
Rule-Based Requirements Specification and Validation

A. Tsalgatidou V. Karakostas P. Loucopoulos

EDP Department

Greek P.T.T

Megalou Vassiliou 6-8,

Rouf, Athens 118 54

Greece

Dept. of Computation,

UMIST, P.O. Box 88,

Manchester M60 1QD,

United Kingdom

Abstract

Requirements specification has only recently been acknowledged as one of the

most important phases in the overall software life cycle. Since the statement of a

complete and consistent set of requirements involves user participation, our

approach investigates how user oriented formalisms and techniques could be

employed for the specification and capturing of requirements. We propose the use

of rules as a natural means for expressing the application domain knowledge, and

introduce a number of techniques such as semantic prototyping and animation for

the validation of the requirements.

Keywords: requirements specification, executable specifications, rule bases, animation,
Petri-nets, logic programming, conceptual modelling.

251

Introduction

The expansion of the Information Technology sector in recent years has been responsible for

increasing demands for bigger and more-complex computer applications. As, however, the

computer systems' sophistication increases, the inadequacy of the traditional software

development approaches becomes apparent. The major drawbacks of conventional software

development methods are identified to be in the phase of requirements capturing/specification.

While most of the approaches [deMarco 78] [Jackson 83] are good in describing the artifact

(software system) through its various phases (i.e. as specifications, design and code) they fall

short in their provision of adequate expressive power for describing the application domain.

Even worse, many methods neglect to provide support for the analyst during the important phase

of validating the captured requirements. Consequently, the state-of-the-art practice results in

systems which do not meet user requirements, and which are expensive to maintain, since it is

well known that the fixing of errors occurring due to misunderstanding of user requirements, is

more expensive when the system has been implemented [Yeh et a184].

We see the requirements specification phase as consisting of two major activities, namely

requirements capturing, and requirements analysis [Dubois Hagelstein 86].

The objective of the requirements capturing phase is to depict the desired contribution of the

software system in terms of application domain concepts and their interrelationships. The

objective of the requirements analysis phase is to identify how the modelling assumptions are

interrelated, and how they affect the future software system. As a consequence, the two phases

pose different demands on the employed requirements formalism and technique. In order to

model application domains of significant complexity we need an adequately rich formalism which

provides a repertoire of concepts that is sufficiently rich for our ontological assumptions about

the application domain and semantic accounts about every modelled aspect of the application

domain [Mylopoulos 86]. In order to identify the consequences of our modelling assumptions

we need a model with deductive power [Dubois et al 86].

Our approach is particularly suited for a class of applications known as data intensive,

transaction-oriented information systems.These systems are characterised by large, often

decentralized databases containing persistent application information, accounting for more than

80% of the investments in information systems in use today. We have observed that the

requirements for such systems can be captured in terms of rules, conveying information about

various aspects of the structure and behaviour of the domains. In this respect our line of research

is similar to the one carried by approaches which advocate the rule-based specification of

information systems [van Assche et all 88]. However, we pay particular attention to the

252

validation aspect, and this is where this paper's discussion focuses on.

The structure of this paper is as follows. Section 1 introduces the modelling formalism used for

capturing the static aspects of the application domain knowledge. In Section 2, the modelling

techniques for the dynamic aspects of the application are modelled. A validation technique known

as semantic prototyping is the subject matter of Section 3, whilst in the next section a rule

animation technique, used for validating the system's dynamic aspects is discussed. We conclude

with an overview and summary of our approach.

1 Static Modelling Constructs

The conceptual modelling formalism employed by our approach is an extension of

entity-relationship based models [Chen 76] [Nijssen 89] enriched with the addition of constructs

used for specifying domain knowledge which cannot be expressed by entities and relationships

alone. In this respect, the formalism comes closer to contemporary conceptual modelling

languages [Greenspan 84] and knowledge representation formalisms [Sowa 84].

The primary static modelling constructs are entities, relationships and static rules. Entities are the

phenomena of interest within the application domain. Relationships are associations between the

entities which are meaningful and useful fxom the information system's viewpoint. In contrast to

the entity-relationship-attribute model and its variants, our approach does not make any

distinctions between entities and attributes, as such distinctions are made usually on subjective

criteria of the analyst. According to our viewpoint, attributes are equally important to entities,

from an information system's perspective, and should be modelled as such. The purpose of a

rule is to constrain the allowable set of entities and associations. The abstraction mechanisms

employed by our approach in order to cope with the size and complexity of the application

domains are classification, generalization/specialization and aggregation [Borgida et al 84].

Classification refers to the ability to model a set of similar concepts as a separate object, eg. the

concept product is an abstraction over a set of products. Generalization/specialization refers to

the ability to associate classes of concepts using superset/subset relations. A high demand

product is a subclass of product in the sense that high demand products are also

products.Similarly, ordinary product is another subclass of product. Finally, aggregation is the

abstraction technique of viewing a concept as the sum of its parts (constituting components). A

product can be considered as consisting of a product code, product price and product description.

Rules are pieces of knowledge used to further distinguish the application domain from similar

ones. Static rules are an important modelling constructs in the sense that they increase our

specification power beyond the definition of entities, relationships and cardinality constraints. A

static rule is a linguistic expression which describes the state of affairs in the application domain

253

at any time. A static rule for example may state that no product can be a high demand product and

an ordinary product at the same time. This would be stated as follows.

static_rule1: high_demand_product #nd ordinary_product are mutual lv

d is jo in t

Static rules can run to any size of complexity, relating for example, a number of different entity

and relationship classes as in the following example: "High demand are those products which

have associated with them a number of at least ten incoming orders of at least £100 each, over the

last six months". This would be stated as follows.

static__rule2: product.X is high_demand_product if #(incoming_order.Y

about product.X and incoming_order.Y of value > 100) < 10.

In summary, the static modelling constructs as applied to the modelling of a stock control system

are shown in Figure 1.

2 Dynamic Modelling Constructs

The ability to model the dynamic aspects of an application domain is of paramount importance,

therefore our approach provides a number of model l ing constructs for this purpose. An

application domain is perceived as changing due to a number of events. Events are the carriers of

change within an application domain in the sense that they modify the structure of the domain by

introducing, deleting or modifying instances of entities and relationships. Similarly to the

modelling of static constructs we provide a number of abstraction mechanisms for modelling the

dynamic constructs. Events are stated as dynamic rules which consist of three parts, namely

a when_part which is a boolean expression over the state of affairs of the

appl icat ion domain, t ime condit ions, and signals which are generated within

the appl icat ion domain (internal signals) or within its environment (external

signals).

a precondit ion which is a boolean expression over the appl icat ion domain 's

state of affairs. A precondit ion describes the set of states in which an event

can take place.

• an action part which is the set of actions introduced by the event in terms of

254

in t roducing/delet ing new entities and establ ishing/destroying associations

between them.

, o uoL II IIr, description stock quantity

product

to

supplier

I ' I for ~ . '"
ordinal_ figh_demand.
product ~roduct

Legend:

[- ~ enlity class

isa

- - ~ part-of

incoming_
order

~],] I processed_
from ~ n n order

customer

payer_statu~

date

Figure 1: Conceptual model of a stock control system

In order to illustrate these concepts in more detail, consider the stock control system described in

the last section.When a signal from the environment indicates that an order from a customer has

arrived, then, if the status of the customer as a payer is bad, an instance of a backorder is created.

If, however, the payer status of the customer is good then an instance of an order is created. This

knowledge of the stock control system's dynamic behaviour is captured in two dynamic rules as

follows.

dynamic_rtfle 1:

wheNignal_order_arrived(customer.C, product.P, quantity.Q)

if payer_status of customer.C = 'bad'

255

thencreatd0ackorder(customer.C, product.P, quantity.Q, date(NOW)).

dynamic rule2:

wh~nsignal order_arrived(customer. C,product.P, quantity.Q)

"__ffpayer__status of customer.C = 'good'

ther~'reat~order(customer.C, product.P, quantity.Q, date(NOW)).

The above two rules, are examples of rules which are triggered by the environment, in the form

of external signals. Other rules, however are triggered when a particular operation takes place in

the application domain. In the domain of our case study, orders are processed only if, after the

order is fulfilled, there remains sufficient stock for the products (above a given reorder point).

Because of this, two more dynamic rules related to the activity of process order are entered. The

rules are triggered by an internal signal called request_process_order and are shown below.

dynamic__rule3:

dynamic rule4:

whensignal_request process__order(customer.C, product.P, quantity.Q)
i f(quantity.Q- stock of product.P > reorder_point of product.P)
thencreateprocessed_order(customer.C, product.P, quantity.Q, date(NOW)).

whensignal order_arrived(customer.C, product.P, quantity.Q)
ifnoI quantity.Q - stock of product.P > reorder_point of product.P)
thcncreate~rder on hold(customer.C, product.P, quantity.Q, date(NOW)).

When an internal signal calledprocessorder on hold arrives, the orders which are on hold are

processed. Also, a signal about the arrival of new stock will result in an increase in the product's

quantity on stock. These are illustrated as follows.

dynamic ruleS:
whensignal_process_order_on__hold(order_on_hold.O)
then creat~rocessed_order(customer.C of order_on hold.O,

product.P of order on hold.O, quantity.Q of order_on_hold.O);
destrovorder on hold.O.

dynamic_rule&
w hensignal_new_stock_arrived(product.P, quantity.Q)
thenincreas~tock.S of product.P !zEquantity.Q.

The use of entity class hierarchies allows us to give inheritance semantics to the dynamic rules. A

dynamic rule is said to apply also to a class' subclasses unless otherwise stated. An example of

rule overriding is as follows. For high demand products, the orders are processed immediately,

irrespectively of whether the stock may fall below the reorder point or not, if the customer who

issues the order has a good payer status. Effectively, this means that dynamic rule 3 will be

overwritten by dynamic rules 3.1 and 4.1, in the case of high demand products, as follows.

dynamic_rule3.1:
when signal_request_process_order(customer.C, high_demand_product.P,

quantity.Q)
i_f payer_status of customer.C = 'good'
then cre, at~processed_order(customer.C, product.P, quantity.Q, date(NOW)).

256

dyoamic_rule4.1:
whensignalrequesLprocess_order(customer.C, high_demand_product.P,

quantity.Q)
if payer_status of customer.C = 'bad'
then creat~rder on hold(customer.C, product.P, quantity.Q, date(NOW)).

The use of dynamic rule and entity hierarchies with inheritance overridance is illustrated in Figure

2.

3 Static Model Validation

Validation is an all-important phase, since its omission could result in misconceived and

inappropriate models of the application domain, which wiU result in software systems that fail to

realize their objectives. The validation phase is essentially ma attempt to prove that the model is

internally consistent and conforming to the users' conceptualization of the domain. Verifying the

internal consistency of the model is a task that can be automated to a significant extent [Wohed

87]. This essentially requires that the model is expressed in a formalism with deductive power.

We have opted for mapping the modelling constructs to an executable logic language, something

that combines the advantages of a rigorous formalism with those of rapidprototyping [Budde et

a184]. Checking the internal consistency of the model involves the following activities.

1 , ~ product L

t
/druY?e3mic2~ '1 Ligh_demand I ' '/dY~e4mic-~, ~

Io,,, A;ro,,nct 1-\ ,,° I o,,,

I °.

LEGEND
A dynamic rule.

I I entity class
isa

Figure 2. Entity and dynamic rule hierarchies

257

Checking the well-formedness of the model,, i.e. that it has been constructed

according to the syntax rules of the modelling formalism. Checks in this

category would include, for example, detecting cyclic isa hierarchies (i.e.

two entity classes are mutually subclasses of each other), detecting

inconsistencies in the use of aggregation relations (two concepts cannot be parts of each

other at the same time), etc.

Checking the consistency and completeness of the rules, i.e. detecting,

self-contradicting or inconsistent rules.

Clearly, checking a model's consistency and completeness is not a task that can be fully

automated, because of the difficulty to construct a complete logic theory to check the rules

against. To overcome this problem we propose a technique known as semantic prototyping

[Karakostas Loucopoulos 88] which advocates the active participation of the user in the

validation phase. The technique draws results from the theory of logic [Tarski 56], by viewing

the model as a logic theory which admits a number of interpretations. The technique proceeds by

trying to refute the model's validity by trying to prove that it admits an interpretation (i.e. a set of

instances of entities, relationships and rules) which is inconsistent. It also attempts to prove the

model's agreement with the user's perception of the application domain by trying to find

interpretations agreeable to the user. To make this approach clearer, consider the following

example. Assume that the analyst manages to find a particular product which is classified both as

high demand and ordinary. This disproves the validity of static_rule1 which states the

disjointness of the two entity classes. This contradiction can be resolved by reconciliations with

the user which will result in static rule1 being dropped, or perhaps in the introduction of an

additional category of products.

Another facet of semantic prototyping involves the execution of realistic scenarios concerning

aspects of the application domain. The user is guided step by step to explain how the test data

conform with the static constructs of the application domain. This technique can reveal

inconsistencies and omissions in the model definitions. For example, two real customer orders, a

valid and an invalid one, could be used as test data. The user would be asked to explain,

according to the rules of the application domain model, why he would accept the first, and reject

the second order. If he was unable to do so, then a missing or wrongly stated rule could be

detected.

The semantic prototyping technique constitutes a significant improvement over traditional

validation techniques like structured walkthroughs. It can be automated to a large extent due to

the use of Prolog as the target language on which the modelling constructs are mapped.

258

However, the technique requires an analyst with experience in the application domain, able to

select the appropriate test cases, and to identify potential sources of inconsistencies within the

model. The same applies to the validation of the dynamic aspects, discussed in the next section.

4 Dynamic Model Validation

The need to validate the dynamic aspects of the modelled domain has made necessary the

invention of a number of techniques, similar to those used for static model validation described in

the previous section. The techniques aim at proving the following things:

the internal consistency of the model's behaviour

its consistency with respect to the user's perception of the application domain

the model's completeness.

Towards these ends, we have adopted a Pelyi Net representation of the dynamic rules, in order to

give them formal semantic accounts and to define their interdependencies in a rigorous manner.

The Petri-net formalism [Petri 62] and its variants (augmented Petri Nets) have received

considerable attention in the area of information systems modelling [Zisman 76]. The graphical

formalism introduced in this section uses places to represent signals (the WHEN part) and

transitions are inscribed with the IF and THEN parts of the rules. Since every rule needs a signal

to be triggered, all the transitions will have at least one input representing the triggering signal. In

Figure 3 we give a Petri Net representation of the dynamic rules applying to class product,
introduced in Section 2.

The major advantage of the net model is that its graphical representation coupled to its formal

semantics leads to its validation using animation techniques. A prototype tool has been developed

to edit and animate nets with places as signals and transitions inscribed by rules [Tsalgatidou 88].

Animation of the model can help in detecting redundant and conflicting situations by highlighting

the rules inscribed to every transition every time a transition is enabled. Redundancy occurs

when two or more rules can fire in the same situation giving the same results whereas conflict

occurs when rules firing in the same situation produce contradictory results.

One of the model's feature's is that the number of tokens that each place can hold is countable.

This feature enables the detection of circular rules by the assignment of output places to some

transitions which would serve as counters of the number of times the transitions fire. A place

assigned as output to a transition receives a token every time the transition fires. If this place is

no input to any other transition, its tokens will not be consumed. Therefore the number of tokens

that this output place will be holding will correspond to the number of times that the transition

259

has fired. If such a place is continuously receiving tokens, this may be an indication of the
existence of circular rules.

s igna l_~rde r_on__ho ld

signal_order _arrived processed_order

amic_rule2 '? J / "

dyn~~~uesLp~rd:~c-ru]e4 ~~]d
backorder

Figure 3: A Petri Net for dynamic rules affecting product

Missing rules can also be detected by animation. For example, if a signal, which is expected to

trigger some actions, has been generated and nothing is happening, this may mean that some

rules are missing. Another indication of missing rules is when there are some transitions which

never become enabled. If the triggering part of the rule is internal to the system, this would mean

that the necessary rule for the production of the signal is missing.

Conclus ions

As the complexity of software applications continues to increase, it becomes more apparent that

the traditional approaches focusing in specifying the artifact instead of its role within the

application domain wiU become more unsuitable. For a large category of computer applications

like embedded systems, office information systems and other knowledge based/expert 260

applications the need to model the application domain in user-oriented terms becomes apparent

[Borgida et ai 85].

Our approach succeeds in providing the following.

a rich formalism for expressing knowledge about complex domains in

user-oriented terms, and

techniques for validating the models' correspondence to the users perception

of the application domain.

Compared to contemporary knowledge-based approaches to requirements modelling[Anderson

Fickas 89] [Loucopoulos Champion 89] [Reubenstein Waters 89], we put more emphasis on the

validation aspects, since it is them which become critical in large and complex applications.

Currently, prototype validation tools, implemented in languages like Prolog and Pop-11, are

running on Sun workstations. The plans for future enhancements of our approach include the

automation of the semantic prototyping technique using case-based reasoning [Hammond 86],

i.e. guiding the validation process using experience acquired from similar domains.

References

[Anderson Fickas 89]
Anderson, J. S., & Fickas, S. A Proposed Perspective Shift: Viewing Specification
Design as a Planning Problem. Proc. Fifth Int. Workshop on Software Specification
and Design, May 19-20, 1989, Pittsburgh, PA, USA.

[van Assche etal 88]
van Assche, F., LayzeU, P. J., Loucopoulos, P., Speltincx, G. Information Systems
Development: A Rule-Based Approach. Journal of Knowledge Based Systems,
September 1988.

[Borgida et al 84]
Borgida, A., Mylopoulos, J., & Wong, H. K. Z. Generalization/specialization as a
basis for software specification. In Brodie, M. etal (eds.)."On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases and Programming Languages.
Springer-Verlag, New York, 1984.

[-Borgida et a185]
Borgida, A., Greenspan, S., Mylopoulos, J. Knowledge Representation as the Basis
for Requirements Specification. COMPUTER, April 1985.

[Budde 84]
Budde, R. (ed.) Approaches to Prototyping. Springer-Verlag, Berlin, 1984.

[Chen 76]
Chen, P. P. S. The Entity-Relationship Model: Towards a Unified View of Data. ACM
TODS, Vol. 1, No. 1, March 1976.

[Dubois Hagelstein 86]
Dubois, E. & Hagelstein, J. Reasoning on Formal Requirements: A Lift Control

261

System. Proc. Fourth Int. Workshop on Software Spec. and Design, April 3-4, 1987,
Monterey, CA.

[Dubois et al 86]
Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifau, A., Williams, F. The
ERAE Model: A Case Study. In "Information System Design Methodologies: improving
the practice", Olle, T., W., Sol, H., G., Verrijn-Stuart, A., A. (eds). North-Holland
Publishing Company, IFIP 1986.

[Greenspan 84]
Greenspan, S., J. Requirements Modelling: A Knowledge Representation Approach to
Software Requirements Definition. Technical Report No. CSRG-155, University of
Toronto, 1984.

[Hammond 86]
Hammond, K. "CHEF": A Model of Case-Based Planning. In Proc. of the Fifth
National Conf. on Artificial Intelligence, Philadelphia, PA, 1986.

[Jackson 83]
Jackson, M. System Development. Prentice-Hall International, London, 1983.

[Karakostas Loucopoulos 88]
Karakostas, V. & Loucopoulos, P. Verification of Conceptual Schemata Based on a
Hybrid Object Oriented and Logic Paradigm. Journal of Information and Software
Technology, Vol. 30, No. 10, December 1988.

[Loucopoulos Champion 89]
Loucopoulos, P. & Champion, R.E.M. Knowledge-based Support for Requirements
Engineering. Journal of Information and Software Technology, Vol. 31, No. 3, April
1989.

[deMarco 78]
deMarco, T. Structured Analysis and System Specification. New York:Yourdon, 1978.

[Mylopoulos 86]
Mylopoulos, J. The Role of Knowledge Representation in the Development of
Specifications. In "Information Processing 86". Kugler, H. J. (ed.) Elsevier Science
Publishers B. V., IFIP 1986.

[Nijssen 86]
Nijssen, G. M. On Experience with Large-scale Teaching and Use of Fact-based
Conceptual Schemas in Industry and University. In Proc. IFIP Conference on Data
Semantics (DS-1), Meersman, R. & Steel, T. B. Jr. (eds.), Elsevier North-Holland,
Amsterdam 1986.

[Petri 62]
Petri, C. A. Communication with Automata. Suppl. to Tech. Rep. RAD C-TR-65-337,
Vol. 1, Grifiss Air Force BAse, NY, 1966 (translated from "Kommunication mit
Automaton", University of Bohn, Germany, 1962.

[Reubenstein Waters 89]
Reubenstein, H. B. & Waters, R. C. The Requirements Apprentice: An Initial Scenario.
Proc. Fifth Int. Workshop on Software Specification and Design, May 19-20,
Pittsburgh, PA, 1989.

[Sowa 84]
Sowa, J. F. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Publishing Company, 1984.

[Tarski 56]
Tarski, A. Logic Semantics and Metamathematics. Oxford Univ. Press, 1956.

262

[Tsalgatidou 881
Tsalgatidou, A. Dynamics of Information Systems: Modelling and Verification. Ph.D.
thesis, Dept. of Computation, University of Manchester Institute of Science and
Technology, June 1988.

[Wohed 87]
Wohed, R. Diagnosis of Conceptual schemas. SYSLAB Report No. 56, Univ. of
Stockholm, Sweden, 1987.

[Yeh et a184]
Yell, R. T., Zave, P.. Conn, A. P. & Cole, G. E. Jr. Software Requirements: New
Directions and Perspectives. In "Handbook of Software Engineering", Vick, C. R. &
Ramamoorthy, C/V. (eds.), Van Nostrand Reinhold Company Inc., 1984.

[Zisman 76]
Zisman, M. D. A Representation of Office Processes. Dept. of Decision Sciences,
Univ. of Pennsylvania, WP 76-1-03, 1976.

263

