential error by erroneously

referring to a non existent component, so we correct the reference.

We can adapt this general situation with the different values of the
following input parameters to the mistake detected by a checking rule

- tm : type of the missing component,

- itm : instance of the type defined by tm,

- tom : type of component where tm is referred,

- itom : instance of the type defined by tom,

- trel : type of the relationship between the types tm and tom.
Let us consider the sub-set of the R-Schema where is defined
-the objects OBl and OR3,
-the internal event EV1 occurring on the state change of OBl and

triggering the operation OP1 shown in following figure 14,

-the operation OP1l modifying the object OBZ.

(o) > (=

EV1

Figure 14 : Dynamic graph of the R-Schema

A mistake is detected by the rule R2 because the object OBZ modified by
the operation OP1 is not defined. Bach mistake detected by the rule R2
is adapted from the general situation by the following instantiation
-the type of the missing component (tm) = 'object’,
~-the type of the component where 'tm' is referred (tom) =
'operation',
~-the type of relationship between 'tm' and 'tom’ (trel) = 'modified
by'.
In our particular mistake, we adapt the help associated to the rule R2

with the following wvalues of the input parameters

~-the instance of the missing object (itm) = 'OB2',
~the instance of the operation where the object is referred (itom) =
'OP1'.

So, we apply this approach for all mistakes detected by the Validation
Module.

172

V_conclusjion

In this paper, we have presented the Rubis system which provides
-a model and a specification language to aid in the development of
the specification of the R-Schema,
-a module to determine the correctness of the R-Schema,
-a module to assist in the correction of any mistake detected by the
previous module,
—a prototyping mechanism to allow the execution of the specificaticn
on test cases,

-various interfaces to input the specification in the Rubis system.

We have discussed in more detail the checking rule architecture and the
checking rules taxonomy. Then we have presented the principles of the
Correcting Aid Module.

These two modules are integrated in the Rubis system implemented in the
SUN 3/60 workstation.

The perspective of this work is, on the practical way, to achieve the
implementation of these two modules and, on the theorical way to improve
the Correcting Aid Module to the architecture of "intelligent tutoring
software"” [NIC.88] where the module adapt the help to the designer which
uses it. Our goal is also to integrate more checking rules in the
Validation Module like the quality heuristics for R-Schema improvements
or checking rules based on the knowledge of the application domain
described in [WOH.88].

ACKNOWLEDGEMENTS : We wish to thank Bob Jansen for reading and

commenting this paper.

REFERENCES

[BAR.88] BARNES J. : "Programmer en ADA" , InterEditions (ed), 1988.

[BER.79] BERTHOMIEU B. " Analyse structurelle des réseaux de PETRI
méthodes et outils ", Thése de Docteur Ingénieur, Toulouse,
1979.

[BOO.88] BOOCH G. : "Ingéniérie du logiciel avec ADA, InterEditions
(ed), 1988.

[BOU.86] BOUFARES F.,ELKABRBAT J., JOMIER G.,OUNALLY H. : " Le
systéme de Bases de Données Relationnelles PEPIN3", Rapport
de Recherche ISEM N°34, Univ. PARIS SUD, Mai 1986.

[BRA.83] BRAHMS : " Théorie et pratique des réseaux de PETRI",

Masson (ed) 1983.

173

[BRO.82] BRODIE M.L., SILVA E. : "Active and Passive Component
Modelling : ACM/PCM", in [CRI.82].

[BRO.83] BRODIE M.L. : "On the development of Data Models™, in On
Conceptual Modelling, Perspectives from Artificial
Intelligence, Databases, and Programming Languages, Edited
by Brodie M.L., Mylopoulos J., Smidt J.W., Springer-
verlag,1983.

[CAU.88] CAUVET C. : " Un modéle et un outil d'aide & la conception
des systémes d'information ", Thése de doctorat de
1l'université Paris VI, 1988.

[CRI.82] " Information Systems Design Methodologies : a comparative
Review", Olle T.W., Sol H.G., Verrijn-Stuart A.A. (eds},
North-Holland (pub), 1982.

[LEF.84] LEFEVRE J.M. : " Guide pratique de 1'E.A.0.", Cedric
Nathan, 1984.

[LIN.88a] LINGAT J-Y., COLIGNON P., ROLLAND C. : "Rapid Prototyping
: the PROQUEL Language", Proc. of the 14 th VLDB

Conference, Los Angeles, 1988.

[LIN.88b] LINGAT J-Y : ™ RUBIS : un systéme pour la spécification et
le prototypage d'applications Bases de Données ", These de
doctorat de 1l'université Paris VI, 1988.

[MEY.88] MEYER : " Objected-Oriented Software Construction ",
Interactive Software Engineering, 1988.

[NIC.88] NICAUD J.F., VIVET M. : "Les tuteurs intelligents
réalisation et tendances de recherche", TSI Vol 7, 1988.

[NOB.88] NOBECOURT P., ROLLAND C., LINGAT J-Y. : " Temporal
Management in an Extended Relational system 7, BNCOD6.
Conference, England, July 1988.

[ROLL.82] ROLLAND C., RICHARD C. : "™ The REMORA Methodology for
Informatiion systems Design and Management " in [CRI.82].

[ROLL.87] ROLLAND C., FOUCAUT 0., BENCI G. : " Conception des
systémes d'information : la méthode REMORA ", Eyrolles
(ed), 1987.

[ROLL.88] ROLLAND C., CAUVET C., NOBECOURT P., PROIX C., COLIGNON
P.,LINGAT J-Y., SOUVEYET C. : " The RUBIS system ", CRIS8S8,
Computerized Assistance during the Information System Life
Transition, September 1988.

[SMI.77a] SMITH J.M., SMITH D.C.P. =« * Database Abstractions
Aggregation”, Comm. of ACM, Vol 10, n®6, 1977.

[SMI.77b] SMITH J.M., SMITH D.C.P. : " Database Abstractions
Aggregation and generalization”, ACM Trans. on Database
Systems, Vol 2, n°2, 1977.

[WOH.88] WOHED R. : "Diagnosis of conceptual schemas", IFIP WG2.6/
WG8.1 Working Conference on "the role of Artificial
Intelligence in Databases and Information Systems", Canton,
July 1988.

174

