
A Performance Tuning Approach for
Shared-Memory Multiprocessors*

Per Stenstr6m and Jonas Skeppstedt

Dept. of Computer Engineering
Chalmers University of Technology

SE-412 96 Gothenburg, Sweden
email: pers@ce.chalmers.se

Centre for Computer Systems Architecture
Halmstad University

SE-301 18 Halmstad, Sweden
emaih jonas@cca.hh.se

A b s t r a c t . Performance tuning of applications for shared-memory mul-
tiprocessors is to a great extent concerned with removal of performance
bottlenecks caused by communication among the processors. To sim-
plify performance tuning, our approach has been to extend the hard-
ware/software interface with powerful memory-control primitives in com-
bination with compiler optimizations to remove communication bottle-
necks in distributed shared-memory multiprocessors. Evaluations have
shown that this combination can yield quite dramatic application per-
formance improvements. This raises the fundamental question of how
the hardware/software interface in future distributed shared-memory
machines should be defined to serve as a good target for performance
tuning of shared-memory programs, either automatically or by hand. An
approach along those lines is discussed.

1 Introduct ion

Shared-memory multiprocessors have emerged on the commercial arena as pow-
erful platforms for a wide spectrum of high-performance applications. They pro-
vide a particularly smooth transition from sequential to parallel processing for
two major reasons. One is that they leverage on commodity high-performance
microprocessors and memory components as key implementation technologies.
The other is that they provide the software system with the illusion of a sin-
gle memory image which simplifies manual or automatic parallelizations and
improves resource utilization at run-time. While it has long been thought that
shared-memory multiprocessors cannot scale to large configurations, the com-
mercial emergence of distributed shared-memory (DSM) machines such as Sili-
con Graphics Origin [7] and Sequent's NUMA-Q [8] has proven the opposite. A
critical mechanism in these machines to obtain scalable performance is a hard-
ware cache coherence scheme that allows for programmer transparent replication
and migration of data across the compute nodes. In contrast to message-passing

* This research has been sponsored by the Swedish Research Council on Engineering
Science (TFR) under contract 94-315.

73

programming paradigms where communication is explicit in the program, com-
munication takes place implicitly through loads and stores to shared data in a
shared-memory parallel program. While this greatly simplifies the design of par-
allel applications, loads and stores may trigger coherence actions at the hardware
level that can have a dramatic impact on performance. It is not uncommon that
these reader and writer-initiated inter-node transactions take several hundreds
of processor cycles. Techniques to relieve the programmer from dealing with the
impact of these long-latency transactions on the application performance are
therefore essential.

Our approach [13, 14] has been to let the compiler remove the impact of inter-
node coherence transactions by either overlapping them with useful computation
or eliminating them altogether. Much like optimizing compilers must have a
model of the underlying processor architecture to remove pipeline hazards, a
model of the communication architecture in a DSM system must be exposed
to the compiler. A key part of our methodology has therefore been to carefully
extend the hardware/software interface with primitives that make it possible
for the compiler to remove some of the overhead associated with inter-node
coherence transactions.

This paper overviews and summarizes our experience in using this approach
in a realistic environment. We implemented the hardware primitives in a de-
tailed simulation model of a DSM machine. We then incorporated the compiler
algorithms that exploit these primitives in a research compiler and compiled a
number of scientific and engineering applications with as well as without the
compiler optimizations. We observed quite significant reductions of the execu-
tion times--some applications actually ran almost twice as fast. The next section
introduces the performance tuning obstacles associated with coherence mainte-
nance in DSM systems. Sections 3 and 4 present our approach and summarize
our experiences. This project has focused on the communication that is inher-
ent in shared-memory parallel programs but has not dealt with the artifactual
communication caused by the demand-driven nature of managing the complex
memory hierarchies in DSM systems. Section 5 concludes by putting our work
in this larger context and discussing some prospects for future research.

2 Communicat ion Transactions in D S M Machines

DSM machines are typically built from a number of highly optimized commod-
ity compute nodes with their processors and local memory subsystems as shown
in Figure 1. Scalable inter-node bandwidth and latency are achieved by modu-
lar high-performance interconnection networks. To efficiently support a shared-
memory model on top of this distributed organization, hardware support taking
the form of a network interface controller is associated with each node to im-
plement a cache coherence protocol for automatic replication and migration of
data across the private caches in each node.

The shared data structure in a shared-memory application is typically allo-
cated statically on a per-page basis across the memory modules in each node.

74

C-ener~ Interconnection Netwofl(

Fig. 1. Organization of a distributed shared-memory machine.

Because the memory access time of remote memory can be 3 to 5 times longer
than local memory access time, methods to maximize the number of accesses
that are satisfied by either the local cache or the local memory are important .
The cache coherence mechanism that allows memory blocks to be replicated
across the caches in each node is a key method to obtain this goal.

To understand how the coherence mechanism typically found in such ma-
chines impacts on application performance, let us review one favorite method;
the one originally proposed by Censier and Feautrier [3]. When a processor ref-
erences a memory block that is not in its local cache, a cache miss request is
directed to the home location of that block. The home node controller keeps
track of which nodes have copies of each of its memory blocks and whether the
memory copy is up to date using a presence flag vector with the same number
of bits as the number of nodes. If the memory copy is up to date, the node
controller supplies a copy; otherwise, the request is directed to the node that
keeps the up-to-date copy. This node returns its copy to the home node and the
home node returns an up-to-date copy to the requesting node. When a processor
modifies the block, it must first make sure that no other node can read or write
to the memory block. This is achieved by acquiring ownership. An ownership re-
quest is sent to the home node that either returns ownership directly if no other
copy exists; otherwise, it multicasts invalidation requests to each node with a
copy that informs them to remove (and/or give up ownership of) their copies.
We note tha t a read-miss as well as an ownership request can be either a two
or a three-party transaction. In recent commercial machines, these transactions
can take on the order of a hundred processor cycles. While the latency of owner-
ship transactions can be hidden under relaxed memory consistency models, the
processor usually has to stall if the more intuitive sequential consistency model
is assumed [6] such as in SQI Origin [7].

3 A Performance Tuning Approach

Our approach to reduce the impact of communication-induced inter-node trans-
actions on the performance of parallel applications has been to augment the
hardware/software interface with suitable primitives and then let the compiler

75

schedule them to overlap the transaction latency with useful computations. In
Section 3.1 we introduce the primitives and in Section 3.2 we overview the com-
piler algorithms that schedule these primitives.

3.1 M e m o r y Cont ro l Pr imi t ives

To motivate our choice of primitives let us concretely look at one typical situation
when read-miss as well as ownership transactions are particularly devastating to
application performance. In many parallel applications, mutual access to shared
data structures are orchestrated using critical sections. Typically data is read and
modified inside these critical sections. If a number of processors subsequently en-
ter the critical section, say P1, P2 and P3, the following communication-induced
transactions will occur. After P1 has exited from the critical section, the modi-
fied memory blocks are kept in Pl 's cache. This means that P2 will experience
a read miss for each block that P1 modified. After a copy is brought into P2's
cache, the store access to that copy will result in an ownership transaction that
causes Pl ' s copy to be invalidated. When P3 enters the critical section, the same
transactions will of course occur. This particular sharing behavior is called m/-
gratory sharing [4] because each block involved literally migrates from node to
node. We note that the read-miss as well as the ownership transactions are in
most cases three-party transactions unless one of the two nodes involved is the
home location of the node.

One approach to eliminate the ownership transaction would be to grab an
exclusive copy from the previous owner at the time the read miss is taken.
We have tried this approach by extending the hardware/software interface with
a primitive called load-exclusive. This primitive does the same as a load but
instructs also the local cache controller to bring an exclusive copy by invalidating
other copies in the system.

One approach to shorten the latency of read-miss transactions is to flush
back the block to the home location when a processor is done with its modifica-
tions. This would have the effect that a three-party transaction is converted to
a two-party transaction. It is tempting to be more aggressive and ship the block
to the next reader. This optimization would be restricted in the cases when the
next reader is not known (see [1] and the references therein). We have consid-
ered the former approach and extended the hardware/software interface with a
primitive called write-back. This primitive instructs the cache to update the
home location with the content of the locally cached copy of the corresponding
memory block.

In order to make these primitives useful, a compilation framework that an-
alyzes the code and schedule these primitives effectively is needed. In previous
work, we have developed compiler algorithms for the load-exclusive and the
write-back primitives. Next, we will provide an overview of the approach taken
to insert these primitives; for details, consult the original papers [13, 14].

76

3.2 Compiler Analyses

While interprocess sharing would be best analyzed using a parallel compilation
framework that incorporates data dependence analysis, this would restrict its ap-
plication to regular matrix-oriented computations. As multiprocessors find appli-
cability in a wide range of less regular computations where hand-parallelization
is unfortunately state-of-the-art, our approach has been to devise a framework
that is useful in this latter context. This means that the application model for
the compiler is the code executed by a process. As we shall see, dataiiow analysis
techniques have been especially effective as a base for scheduling load-exclusive
and write-back instructions.

Scheduling load-exclusive ins t ruc t ions The load-exclusive primitive is es-
pecially useful when data is first read and then modified meaning that there is a
load followed by the store to the same location. The task for the compiler is to
detect such load-store sequences that will be unconditionally executed at run-
time. We have approached this problem using dataflow analysis in the following
way. We assume that a location is referred to using a base pointer b and an offset
o. The fact that a load and store instruction refer to the same location can be
inferred by using the pair (b, o) as the unit of dataflow. This unit is defined when
a store instruction is found in a backward dataflow analysis pass. The dataflow
unit reaches a load if and only if the base pointer is not changed and if the store
is guaranteed to be executed if the load is executed. If a branch is reached the
unit of dataflow will be live in the basic block containing that branch if and only
if the dataflow unit is live in both paths corresponding to the branch taken and
not taken cases. If the dataflow unit is live at the point the corresponding load
is reached, the load will be marked and replaced by a load-exclusive instruction.

Intuition says that data is most often read and modified within the same
basic block of code. Following this intuition, the dataflow analysis could be sim-
plified by just considering each basic block in isolation. To test this case, we
considered two variations of our compiler algorithm; one that only considers ba-
sic blocks in isolation--called Local--and one that does dataflow analysis at the
intraprocedural level by examining entire flow graphs--called Conservative.

There are three sources of limitations to this approach: aliasing, word versus
block analysis, and interprocess communication. First, our algorithm does not
cover cases where a load uses one base pointer and a subsequent store uses
another. Secondly, while it is tempting to extend the algorithm to infer load-store
sequences to the same memory block--the granularity at which read-miss and
ownership transactions take place--tiffs would require that the compiler is aware
of how data structures are aligned with respect to memory block boundaries. The
third limitation is associated with our compilation framework that is unable
to analyze how loads and stores from different processes interfere. If a load
is marked, the data will be brought into the cache in exclusive mode. Now if
another processor executes a load to the same address before data is modified,
our approach will increase the number of misses. In Section 4, we will comment
on how severe these limitations are.

77

Schedul ing wri te-back ins t ruc t ions Write-back instructions come in two fla-
vors. One is the update instruction which simply informs the cache to propagate
the content of the block corresponding to the base pointer b and offset o to the
home location. The other is store-update which does a normal store followed by
an update. While it is preferable to use the latter instruction to reduce instruc-
tion overhead, it is not always possible. The task of the compiler is to detect
when a block is modified the last time in a flow graph and insert an update
or replacing a store with a store-update there. If data structures were aligned
on a memory block boundary, the analysis would have been fairly simple. How-
ever, aligning data structures on block boundaries can drastically reduce spatial
locality in applications where small records are used [16]. We have therefore aug-
mented our analysis to deal with unaligned data structures although we assume
that the memory block size is known at compile time.

Conceptually, our algorithm uses two units of datafiow: the block and the
word modified by a store instruction. The approach is to use dataflow analysis
applied to these units to infer the earliest point at which all the words contained
in a block are modified the last time in a procedure. If the data structures were
aligned, the algorithm can infer these points by propagating dataflow information
in the forward as well as in the backward direction until a point where the base
pointer changes value, or the end of the procedure, which kills the dataflow
unit. The fact that the alignment is not known complicates the analysis. By
considering two consecutive blocks with respect to the base pointer start address,
i.e, bk and bk+l, it is possible to infer that the memory block containing word
bk+l x B, where B is the block size, is modified the last time if the units of
dataflow corresponding to blocks bk and bk+l both are dead at a point where a
store to say word bk+l x B is executed. In this particular case, it is possible to also
replace the store instruction with a store-update instruction. This replacement
is not in general possible. Consider for example two possible execution paths
from a store instruction to address A. If one path contains a store instruction
to the same address, that store can sometimes be replaced by a store-update
to A. If the other path does not contain a store to the same address, i.e., the
corresponding units of dataflow are not live in that path, an update instruction
must be scheduled just after the branch.

Like the algorithm that schedules load-exclusive instructions, this algorithm
cannot take interprocess communication into account. There are two important
implications of this. One issue is that if data is accessed solely by the same
process over and over again, shared data will be flushed back to the home node
location at every invocation of the procedure. This may cause a substantial
increase in memory traffic which as a secondary effect can increase the inter-
node transaction latency of other requests. We have addressed this issue by
using a simple heuristic in the cache coherence protocol to detect when a block
is accessed by one process only. If the block was not shared when it was brought
into the cache, it is considered to be privately accessed. Write-back instructions
to such blocks will not cause the block content to be flushed back to the home
location. A similar heuristic is actually part of many cache protocols for SMP

78

systems such as MESL We will present experimental results with as well as
without this optimization. Another issue is how to deal with critical sections.
Intuitively, data will most probably be read by other processors after a critical
section is exited. Therefore, we have incorporated a static heuristic that considers
all units of datafiow associated with blocks and words modified in critical sections
as killed at the enter and exit points of these sections.

4 E x p e r i m e n t a l E v a l u a t i o n

4.1 Methodologica l Approach

In order to evaluate the effectiveness at which our approach can remove the per-
formance impact of communication-induced inter-node transactions on shared-
memory applications, we did as follows. We developed an accurate simulation
model of a distributed shared-memory machine that incorporates the memory
control primitives. We then incorporated the compiler algorithms in a research
C compiler and compiled a set of scientific/engineering parallel applications with
as well as without the optimizations. Finally, we used the simulator to analyze
in detail the effectiveness/limitation of our approach.

We used a simulation framework called CacheMire Test Bench that we de-
veloped in a previous project [2]. This framework contains a number of SPARC
instruction-set simulators that access a single address space using the memory
model assumed by the ANL parallel macros. To carry out detailed performance
measurements, a model of the memory system architecture (the local node mem-
ory subsystem and the interconnection network) was developed. This model pre-
serves timing of memory accesses by delaying each processor for as long as it
takes to handle a memory load or a store. The architecture we developed for
this project has the overall organization according to Figure 1. It contains 16
nodes and infinite caches in each node to focus on the impact of communication-
induced transactions. The block size of each cache is 32 bytes. A read-miss and
ownership transaction commits in 30 processor clocks if it is satisfied locally and
otherwise 54 processor clocks are charged for each hop in the interconnection net-
work for inter-node transactions. A two-party inter-node transaction therefore
takes 30 plus 54 plus 54 adding up to 138 processor cycles.

We have driven our performance analysis using six applications developed at
Stanford University. These applications are Water, Cholesky, MP3D, LU, Ocean,
and Barnes-Hut. All but LU and Ocean are part of the SPLASH-1 suite [11]. The
problem sizes assumed for these applications are: 288 molecules for 4 steps for
Water; the bcsstkl4 matrix for Cholesky; 10,000 particles for 10 steps for MP3D;
a 200 × 200 matrix for LU; a 128 x 128 matrix for Ocean; finally Barnes-Hut
used a 128-body problem.

A problem with using a research compiler is whether the performance results
will be indicative of production quality compilers. The compiler we have used
incorporates many of the ~standard optimizations in e.g. gcc and the code effec-
tiveness on the applications used in this study is comparable to what is achieved
with gcc -02.

79

4.2 Effectiveness of Compiler-Inserted Load-Exclusive Instructions

Recall that load-exclusive will be effective for load-store sequences to the same
location and where the load results in a cache miss. In such cases, the load can
bring an exclusive copy into the cache which eliminates the subsequent ownership
transaction. We first measured how many of the loads that result in cache misses
that are followed by a store to the same location. We then measured how many
of these loads that each of the algorithms could convert to load-exclusive; this is
the coverage of the algorithms. The top diagram of Figure 2 shows the coverages
of the Local and the Conservative algorithms. The first four applications exhibit
high coverages for L as well as C whereas Ocean and Barnes-Hut do not benefit
much. Below each application we show the fraction of loads that result in cache
misses that are followed by a store to the same location. For the first three
applications, which exhibit substantial migratory sharing, more than 80% of the
load misses would benefit from load-exclusive so we would expect the algorithms
to be effective for these. By contrast, in LU only 10% of the misses would benefit
from load-exclusive so the benefits are not expected to be great.

Figure 2 also shows the impact of the load-exclusive algorithms on the execu-
tion times of the applications. B stands for the unoptimized case, whereas L and
C stand for the Local and Conservative algorithms, resp. Because this optimiza-
tion can only cut the time spent acquiring ownership, we have subdivided the
execution time into four sections. The bottom section is the fraction of useful
computation whereas the top three sections are losses due to memory system
events. The memory system events are from bottom to top due to synchroniza-
tion, read misses and ownership acquisitions. As expected, the top section is
almost completely wiped out for Water, Cholesky, and MP3D. For Cholesky
and MP3D, the execution times are reduced by 31% and 27%, resp. By contrast,
because ownership latency does not contribute much in Water, the removal of
this component does not make much impact. Interestingly, L and C are equally
effective suggesting that local dataflow analysis suffices. We have noticed that
neither L nor C increased the number of read misses suggesting that accesses
from other processors that intervene a load-exclusive and a subsequent store are
rare. Further, the fact that the algorithm uses words rather than memory blocks
as the unit of dataflow did not limit the effectiveness much.

4.3 Effectiveness of Compi le r - Inse r ted Wri te-back Instructions

Let us now consider the effectiveness of compiler-inserted write-back instructions.
In Figure 3 the execution time is shown for each application for three cases:
the unoptimized case (B), the optimized case on an architecture that does not
implement the private heuristic in the cache coherence protocol (S), and the
optimized case on an architecture that does (S+D).

We initially did some experiments assuming a sequentially consistent system.
These experiments showed that the read-miss transaction latency went down but
to the expense of a higher ownership transaction latency. This discouraging result
was attributed to a small fraction of updates that were useless and made the

80

Water Cho~esky MP3D LU Ocean Barnes-Hut
•) 99 e 100 96 96

81 81
70 72 73

30 26
20 19 Ig 19
1

L81%C L61%C L89%C L10%C L22%C Lt4%C

lnn 100~ 97 97 100 ~ • , 2 2

=)o°r m [] []) . ,o

'fmmm

60 :!:!:!8 :... :: ::,.:
50 8 ~:':':':6 ~:i-"::.::!23]~ii~24
40 3 83 82 ~ ~:::i:::::5 :::::::::5

• ~oE mm mm mm • m = " m wr. ,
= 46 ::.':-;-;" Read m m m m ~ S y n e h

0 Bus
0 B L C B L C

z Water Cholesky

l O O t 100 100

80 13 13

iiiiii!iii~8 iii!i~ii38Iililiiii38 22 2~
5 0 ::"" ~: ::':':':: :'..'.':: 32
40

" mlmJm 3O

1 mll mli ml1
20 N I 1 N 1 1 N 1 1 37 37 37

o 0 B L C B L C
z MP3D LU

~ Write
Read ~ Synch
B u s y

100 99 99
...... :'9 ~ 4 ~

= .o ~?.~)2~::..::!12::.,'.':::::12 ~ 7
6o ~ ~ 2 ~ .~.%~34) O,o m m l

.,O,o,o r r m - m ° r r
0 B L C B L C

Ocean B a r n s ~ H u t

N S'uT

Fig. 2. The top diagram shows the coverages of the compiler algorithms for each ap-
plication. The next three diagrams show the execution times of the codes optimized
with the Local (L) and the Conservative (C) algorithms relative to the unoptimized
case (B).

same processor stall when it reaccessed the block. The results we will show here
assume a release consistent system in which ownership transaction latency is
completely hidden.

The execution times are split up into four sections (from bot tom to top):
fraction of useful computatioa, synchronizatioa, read miss penalty to blocks that
are up to date in the home location, and read miss penalty to blocks that are
not up to date in the home location. It is the last component that store-update
can cut by converting it to miss latency to the home location.

Although the impact of the execution time ranges from 1% to 38%, the

81

1001- 1005 93

' ool ; ' ;1; ' ,
go ~ ::~:~ 9 ::~:~: g

70 ~ 3 7 ~ 3 1 N 3 2
5O
40
30 :. :o i o 1 1 5 , [1

0 B S S+D
o Barnes-Hut

100

l i ' i ' ...o<o,.>
Read (Clean) I=I=I= ~ BSYu'-nY h+ Buffer

i
B S SiD

Cholesky

100. 97 100
1001- ~ o :i$::!:: 89 ,, I

"iIili ' 60 ~ ~2".~ 24 ~ 2 4 ~
i :~:::::: :::~:~,: 40

20 45 45 45 ~ 15
, 1 i l , l , o i , o

0 B S S+D B S S+D
Z LU MP3D

100 100- 99 _ 99 '°iI i ' i : ' ,0 m; ~o ~o Io
~5o '° N - ~ , s N , ,

i l l 40 87 87 07

III 20 38 38 38
1

0 B S S+D B $ S+D
Ocean Water

~ Read (Dirty)
...... Read (Clean)
i Synch + Buffer

Busy

~ Read (Dirty)
Read (Clean)

i Synch + Buffer
Busy

Fig. 3. Execution times of the codes optimized by the store-update algorithms using
an architecture that does not implement the private access detection heuristic (S) and
one that does (S+D) relative to the unoptimized case (B).

compiler algorithm managed to convert between 83% to 100% of the three-party
transactions to two-party transactions. While the execution times in the S and
S+D case are almost the same~ we noticed that the extra traffic caused by the
useless updates to shared data that is only accessed by a single processor was
huge in some cases (for LU it was seven times higher). The bandwidth of the
interconnection network we assumed could accommodate this extra traffic but
in systems with less bandwidth, the heuristic that classifies data as shared or
private is important. We also noticed that the compiler algorithms in most cases
were able to use store-update instead of update; indeed, the instruction overhead
was less than 4% for the studied applications.

4.4 Re la t ed Work

Most related to our work are the different flavors of write-back instructions that
are discussed and evaluated in [1]. To the best of our knowledge, however, there
is only one paper that reports on a compiler framework for automatic insertion
of write-back instructions [5]. They consider a parallelizing compiler framework
that is applicable to vector accesses with affine loop indexes. By contrast, our

82

framework is applicable to a more general class of programs with irregular access
patterns [12].

Related to write-back instructions to hide read-miss transaction latency is
also compiler-controlled prefetching [9]. Abdel-Shafi et al. [1] found that write-
back instructions have a potential to help prefetching in those cases where it is
not as effective. Indeed, our more recent work on prefetching has revealed that
many of the limitations of compiler-controlled prefetching can be overcome with
our compiler framework for automatic insertion of write-back instructions [12].

5 C o n c l u d i n g R e m a r k s a n d F u t u r e W o r k

We have shown that quite simple extensions of the hardware/software interface
with memory-control primitives in conjunction with standard compiler optimiza-
tion techniques such as dataflow analysis can be quite effective at automatically
tuning the performance of shared-memory parallel programs on DSM machines.
While our focus has been on communication-induced overheads, other important
overheads are caused by artifactual communication to bring data close to the
processors that access it.

Current DSM machines as well as those we are expecting to see in the future
use memory hierarchies with several levels. The upper levels are typically inside a
node whereas the lower levels are in remote nodes. Given that the node-resident
levels of the memory hierarchy have a capacity that matches the working set
sizes of the application, the traditional demand-driven management of mem-
ory hierarchies works well because the temporal locality can then be exploited.
In fact, many scientific applications have quite distinct working sets that grow
slowly with the problem size as was shown in [10] and a fairly limited memory
space is needed to keep the working set in the node-resident levels of the memory
hierarchy. However, the big footprints and the little data reuse in database appli-
cations may not exhibit this behavior. In fact, a recent uniprocessor study based
on the integer applications in the SPEC suite showed very little data reuse of
some data structures [15]. Moreover, coherence actions tend to shorten the cache
residency time. Data structures that exhibit this behavior may not benefit as
much from caching in the upper levels of the memory hierarchy. Even worse, they
may actually interfere with data structures that exhibit a high temporal local-
ity and cause them to be replaced from the node-resident levels of the memory
hierarchy. We are currently exploring an approach called selective caching. The
idea is to control the cacheability of data structures at each level in the mem-
ory hierarchy using memory-control primitives. Data structures with working set
sizes that match the capacity at a specific level should be cached there and at
the lower levels whereas data structures with poor temporal locality should not
be cached there. We will investigate how prefetching and other memory-control
primitives discussed in this paper may help to hide the latency of the artifactual
communication caused by accesses to data structures that cannot be cached at
or above a certain level.

83

References

1. Hakim Abdel-Shafi et al. An Evaluation of Fine-Grain Producer-Initiated Commu-
nication in Cache-Coherent Multiprocessors. In Proceedings of the 3rd Int. Syrup.
on High-Performance Computer Architecture, pages 204-215, February 1996.

2. Mats Brorsson, Fredrik Dahlgren, H£1~n Nilsson, and Per StenstrSm. The Ca-
cheMire Test Bench - a Flexible and Effective Approach for Simulation of Multi-
processors. In Proceedings of the 26th IEEE Annual Simulation Symposium, pages
41-49. IEEE, New York, March 1993.

3. Lucien Censier and Paul Feautrier. A New Solution to Coherence Problems in
Multicache Systems. IEEE Trans. Comput., 27(12):1112-1118, 1978.

4. Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation Patterns in Shared-
Memory Multiprocesors. IEEE Trans. Comput., 41(7):794-810, 1992.

5. D. Koufaty, X. Chen, D.K. Poulsen, and J. Torrellas. Data Forwarding in Shared-
Memory Multiprocessors. IEEE Trans. on Parallel and Distr. Systems, 7(12):1250-
1264, 1996.

6. Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Trans. on Comput., C-28(9):690-691, 1979.

7. James Laudon and Daniel Lenoski. The SGI Origin 2000: A CC-NUMA Highly
Scalable Server. In Proceedings of 2~th Annual International Symposium on Com-
puter Architecture, to appear, 1997.

8. Tom Lovett and P~ussel Clapp. STING: A CC-NUMA Computer System for the
Commercial Marketplace. In Proceedings of 23rd Annual International Symposium
on Computer Architecture, pages 308-317, 1996.

9. Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetchiug for Recursive
Data Structures. In Proceedings of the Seventh International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 222-
233. ACM, New York, 1996.

10. E. Rothberg, J-P Singh, and A. Gupta. Working Sets, Cache Sizes, and Granu-
larity Issues for Large-Scale Multiprocessors. In Proc. of the 20th Int. Syrup. on
Computer Architecture, pages 14-26, May 1993.

11. Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Comput. Arch. News, 20(1):5-44, 1992.

12. Jonas Skeppstedt. Overcoming Limitations of Prefetching in Multiprocessors by
Compiler-Initiated Coherence Actions. Technical report No 274, Dept. of Com-
puter Engineering, Chalmers Univ., December 1996.

13. Jonas Skeppstedt and Per StenstrSm. A Compiler Algorithm that Reduces Read
Latency in Ownership-Based Cache Coherence Protocols. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques
1995, pages 69--78. IFIP, La~enburg, Austria, 1995.

14. Jonas Skeppstedt and Per Stenstr6m. Using Dataflow Analysis Techniques to
Reduce Ownership Overhead in Cache Coherence Protocols. ACM Trans. on Pro-
gramming Languages and Systems, 18(6):659-682, 1996.

15. T. Johnson and W-M Hwu. Run-Time Adaptive Cache Hierarchy Management
via Reference Analysis. In Proc. of the 24th Int. Symp. on Computer Architecture,
June 1997. to appear.

16. Josep Torrellas, Monica Lain, and John Hennessy. ~hlse Sharing and Spatial Lo-
cality in Multiprocessor Caches. IEEE Trans. Comput., 43(6):651-663, 1994.

