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Abstract 

The needs for larger problem sizes and for more accurate results force the users in the field of 
scientific computing towards applying parallel machines. Besides problems with initial program 
development another hard task arises with parallel program debugging, where severe difficulties 
appear with nondeterminism and race conditions. 

This paper describes the tools ATEMPT and CDFA, two modules of the MAD environment 
which support the detection of simple errors in the communication structure and race conditions 
in parallel programs. While ATEMPT generates an event graph and visualizes race condition 
candidates of an actual execution, CDFA analyzes the source code and produces data structures 
for investigation of control and data flow graphs. The combination of both tools gives further 
insight into a program and makes the evaluation of race evaluation more efficient. 
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1. Introduction 

Debugging parallel programs needs more attention than debugging sequential ones. 
The reasons are errors unknown in the sequential domain and nondeterminism of  par- 
allel programs. Although there are promising approaches to detect spurious errors, no 
tools are available for analysis of  program behavior affected by race conditions. 

The Monitoring And Debugging environment MAD tries to provide a solution. It is 
an integrated toolset for debugging of  parallel programs based on the message passing 
paradigm. Several specialized modules for various activities of  error detection are pro- 
vided [Kran 96a]. 

A main role in the environment plays ATEMPT (A Tool for Event ManiPulaiqon).  
It is used for the visualization of monitored data, which are stored in tracefiles during 
observed program runs. They are displayed as process time diagrams and can be 
inspected easily. With the help of ATEMPT the user is able to [GrVo 96] 

• inspect communication events, 
• automatically detect and visualize errors in the communication structure, 
• inspect latencies in communication due to network contention, 
• find candidates for race conditions, 
• graphically manipulate events that are candidates for race conditions. 
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The anomalous effects are highlighted with different colors so that the user can easily 
catch them at a glimpse. Having detected an error at a certain position in the trace the 
user can inspect the event attributes and the corresponding source code. This activity is 
assisted by a source code reference between ATEMPT and an integrated filebrowser. 

The most important feature that separates ATEMPT from other graphical debug- 
ging tools is the event manipulation of race condition candidates. Firstly all racing 
receives [NeDa 94] are evaluated and highlighted together with the messages that race 
towards these receives. For further analysis the corresponding events of the racing 
messages can be exchanged graphically with one of the other racing receives. This 
leads to a different ordering of message arrival in the event graph. (Of course the 
receive statement itself will not be moved because this would be a change in the pro- 
gram code!) 

Afterwards the manipulated part of the communication graph will be stored in a 
new trace file. With trace driven replay that uses these changes in addition to the origi- 
nal communication graph, the effects of the reordering will be shown. If a different 
ordering of these events causes different results, a crucial race has been detected. Then 
the code can be changed in order to guarantee correct results. 

An improvement to the race detection mechanism comes from CDFA, the Control 
and Data Flow Analyzer. With static information about the source code and a connec- 
tion to the dynamic data of ATEMPT, CDFA allows additional investigations of the 
program flow as well as extended evaluation of race condition candidates. 

The intention of this paper is to give an overview of the race condition detection 
approach. In the next section we will describe types of errors in message passing pro- 
grams. The debugging approach is summarized in section 3, discussing how ATEMPT 
detects possible races. Section 4 on CDFA and race manipulation gives an example 
how CDFA can eliminate races for the replay that are not crucial. This shows some of 
the tool's capabilities in practice and leads to goals for future improvements. 

2. Typical Errors in Message Passing Programs 

When searching for errors in parallel programs the following two groups of program 
faults can be distinguished [Grab 97]: 

• errors o f  origin and 
• subsequent errors. 

Errors o f  origin are those errors, where the location of faulty behavior and original rea- 
son is the same. On the contrary the manifestation of subsequent errors occurs later in 
time than the reason for the misbehavior. In this case the control flow has to be fol- 
lowed back in time in order to find the error of origin that was responsible for the erro- 
neous behavior of the subsequent errors. 

In sequential programs this backtracking is only carried out on a single existing 
task. However, in parallel programs the trace of subsequent errors to the original errors 
can be distributed about more than one process and is therefore more difficult to fol- 
low. Some errors in this case are wrong communication structures and wrong data that 
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are sent to other processes. They can be automatically detected and visualized with 
ATEMPT. 

The worst errors that may occur are known as race  cond i t ions  in literature 
[HeMc 96]. A race is a typical case of  unintended nondeterminism [NeMi 92, 
ChMi 91]. On shared memory architectures a race occurs when two or more parallel 
tasks access the same shared variable in an unspecified order and at least one of  the 
accesses is a write access (data  race)  [Helm 91]. With the message passing paradigm 
on distributed memory machines a race (message  race)  can occur if there exists one or 
more receive events and the order in which incoming messages are read from the com- 
munication buffer is unspecified [Netz 96]. 

The problem with this kind of bugs is that they appear sporadically and cannot be 
localized and corrected easily. A technique that is widely known for the investigation 
of these kind of errors is trace driven simulation [LeMe 87, ChSt 91]. ATEMPT was 
developed as an extension for such a race investigation mechanism in order to find 
possible races and to evaluate their influence on a program's results. 

3. Overview of the Debugging Approach 

3.1 Monitoring of Program Runs 

The basis for error recognition and detection of  race conditions is a trace of  events 
recorded during an initial program run. In our terminology the most important events 
occur as result of one of the following programming statements: 

• send:  sending a message from a process to one or more receivers. 
• receive: receiving a message from a process. 
• test: probing the arrival of a certain message. 

The Event Monitoring Utility EMU [Kran 96b] records these events in tracefiles dur- 
ing the program execution. The source code is implemented either for the nCUBE 2 
multiprocessor with its native communication library or for MPI [MPI 94]. 

3.2 The Event Graph Display 
The tracefiles are the constraint for the generation of the global event graph, which is a 
partially ordered graph in time that represents the interprocess dependencies between 
processes. The vertices of the event graph are communication events that are stored in 
the tracefiles. The arcs are either computation or communication between correspond- 
ing send and receive events. 

After the connections have been established errors in the communication structure 
are colored automatically. These bugs are isolated events and corresponding send and 
receive events using different message lengths as parameters [GrVo 96]. 

Another useful feature in this tool is the inspection of single events in detail which 
shows all event attributes. A connection back to the source code allows to easily elim- 
inate located bugs. 
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3.3 Race Condition Candidates 

When debugging a program for race conditions, the following question has to be 
answered: "What would have happened ira message had arrived before another one?" 
To help the user with this question event manipulation facilities are integrated in 
ATEMPT. 

The starting point is a set of events that are possible candidates for an exchange. 
These are receive events, where the parameters are wildcards, and therefore allow any 
message to be received. With such a set of possible races available, the user can per- 
form the following two activities: 

a) Correct the program in order to remove the race immediately, 
b) Investigate the results of different orderings at race conditions. 

Activity a) can be applied, if the resulting behavior is obvious for the user. For exam- 
ple, some algorithms intentionally use nondeterminism, therefore a race condition can- 
didate would show correct behavior. On the other hand, the user might know that 
nondeterminism is absolutely not intended in a certain part of code and thus, can 
immediately change the program. This can be done by distinguishing different senders 
with different message types and/or using the number of the sending process in the 
receive statement explicitly instead of wildcards. 

In case b) the user cannot decide how a race might influence the program's result. 
Actually, the only thing one knows is the behavior that was observed in an initially 
monitored program run. To investigate other event orderings than the observed one, 
the user can graphically exchange the events. Afterwards an execution with the modi- 
fied event graph can be initiated with PARASIT (PARAllel Simulation Tool) [Kran 94] 
in order to test if another program flow with other results might be generated. 

3.4 Simulation with PARASIT 

With an event graph available, either original from a monitored program run or manip- 
ulated with ATEMPT, a technique called trace driven simulation [MiCh 88, ChSt 91] 
can be used to reproduce a certain execution of a nondeterministic program. This can 
be done with PARASIT. 

The program that has to be simulated will be linked with an extended version of the 
underlying communication library. The simulation statements perform the normal 
communication and the simulator's activities. If the program reaches a receive state- 
ment, the simulator is involved in order to control the communication as defined by the 
communication graph. It chooses the next message that has to be received. If such a 
message is not available, the simulator delays the program's execution until the correct 
message arrives. 

Up to the part of manipulation the simulated program run equals the same behavior 
that has been traced by the monitor. From this point onwards the program flow may 
deviate from the original trace. Of course, the program cannot be controlled by the 
simulator any longer. Instead, the monitor observes the execution again. Afterwards 
the results of this new program run are validated again and, if changes are observed the 
detected race is crucial and has to be eliminated. 
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Fig. 1. Connections between (a) event graph in ATEMPT and Filebrowser, and 
(b) control flow graph and (c) function call graph in CDFA 

4. Control and Data Flow Analysis 

The solution described so far is a good starting point for error detection and race con- 
dition evaluation. However, there are some drawbacks with this approach: 

a) Understanding the program from it's abstract representation as an event 
graph can be difficult. 

b) The set of  possible races can be rather high [NeDa 94]. One reason is that 
many intended places of  nondeterminism may exist in a program. 

4.1 Improved Insight into the Program 

Program understanding can be improved, if a connection from the abstract visualiza- 
tion to the original source is provided. The representation of  the source can be estab- 
lished as lines of code or on some kind of program flow graphics. The connection to 
the lines of code has been implemented with a filebrowser, that highlights statements 
corresponding to events selected in the event graph display of ATEMPT. 
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Code A on processor P0: 
o o .  

for (i=0;i<N;i++) { 
receive(data, ANY_PROCESS); 

} 

Code B on processor P0: 
. . o  

f o r  ( i = 0 ; i < N ; i + + )  { 
receive(data, ANY_PROCESS); 
DoSomething(data); 

° ° °  

} 

P0 P1 P2 P3 

o 

/ -  
/ 
/ 

J 

Fig. 2. Code fragements A and B 
and possible event graph. 

A similar connection is provided with the Controland Data Flow Analyzer CDFA. 
Upon start it performs static analysis of the source code and creates data structures for 
further investigations. With an interface similar to the one of the filebrowser, com- 
mands can be send to CDFA, and CDFA returns the results. 

In CDFA program understanding is supported by two graphical representations, a 
function call graph and a program flow graph. The function call graph shows a tree of 
functions in a program, whereas the control flow graph represents control flow within a 
specified function. CDFA receives the source code information, displays the function 
call graph and the corresponding control flow graph and highlights the program blocks 
containing the selected event. An example for such a connection is visible in figure 1. 

A special role is dedicated to the communication functions. As they are most 
important for parallel debugging, they are special building blocks of the graph. Any 
block containing one or more communication functions is marked with different col- 
ors, indicating different message passing functions. 

This functionality is useful mainly for the understanding of the static structure of 
the program. If  the event graph is too abstract and the source code is long and com- 
plex, the function call graph together with the program flow graph might help to 
improve the user's comprehension. With increased understanding of the program, 
some races can be eliminated before any exchange of events and - -  even more impor- 
tant - -  before a tedious simulation of the program. On the other hand race candidates 
can be sorted out because they represent intended nondeterminism. 

4.2 Race Condition Validation with CDFA 

The second part of CDFA is more directly connected to the race condition candidates. 
While ATEMPT only knows about the communication of exactly one program run, 
CDFA knows about the program flow in general. The solution is based on the combi- 
nation of the dynamic trace data and the static source code. This is done as follows: 
ATEMPT generates the list of all possible races and sends them in pairs to CDFA. 
Then CDFA checks, if one or more of theses races result in a different control flow. 
The result is returned to ATEMPT, which applies the changes to the set of candidates. 

An simplified example for this validation is explained with two code fragments in 
figure 2. The event graph for both codes is the same. If ATEMPT only uses it's own 
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race evaluation codes, even the race condition candidates are the same. However, if 
CDFA is used to check the races, code A does not contain any races at all, while all 
races are confirmed for code fragment B. 

The reasons are simple. In code A the receives get a message, but the data of the 
message are not processed any further. This can be the case, if A represents a master 
process that just wants to know if all other processes have reached a certain point (a 
typical synchronization situation in numerical algorithms). In code B the receive state- 
ments also get some data, but the data are used in the following lines of code. Thus, a 
dependency between message arrival and consecutive processing may exist and can 
only be checked during replay. 

This small example is just used to show the strategy's principle which is more valu- 
able in complex codes. Nevertheless, the methods are similar. Check the code, if the 
ordering of the data influences the results of the program. If not, remove the candidates 
from the set. If  the set of possible races is decreased, the number of simulation runs 
and therefore the time for race condition validation is smaller. However, such investi- 
gations are only possible if the dynamic representation of a program run - -  the event 
graph - -  is combined with static control and data flow information. 

5. Conclusion 

The existing tools of the MAD environment, especially ATEMPT, have been very use- 
ful in debugging parallel programs. Many errors can be detected and thus corrected. 
The event manipulation functionality is unique and seems a promising approach to the 
detection of errors relating to race conditions. 

The recent extension of MAD with CDFA tries to further improve the debugging 
task. Firstly, graphical representations of program flow help to improve program 
understanding and are therefore useful for any program analysis activity. Secondly, the 
dedicated race validation functionality helps in reducing the set of race candidates, by 
checking if a race is actually possible in terms of the program flow. 

A new direction which we will follow with our debugging strategy as well as with 
our environment is the debugging of code written for virtual shared memory machines. 
Then the problem of races will be much more complicated, since data races and mes- 
sage races might appear concurrently. 
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