Exdasy — A User-Friendly and Extendable
Data Distribution System

Rainer Ch. Koppler, Gerhard Kurka, and Jens J. Volkert

Department of Computer Graphics and Parallel Processing
Johannes Kepler University, A-4040 Linz, Austria/Europe

Abstract. This paper introduces Exdasy, a user-friendly and extendable software tool for
partitioning unstructured meshes and mapping mesh partitions to parallel computers. Ex-
dasy was designed to meet the increasing demands to today’s data distribution systems,
which are posed by the variety of mesh computations, the ongoing development of distribu-
tion algorithms and rapid changes in parallel hardware technology. For this, Exdasy offers
third-party state-of-the-art distribution algorithms augmented with graphical user interfaces
and powerful graphical evaluation displays. Evaluation of distributions is based on various
quality metrics and static machine parameters. Exdasy provides a modular architecture by
means of replaceable distribution algorithms, machine models and evaluation facilities.
Hereby it is attractive to both users and developers.

1 Introduction

In scientific computing unstructured meshes are frequently used, for example, in computa-
tional fluid dynamics or structural analysis applications. Nowadays computations with
large unstructured meshes are performed on parallel computers because of size considera-
tions and computational requirements. With distributed memory machines the user is faced
with the non-trivial problem of data distribution. Meshes must be partitioned across the lo-
cal memories of the processors in such a way that a good load balancing is achieved and
interprocessor communication is kept minimal. It is known that optimization of these issues
involves the solution of NP-complete problems [5], so up to now researchers have devel-
oped heuristics that yield reasonable, yet suboptimal results [8] {18] [9] [15]. With virtual
shared memory machines data distribution is also relevant since a good distribution pro-
motes data locality and so improves overall performance.

The decision about the efficiency of a distribution is hard to find because it depends on
several factors, including the suitability of a distribution algorithm for the given mesh, the
problem to be solved, and the parallel computer. Thus the data distribution procedure is not
a fully automatic, but an interactive process, which should be supported by appropriate
tools. With such a tool application users can create and evaluate several distributions and
determine the best one for their purposes.

In this paper we introduce Exdasy (Extendable Data Distribution System), a user-friend-
ly and extendable software tool for partitioning unstructured meshes and mapping mesh
partitions to parallel computers. Exdasy offers state-of-the-art distribution algorithms,
which were developed by other researchers, augmented with graphical user interfaces. It
provides exploration and evaluation of distributions by means of several 2D and 3D color
graphics displays. Evaluation of distributions is based on distribution quality metrics and
static target machine parameters. Unlike existing systems, Exdasy provides both evaluation
of single distributions and comparison of several distributions with respect to various met-
rics. It is dedicated to application users and distribution algorithm developers. Its highly
modular design allows easy adaptions with respect to distribution algorithms, target com-
puters, mesh input/output formats, and graphical displays. Finally, Exdasy’s implementa-
tion promotes portability across a wide range of operating systems and graphics hardware.

119

In the following, we discuss requirements to today’s data distribution systems and show
their realizations within Exdasy. We describe the graphical facilities of Exdasy and outline
their use for the data distribution procedure. Furthermore we show Exdasy’s extendability
and first experiences by means of short examples. A comparison of Exdasy with related
systems and a brief view on future activities concludes this paper.

2 Requirements to Data Distribution Systems

The data distribution problem is usually divided into two subproblems, which are both NP-
complete: partitioning and mapping. During partitioning the data domain is divided into
several parts such that all parts have equal sizes and the boundaries between adjacent parts
show minimal lengths. The result is called a partition, the respective graph is called the par-
tition graph. During mapping the partition is mapped onto the target computer such that ad-
jacent parts are assigned to adjacent processors in the interconnection network. This two-
step approach separates machine-independent issues of the data distribution problem from
machine-dependent issues. Consideration of the mapping step turned out to be important
with medium-size and massively-parallel systems [19]. Today many implementations sub-
sume both partitioning and mapping [8] [7]. In the following the term distribution stands
for a partition that has been mapped onto a target computer.

With an efficient distribution a given parallel computation yields good performance with
a given input mesh on a given target computer. Objective functions of distribution algo-
rithms cannot precisely consider each of these factors because of the variety of target ma-
chine and application characteristics. Thus users need a tool that allows easy experiments
with different partitioning and mapping algorithms. The tool should provide easy explora-
tion and accurate evaluation of distributions such that users quickly find a suitable algo-
rithm. For this, it should support both investigation of single distributions and comparison
of several distributions, preferably through graphical means.

Both partitioning and distribution evaluation should consider application characteristics
in order to yield usable results. For example, users may want to partition either the nodes
or the elements of a mesh. On the other hand, evaluation should be based on metrics that
relate to application characteristics and consider target machine properties. Thus both the
application and the target computer must be modelled with a sufficient degree of detail.

Besides these issues, user acceptance is promoted if a tool can process various mesh for-
mats and write results in several output formats. Such a facility allows easy integration of
mesh distributions in applications and thus simplifies distribution evaluation through ex-
perimental runs.

Qccasionally some facilities of a tool are not satisfactory, for example, obsolete distri-
bution algorithms shall be replaced by better ones, or existing evaluation or mesh input/out-
put facilities are inappropriate for the given purpose. Thus the tool should exhibit a modular
rather than a monolithic structure such that single components can be replaced easily, pref-
erably without re-building the whole system. For this, developers require a comfortable ap-
plication programming interface (API), which covers distribution algorithms, mesh
formats, target computer models and evaluation displays. Each new component that a de-
veloper integrates into the tool can benefit from existing facilities. For example, graphical
evaluation displays may assist a developer with detecting errors or weaknesses in his or her
distribution algorithm. Another issue, which is derived from this example, is robustness. If
atool is robust against crashes caused by one of its components, for example, if distribution
algorithms are executed within separate processes, users are more willing to work with it.

120

3 Overview of Exdasy

Exdasy is a general-purpose data distribution system for unstructured mesh applications.
The created distributions are collected in workspaces and can be evaluated with respect to
their performance within a given parallel application. By means of state-of-the-art distribu-
tion algorithms and powerful graphical evaluation facilities the system offers users a quick
and easy way to finding appropriate distribution algorithms.

Development of Exdasy was primarily motivated by the deficiencies of existing data dis-
tribution systems, including DecTool {2], TOP/DOMDEC [3], and DDT [4]. The ongoing
development of partitioning and mapping algorithms and rapid changes in parallel hard-
ware technology pose new requirements to data distribution systems. Exdasy considers
these requirements already in its basic design since it can be configured with different dis-
tribution algorithms, target computers, mesh formats and evaluation displays. So it pro-
vides a powerful infrastructure for future developments.

During a session with Exdasy the user loads a mesh and creates a number of partitions
using the available packages, among them the popular partitioners Chaco [8] and Metis [9].
Optionally, partitions can be mapped onto a selected target computer by means of an avail-
able mapper, for example, the CPE heuristic [6]. All mapped and unmapped partitions can
be explored and evaluated through graphical displays, which are chosen from a menu. Eval-
uation is based on the selected target computer, which can be changed through a pop-up
menu. Each distribution in the workspace can either be saved or further optimized by an-
other partitioning or mapping algorithm.

Exdasy lets the user specify application characteristics for partitioning by means of ver-
tex weighting, which is applied to the graph derived from the loaded mesh. The graph ver-
tices are abstractions of mesh vertices or finite elements, which depends on the given mesh
format and user settings. Exdasy accepts meshes given in NASTRAN’s format [13], OFF
(Object File Format) [16], Chaco’s format, and can be extended with further modules.

Partitioning and mapping algorithms in Exdasy provide intuitive graphical front-ends
with online help and are chosen from separate menus. Exdasy executes algorithms in sep-
arate child processes in order to ensure robustness of the whole system and to prevent wait-
ing times.

4 Graphical Facilities

Exdasy provides exploration and evaluation of mesh distributions through several kinds of
viewers, which are classified into graph viewers and chart viewers. The viewers use color-
ed 3D graphics in order to visualize quality metrics that are related to partitions, mappings
and target computers. Exdasy’s built-in metrics consider different computation and com-
munication characteristics of common scientific applications. More specific metrics can be
incorporated by means of additional chart viewers. Some important built-in subgraph-re-
lated and connection-related metrics are given in the sequel. If weighted graphs are consid-
ered, node and edge numbers must be thought of as weights.

1. internal node number (subgraph): load balancing metric for applications with nodewise
computations, for example molecular dynamics codes [1].

2. internal edge number (subgraph): load balancing metric for applications with edgewise
computations, for example Euler solvers [11] or matrix-vector multiplication.

3. border node number (subgraph): communication metric for nodewise computations.

121

4. cut edge number (subgraph): communication metric for edgewise computations.

5. neighbour number (subgraph): important communication metric for target computers
with long message startup times.

6. communication cost (subgraph): sum of the cut edge number with each adjacent sub-
graph weighted by the distance between the subgraphs in the target computer.

7. single-hop neighbourship ratio and single-hop communication cost ratio (subgraph):
important communcation metrics for target computers where global communication is
expensive compared to nearest-neighbour communication.

8. cut edge number, hop number, and cut edge number weighted by hop number (connec-
tion).

Each viewer shows metric values as spheres or bars. Both the size and the color of such
an object depict values, either values of the same metric or of two different metrics. Object
with low diameters or with “cool” colors (such as blue) show low metric values, whereas
high diameters and “hot” colors (such as red) are used for showing high metric values. We
have chosen such a coloring scheme since optimization, as it is concerned with data distri-
bution, usually aims at minimization. So bottlenecks are always highlighted such that users
can locate them quickly.

4.1 Graph Viewers

As previouly mentioned, Exdasy derives a graph representation from input meshes. Graph
viewers associate a graph representation with various properties, which primarily include
distribution quality metrics. Such viewers draw graph vertices and graph edges with differ-
ent colors and in different sizes and thus show the distribution of property values across the
entire graph in one picture. Hereby the user can quickly locate bottlenecks.

All graph viewers of Exdasy have a uniform appearance and provide common facilities
since they are based on a generic graph viewer implementation. The generic facilities in-
clude drawing of arbitary graphs, basic view manipulation such as translation, zooming and
rotation, slicing, and scene configuration according to OpenGL’s [14] facilities.

Figure 1 shows a distribution viewer, an important and frequently used graph viewer,
which provides detailed exploration and evaluation of of distributions. It draws a distribu-
tion either as an explosion representation of the mesh geometry or as a partition graph. The
explosion representation augments the mesh geometry with colored connections between
subgraphs. The explosion degree and connection diameters can be changed. Optionally
only vertices along subgraph boundaries are shown. The subgraph coloring is either arbi-
trary or can be associated with one of the built-in metrics. For connections between sub-
graphs a similar facility is offered, with the difference that diameters and colors may be
associated with different metrics. Furthermore connections can be hidden completely or
drawn dotted, where the dot number corresponds to the hop number between the subgraphs
in the given target computer. In Fig. 1 both subgraphs and connections are colored accord-
ing to their communication costs. Thus subgraphs in the front and in the back of the aero-
plane have cool colors, whereas subgraphs along the wings are drawn with hot colors in
order to warn the user of large message sizes.

The partition graph representation, as shown in Fig. 2a, collapses subgraphs to spheres.
This representation is particularly useful when the user is primarily interested in connec-
tions. For example, in Fig. 2a high communication costs between subgraphs along the
wings can be detected easier than in Fig. 1 (with neglection of the subgraph coloring).

122

|

C 1
':rbrctih -.Iiil
Cuameter i1

Hogs -I._

T Set Selection] imspect oy Picking _| Remets Selecton Clear Seischon |

' reusabie _| astotop

Fig 1: distribution viewer (explosion representation)

The graph viewer also provides detailed examination of subgraphs and connections.
When the user selects such an object and the Inspect by Selection option is set, Exdasy
opens a window that shows details about the selected object. Subgraph windows, as shown
in Fig. 2b, also show the subgraph geometry, which can be moved, zoomed, or rotated sep-
arately.

@

Fig 2: (a) distribution viewer (partition graph representation), (b) examination of a subgraph

The grid viewer and the data viewer are further useful graph viewers. The grid viewer
allows exploration of a mesh without a given partition. It is typically used after loading of
a mesh in order to select appropriate partitioning algorithms. For example, it can draw dis-
connected parts in different colors, which tells the user not to use graph-oriented partition-
ing algorithms. The data viewer colors mesh nodes or elements according to data values
that can be read from files. It is typically used for visualization of solution values. When-
ever scalar data shall be displayed, the user does not need to switch to another environment.

123

4.2 Chart Viewers

Chart viewers visualize distribution quality metrics by means of charts. They are helpful
when information displayed in graph viewers is hard to survey or the impact of bottlenecks
located in the graph viewer on program performance shall be evaluated. Thus chart viewers
reduce large amounts of data to meaningful graphical abstractions and so allow quick eval-
uation, even with large meshes and massively parallel computers. For this, they provide the
same basic view manipulation facilities as graph viewers.

Fig. 3 shows two instances of the matrix viewer, a 3D chart that shows the communica-
tion pattern for a distribution when the parallel application performs a local pairwise ex-
change operation. For each pair of communicating processors a bar is drawn, where the
height depicts either the cut edge number, the hop number or the cut edge number weighted
by the hop number. In Fig. 3 the last metric is chosen. Bar colors always depict distances
between processors. The user can select single bars in order to determine metric values. For
example, in Fig. 3 the user selected the highest bars in two distributions of the mesh shown
in Fig. 1, and got the given values. The left distribution’s bottleneck, which characterizes
the long boundary between subgraphs along wings (see Fig. 1), is much greater.

pair (3, 4): pair (2, 8):
cut edges: 187 cut edges: 94
comm. costs: 561 comm. costs: 188

hops: 3 hops: 2

Fig 3: matrix viewers: (a) simple 8 x 2 distribution, (b) Metis distribution for 16 processors

The metric viewer shows metrics of the currently investigated distribution in table form.
It reports minimum, average and maximum values for each metric listed at the beginning
of section 4. Furthermore it extends subgraph metrics to the entire graph. The metric viewer
is a useful facility when distributions shall be compared by means of numbers or deviations
of bottlenecks from averages shall be quantified.

The comparative metric viewer is a 3D chart that shows selected metrics of all distribu-
tions given in the workspace. The first dimension enumerates the selected metrics, the sec-
ond dimension ranges over all distributions, and the third dimension shows metric values
by means of colored bars. The height and the color of a bar is chosen with respect to the
maximum value of the respective metric. Thus the worst distribution is associated with the
“hottest” and highest bar. While the matrix viewer and the metric viewer apply to single
distributions, the comparative metric viewer can evaluate the entire workspace and com-
pare several distributions to each other. It assists the user with making a quick decision be-
tween a number of alternatives with respect to metrics that have proven useful concerning
the given application. It is also useful for experiments, for example, in cases where the user
wants to evaluate the impact of different distribution algorithm settings.

124

Besides that the user can compare sets of distributions by means of multiple instances of
other viewers. For this, each viewer kind provides a reusable option. Whenever a viewer
has this option set, it can repeatedly be used for showing different objects, i. e., graphs or
distributions. If the option is not set, the viewer is tied to its current object, and the system
opens an additional viewer for the visualization of other objects. This facility provides de-
tailed comparison of several distributions, in contrast to the comparative metric viewer,
which simplifies global comparison.

5 Configuration and Extensions

As mentioned in section 2, today’s data distribution systems should provide enough flexi-
bility such that users can configure them for particular purposes and extend them with fa-
cilities that are not (or should not) be provided by the system itself. For this, Exdasy offers
several internal interfaces and an external interface to other systems.

The internal interfaces allow replacement of various components, including partitioners,
mappers, mesh readers, target computer models and evaluation displays. Each component
is implemented as a shared library, which is located in a special directory and linked to Ex-
dasy during startup. Users will typically configure the system with their own mesh formats
and a model of their target computer while utilizing existing algorithms and displays. By
way of contrast, developers might replace algorithms or add application-specific displays.
For this, they are supplied with an API that consists of C++ base classes for all replaceable
components. For example, the grid viewer and data viewer were implemented in this way.

The external interface allows coupling of Exdasy with other systems. For example, the
existing viewer set, which provides exploration at the mesh and application levels, can be
extended to the network level of the target computer. Hereby the user gets a realistic picture
of message hops and network conflicts. MuCH (Multiprocessor Class Hierarchy) [10], a
tool for modelling and visualization of multiprocessors, is ideally suited for this purpose.
Besides facilities that realize a network viewer for Exdasy it offers also an external inter-
face.

Figure 4 shows a seamless cooperation between Exdasy and MuCH. The user evaluates
a mesh distribution onto a nCUBE 2 with 16 processors, where network conflicts are of pri-
mary interest. When the Remote Selection option in the distribution viewer is chosen, Ex-
dasy propagates selections of subgraphs and connections to MuCH, which marks
processors and communication paths, respectively. In Fig. 4 the user successively selects
the following subgraph connections, which cause more than one message hop: (12, 15), (4,
15) and (6, 15). The selections can be performed in the matrix viewer as well since each
selection causes updates in all open viewers. The first two communication paths are estab-
lished without conflicts, the third one gets blocked on processor 7. Accordingly MuCH
draws the first two paths in green, the third one in red and only up to processor 7.

Systems that connect to Exdasy’s external interface must adhere to our communication
protocol named GDI (Generic Data Interchange). GDI is similar to ToolTalk [17] in that
participants do not communicate directly but via a server, regardless of their physical loca-
tions.

6 Experiences

In the following we report about first experiences with Exdasy. We have collected them
with a parallel Euler solver [11], which was implemented with MPI [12] and runs on the

125

nCUBE 2. The kernel of this application is a loop over all mesh edges, where each iteration
computes flux contributions for both incident vertices.

matrix viewer
(comm. costs)

__\?I‘.“r
}
A
""\

|
network viewer T —— _qgif . 4'3/

Fig 4: Interoperating viewers of Exdasy and MuCH

At first we determined application characteristics of the solver and utilized our knowl-
edge about the nCUBE 2 in order to find metrics that describe the efficiency of a data dis-
tribution for the Euler solver when it runs on the nCUBE 2. Two metrics, maximum cut
edge number of a subgraph and average subgraph degree (i. e., number of adjacent sub-
graphs), showed reasonable accuracy.

After a few experiments with 64 processors, where we used a mesh with 62K vertices
and 366K edges, we learned that the partitioner Metis is the best choice for this application.
Furthermore we used the CPE heuristic to map the partition onto a hypercube. Surprisingly
it showed that the optimized mapping causes slight performance degradation, whereas the
communication cost metric predicted a gain of 13 percent. The combination of Exdasy’s
matrix viewer with MuCH, as shown in the previous section, gave us an insight into this
pbenomenon. In the matrix viewer we arbitrarily selected some of the highest bars in order
to determine network conflicts through MuCH’s network viewer. With the unmapped par-
tition all communication paths could be established without conflicts, whereas with the
CPE mapping conflicts arose after few bars had been selected.

Summing up, with respect to the given simple application the viewers of Exdasy and
MuCH allow quick and easy identification of performance bottlenecks a priori, and thus are
more useful than conventional distribution metrics.

Our experiences with Exdasy also cover technical issues. Mesh /O performance, visu-
alization performance and memory management strongly affect the usability of a data dis-
tribution system. Several redesigns and optimizations were applied to Exdasy in order to
make it applicable for large meshes and to achieve reasonable performance even on low-
end workstations. For example, on a Linux PC with 32 MB memory Exdasy shows good
“interactivity* with the mesh shown in Fig. 1 (17K vertices and 55K edges).

126

7 Related Work

Up to the present only few data distribution systems have been developed that integrate a
number of distribution algorithms with graphical evaluation facilities.

TOP/DOMDEC {3] is regarded as a state-of-the-art mesh partitioning environment. It
offers algorithms for initial partitioning of graphs and for non-deterministic optimization
of graph partitions. Optimization of partitions can be based on various single or combined
quality metrics. The system does not support separate mapping of partitions to machine
topologies. It shows partitions similar to Exdasy’s distribution viewer and provides parti-
tion evaluation by means of various metrics. These cover also computations on data struc-
tures that are derived from the mesh representation, for example, stiffness matrices. From
today’s point of view, most algorithms provided by TOP/DOMDEC are obsolete. This is
not a drawback of the system itself since algorithms can be replaced. Although based upon
IRIS GL, the evaluation displays are of quite poor quality. For example, the interconnec-
tivity map (similar to Exdasy’s matrix viewer) is a monochrome 2D display. Finally, eval-
uation of partitions does not consider the processor topology of the given target computer.

DecTool {2] is a small data distribution tool. It offers several built-in algorithms for par-
titioning of graphs and mapping of partitions to arbitrary machine topologies. Partitions can
be shown in two and three dimensions and even altered by means of mouse operations.
From today's point of view, DecTool's algorithms are partially obsolete. DecTool does not
support replacement of algorithms since they are statically linked to the tool. The partition
display is quite simple since it is implemented upon X11 directly. View manipulation is not
supported, evaluation facilities are missing.

DDT (Domain Decomposition Tool) [4] is a very simple data distribution tool. It has six
built-in algorithms that are not comparable with today's distribution algorithms. The tool
also lacks arbitrary view manipulation and provides very limited evaluation facilities.

8 Conclusions

We presented Exdasy, a user-friendly and extendable software tool for partitioning unstruc-
tured meshes and mapping mesh partitions to parallel computers. Development of such a
tool is motivated primarily by the ongoing development of paralle] unstructured mesh ap-
plications and rapid changes in parallel hardware technology, which pose requirements that
are not satisfied by today’s data distribution systems. Users are confronted with the prob-
lem of choosing algorithms that distribute their meshes across the processors of a given par-
allel computer such that their applications achieve optimal performance. Exdasy considers
this problem in its basic design and offers a powerful infrastructure for environments where
users can easily find good distributions by means of graphical means and accurate models,
and where developers can integrate and test their own developments.

Our future activities will focus on development and integration of additional compo-
nents, primarily distribution algorithms (for example, Jostle {18] and Scotch [15]) and ap-
plication-specific evaluation facilities. Unlike TOP/DOMDEC, Exdasy does not provide
evaluation of distributions for implicit computations [3], i. e., computations that are not
concerned with mesh entities but with a derived matrix. In order to allow accurate evalua-
tion with respect to such applications Exdasy must provide additional metrics and graphical
displays. For this, we plan close cooperations with application code developers.

127

References

1.

2.

10.

11.

12.
13.
14.

15.

16.
17.

18.

19.

Brooks B. et al.: “CHARMM: A Program for Macromolecular Energy, Minimization
and Dynamics Calculations”, Computational Chemistry, Vol. 4, pp. 187-217, 1983.
Chrisochoides N., Houstis C., Papachiou P., Houstis E., Kortesis S., Rice J.: Domain
Decomposer: A software tool for mapping PDE computations to parallel architec-
tures”, in Glowinski R. et al. (Eds.): Domain Decomposition Methods for Differential
Equations IV, pp. 341-357, SIAM, Philadelphia, 1991.

Farhat C., Simon H. D.: “TOP/DOMDEC - a Software Tool for Mesh Partitioning
and Parallel Processing”, Technical Report RNR-93-011, NASA Ames Research
Center, Moffett Field, CA, 1993.

Floros N., Reeve J.: “Domain Decomposition Tool — An abridged User’s Guide”, De-
partment of Electronics and Computer Science, University of Southampton, 1994.
Garey M. R., Johnson D. S.: Computers and Intractability: A Guide to the Theory of
NP Completeness, Freeman, New York, 1979.

Hammond S.: Mapping Unstructured Grid Computations to Massively Parallel
Computers, Ph.D. thesis, Department of Computer Science, Renesselaer Polytechnic
Institute, 1992.

Heiss H.-U., Dormanns M.: “Partitioning and mapping of paralle]l programs by self-
organization”, Concurrency — Practice and Experience, Vol. 8, pp. 685-707, 1996.
Hendrickson B., Leland R.: “The Chaco User’s Guide Version 2.0”, Technical Re-
port SAND94-2692, Sandia National Laboratories, Albuquerque, NM, 1995.

Karypis G., Kumar V.: “METIS: Unstructured Graph Partitioning and Sparse Matrix
Ordering System - Version 2.0”, Department of Computer Science, University of
Minnesota, 1995.

Kranzlmiiller D., Koppler R., Grabner S., Holzner Ch., Volkert J.: “Parallel Program
Visualization with MUCH?”, in L. Boeszoermenyi (Ed.):, ACPC ‘96 - Parallel Com-
putation, Proc. of the 3rd International ACPC Conference, pp. 148-160, LNCS 1127,
Springer Verlag, 1996.

Mavriplis D.J.: “Three-Dimensional Multigrid for the Euler Equations”, AIAA Paper
91-1549CP, American Institute of Aeronautics and Astronautics, Washington D.C.,
pp- 824-831, 1991.

M.P.I. Forum: “MPI — A Message Passing Interface Standard”, Computer Science
Technical Report CS-94-230, University of Tennessee, 1994.

The MacNeal-Schwendler Corporation: MSC/NASTRAN User's Manual, Vol. 1, Los
Angeles, CA, 1991.

OpenGL Architecture Review Board: OpenGL Reference Manual, Addison-Wesley,
1992,

Pellegrini F., Roman J.: “SCOTCH: A Software Package for Static Mapping by Dual
Recursive Bipartitioning of Process and Architecture Graphs”, in Liddel H., Col-
brook A., Hertzberger B., Sloot P. (Eds.): Proc. High-Performance Computing and
Networking ‘96, pp. 493-498, LNCS 1067, Springer Verlag, 1996.

Phillips M.: “GeomView User Manual”, available through http://www.engr.us-
ask.ca/macphed/finite/fe_resources/node121.htmi, 1994.

SunSoft Inc.: The ToolTalk Service: An Inter-Operability Solution, SunSoft Press,
1996.

Walshaw C., Cross M., Johnson S., Everett M.: “JOSTLE: Partitioning of Unstruc-
tured Meshes for Massively Parallel Machines”, in Proc. Parallel CFD’94, Kyoto,
1994,

Walshaw C., Cross M., Everett M., Johnson S., McManus K.: “Partitioning and Map-
ping of Unstructured Meshes to Parallel Machine Topologies”, in Ferreira A., Rolim
J. (Eds.): Parallel Algorithms for Irregular Structures Problems, Proc. Irregular ‘95,
pp. 121-126, LNCS 980, 1995.

