
E D P E P P S : An Integrated Graphical Toolset
for the Des ign and Performance Evaluation

of Portable Parallel Software*

T. Delaitre, P. Vekariya, R. Bigeard, G.R. Justo,
S.C. Winter and M.J. Zemerly

Centre for Parallel Computing, University of Westminster
115 New Cavendish Street, London WIM 8JS

Emaih edpepps-all@cpc.wmin.ac.uk

Abstract. This paper describes an integrated graphicM toolset for
performance-oriented design of portable parallel software. The toolset
consists of a graphical design tool based on the PVM communications
library for building parallel algorithms, a simulation engine and a visu-
alisation tool for animation of program execution and visualisation of
platform and network performance measures and statistics. The toolset
is used to model a virtual machine composed of a cluster of workstations
interconnected by a local area network. The simulation model used is
modular and its components are interchangeable which allows easy re-
configuration of the platform. The model is validated using experiments
on the COMMS1 Benchmark from the Parkbench suite, and a standard
image processing algorithm with accuracy to within 10%.

1 I n t r o d u c t i o n

A major obstacle to the widespread adoption of parallel computing in
industry is the difficulty in program development due mainly to lack
of parallel p rogramming design tools. In particular, there is a need for
performance-oriented tools, and especially for clusters of heterogeneous
workstations, to allow the software designer to choose between design
alternatives such as different parallelisation strategies or paradigms. A
portable message-passing environment such as Parallel Virtual Machine
(PVM) [4] permits a heterogeneous collection of networked computers
to be viewed by an applicat ion as a single distr ibuted-memory paral-
lel machine. Tradit ionally, parallel program development methods start
with parallelising and por t ing a sequential code on the target machine
and running it to measure and an;dyse its performance. Re-designing the
parallelisation s t r a t egy is required when the reached performance is not
satisfactory. This is a t ime-consuming process and usually entails long
hours of debugging before reaching an acceptable performance from the
parallel program. Rapid pro to typ ing is a useful approach to the design

This project is funded by an EPSRC PSTPA programme, Grant No.: GR/K40468

141

of parallel software in tha t complete algorithms, outline designs, or even
rough schemes can be evaluated at a relatively early stage in the program
development life-cycle, with respect to possible platform configurations,
and mapping strategies. Modifying the platform configurations and map-
pings will permit the prototype design to be refined, and this process may
continue in an evolutionary fashion throughout the life-cycle before any
parallel coding takes place.
The EDPEPPS toolset described here is based on a rapid prototyp-
ing philosophy and comprises three main tools: a graphical design tool
(PVMGraph), a simulation utility based on SES/Workbench [14], and a
visualisation tool (PVMVis). The advantage of the EDPEPPS toolset is
that the cyclic process of design-simulate-visualise is executed within the
same environment. The toolset is also modular and extensible to allow
modifications and change of platforms and design as and when required.
In the next section we describe several modelling tools with sirn]]ar aims
to EDPEPPS. In section 3 we describe the different tools in the ED-
PEPPS toolset. In section 4 we present results obtained from the case
studies. Finally, in section 5 we present conclusions and future work.

2 Parallel System Performance Modelling Tools
The current trend in parallel software modelling tools is to support all
the software performance engineering activities in an integrated environ-
ment [12]. A typical toolset should be based on at least three main tools:
a graphical design tool, a simulation facility and a visualisation tool [12].
The graphical design tool and the visualisation tool should coexist within
the same environment to allow information about the program behaviour
to be related to its design. Many existing toolsets consist of only a subset
of these tools but visua]isation is usually a separate tool. In addition, the
modelling of the operating system is usually not addressed.
The Transim/Gecko [6] toolset is used to rapidly evaluate different de-
signs of an Occam-like program running on a transputer-based multipro-
cessor by using the graphical tool (Gecko) to animate the traces gener-
ated by the simulator (Transim).
The HAMLET toolset [13] supports the development of real-time ap-
phcations based on transputers and PowerPCs. HAMLET consists of a
design entry system (DES), a specification simulator (HASTE), a debug-
ger and monitor (INQUEST), and a trace analysis tool (TATOO).
HENCE (Heterogeneous Network Computing Environment) [7] is an X-
window based software environment designed to assist scientists in de-
veloping parallel programs tha t run on a network of computers. HENCE
provides the programmer with a high level abstraction for specifying par-

142

allelism. HENCE is composed of integrated graphical tools for creating,
compiling, executing, and analyzing HENCE programs. HENCE relies on
the PVM system for process initialization and communication. HENCE
displays an event-ordered animation of application execution.
The ALPSTONE project [8] comprises performance-oriented tools to
guide a parallel programmer. The process starts with an abstract, BACS
(Basel Algorithm Classification Scheme), description from which it is
possible to generate a performance prediction time model of the algo-
rithm on a particular system. This can be helped with a skeleton def-
inition language (ALWAN or PEMPI- Programming Environment 'for
MPI), and a portability platform (TIANA), which translates the pro-
gram to C with code for a virtual machine such as PVM.
The VPE project [11] aims to design and monitor parallel programs
in the same tool. The design :is described as a graph where the nodes
represent sequential computation or a refererree:to another VPE graph.
Performance analysis and graph animation are not used here, but the
design aspect of this work is elaborate.
The TOPSYS (TOols for Parallel SYStems) project [1] aims to develop a
portable environment which integrates tools that help programmers cope
with every step of the softwaxe development cycle of parallel applications.
The TOPSYS environment contains tools which support specification
and design, coding and debugging, and optimisation of multiprocessor
programs. The tools are based on the MMK operating system but were
later ported to PVM in [9]. A more detailed review of parallel program-
ming design tools and environments can be found in [3].

3 Description of the E D P E P P S Toolset

The adva~utages of the EDPEPPS toolset over traditional parallel design
methods are that it offers rapid prototyping approach to paraJ]el soft-
ware development, offers modulaxity and extensibility through layered
partitioning of the model, and allows the software designer to perform
the cycle of design-simulate-analysis in the same environment without
having to leave the toolset.
Fig. 1 shows the components of the EDPEPPS toolset. The process starts
with the graphical design tool (PVMGraph) by building a graph rep-
resenting a parallel program design based on the PVM programming
model. The software designer can then generate C/PVM code (.c files)
for both simulation and real execution.

143

~ I,,t~"vABERED
A.~'D I~;SI]tUMES'I'I~D C

,¢

V~on/animadon

USER

~PEPPS Tool

~REPPS File
I Monitoring of the

[] ~P'~PPs p m , ~ Real ~ t l o a

C o m p i l a t i o n

Fig. 1. The E D P E P P S Integrated Environment.

In the simulation path each C / P V M source code obtained from the PVM-
Graph is processed using a slightly modified version of the Tape/PVM
pre-processor [10]. The ins t rumented C source files are translated using
the SimPVM Translator [3] into a queueing network representation suit-
able for Workbench graph (.grf file). SES/Workbench uses the graph file
to generate an executable model using some SES/Workbench utilities,
libraries, declarations and the PVM platform model. The simulation is
based on discrete-event modelling.
The simulation output are the execution time, a Tape/PVM trace file
and a statistics file about the virtual machine. These files are then used
in the visualisation tool (PVMVis) to azfimate the design and visualise
the performance of the system.
In the real execution path the T a p e / P V M pre-processor is used to instru-
ment the C source files and these are then compiled and executed to pro-
duce the Tape /PVM trace file required for the visualisation/animation
process. This step can be used for validation of simulation results but
only when the target machine is accessible. The following sections de-
scribe the main tools within E D P E P P S .

3.1 P V M G r a p h

PVMGraph is a graphical programming environment to support the de-
sign and implementation of parallel applications. PVMGraph offers a

144

simple but yet expressive graphical representation and manipulation for
the components of a parallel applications. The main function of PVM-
Graph is to allow the parallel software designer or programmer to de-
velop PVM applications using a combination of graphical objects and
text. Graphical objects are composed of boxes which represent tasks
(which may include computat ion) and arrows which represent communi-
cations. The communication actions are divided into two groups: input
and output. The PVM actions (calls) are numbered to represent the
link between the graph and text in the parallel program. Also different
types and shapes of arrows are used to represent different types of PVM
communication c~Jls. Parallel programs (PVM/C) can be automatically
generated after the completion of the design. Additionally, the designer
may enter P V M / C code directly into the objects. The graphical objects
and textual files are stored separately to enable the designer to re-use
parts of existing applications [3].

3.2 P V M V i s

The main objective of this tool is to offer the designer graphical views
and animation representing the execution and performance of the de-
signed parallel application from t h e point of view of the hardware, the
design and the network. The animation is an event-based process and is
used to locate an undesirable behaviour such as deadlocks or bottlenecks.
The animation view in PVMVis iss imilar to the design view in PVM-
Graph except that the pallet is not shown and two extra components for
performance analysis are added: barchart view and platform view. The
barchart view shows historical states for the simulation and the plat-
form view shows some statistics .for selected performance measures at
three levels: the message passing layer, the operating system layer and
the hardware layer [3].

3.3 S i m P V M T r a n s l a t o r

From PVMGraph graphical and ~extual objects, executable and "sim-
ulatable" PVM programs ~ can b e generated. The "simulatable" code
generated by PVMGraph is wri t ten in a special intermediary language
called SimPVM, which defines an interface between PVMGraph and
SES/Workbench [3].
To simulate the application, ~ model of the intended platform must also
be available. Thus, the simulation model is partitioned into two sub-
models: a dynamic model described in SimPVM, which consists of the

145

application software description and some aspects of the platform (e.g.
number of hardware nodes) and a static model which represents the
underlying parallel platform.
The SimPVM language contains C instructions, PVM functions, and
constructs such as computation delay and probabilistic functions.

3 .4 T h e E D P E P P S S i m u l a t i o n M o d e l

The EDPEPPS simulation model consists of the PVM platform model
library and the PVM programs for simulation. The PVM platform model
is partitioned into three layers (Fig. 2): the message passing layer, the
operating system layer and the hardware layer. Modularity and extensi-
bility are two key criteria in simulation modelling, therefore layers are
decomposed into modules which permit a re-configuration of the entire
PVM platform model. The modelled configuration consists of a PVM
environment which uses the T C P / I P protocol, and a cluster of hetero-
geneous workstations connected to a 10 Mbit /s Ethernet network.

V VM Applications

PVMD LIBPVM

System Call Interface

Socket Layer Process

Scheduler Translxa't Lay~

Network layer

System Resources

Application Layer

Message-passing Layer

Operating System Layer

Hardware Layer

Fig. 2. Simulation model architecture.

A PVM program generated by the PVMGraph tool is translated into
the SES/Workbench simulation model language and passed to the
SES/Workbench simulation engine, where it is integrated with the::plat -
form model for simulation. The message-passing layer models a single
(parallel) virtual machine dedica ted ' to a user. It is composed of a'dae-
mon which resides on each host making up the virtual machine and the
fibrary which provides am interface to PVM services. The~daemon acts
primarily as a message router. It is ,modelled as an automaton which is

146

a common construct for handling events. The LIBPVM library allows a
task to interact with the daemon and other tasks.
The major components in the operating system layer are the System
Call Interface, the Process Scheduler, and the Communication Module.
The Communication Module is structured into 3 sub-layers: the Socket
Layer, the Transport Layer and the Network Layer. The Socket Layer
provides a communications endpoint within a domain. The Transport
Layer defines the communicat ion protocol (either TCP or UDP). The
Network Layer implements the Internet Protocol (IP).
The Hardware Layer is comprised of hosts and the communications sub-
net (Ethernet). Each host is modelled as a single server queue with a
time-sliced round-robin scheduling policy.

4 Case S t ud ie s

4.1 C O M M S 1 B e n c h m a r k

The COMMS1 benchmark is taken from the Parkbench [5] suite (version
3.0). COMMS1 is designed to measure the communication performance
of a parallel system by exchan~ng of messages of various sizes between
two processors. COMMS1 is selected here to highlight the accuracy of
the communication model used. Fig. 3 shows the execution time results
for COMMS1 benchmark between the predictions and the measurements
(averages of 1000 iterations). The figure shows good match between the
two curves. The step like features are caused by fragmentation of the
message into 1500-Byte segments at the IP level.

4 .2 C C I T T H . 2 6 1 D e c o d e r

The application chosen here is the pipeline processor farm (PPF) model
of a standard image processing Mgorithm, the H.261 decoder proposed by
Downton et al. [2]. The H.261 algorithm decomposes into a three-stage
parallel pipeline: frame initialisation (T1); frame decoder loop (T2); and
frame output (T3). The first and last stages are inherently sequential,
whereas the middle stage contains considerable data parallelism.
Two experiments for 1 and 5 images were carried out. The number of
processors in Stage T2 is varied from I to 5. In every case, the load is
evenly balanced between processors.
The target platform is a heterogeneous network of up to 6 workstations
(SUN4's. SuperSparcs and PC's) . Timings for the three algorithm stages
were extracted from [2] and inserted as time delays. Fig. 4 shows the
simulated and real experimental results for speed-up.

147

0.01

0.009

0.008

0.007

~ 0 . ~

o 0.0175

i O.O~

0.003

0.002

0.O01

0
0

" t I

Real exeoation
Simulation

I I , , , I 1 ! I ?

500 I000 1500 2000 2500 3000 3500
PVM memage size

4000

Fig. 3. Comparison between predictions a~ud measurements for COMMS1

5 ,

4.5

4

3.5

a. 3

~2.5
2

1.5

1

0.5

- O - - -

/ / ' / Real Experiments 5 Frames - ~ -
. # w ~ EDPEPPS Simulator 1 Frame

Real Experiments 1 Frame --~---.

I I , , , ? , I I

1 2 3 4 5
N u m t ~ of ~ in T2

Fig. 4. Compaxison between predictions and real experiments for PPF

As expected, the figure shows tha t the 5-frame scenario performs better
than the 1-frame scenaxio, since the pipeline is fuller ill the former case.
The difference between simu]ated and real speed-ups is below 10% even
though the PPF simulation results do not include packing costs.

148

5 Conclusion

This paper has described the EDPEPPS toolset which is based on a
performance-oriented parallel program design method. The toolset sup-
ports graphical design, performance prediction through modelling and
simulation, and visualisation of predicted program behaviour. The de-
signer is not required to leave the graphical design environment to view
the program's behaviour, since the visuallsation is an animation of the
graphical program description. It is intended that this environment will
encourage a philosophy of program design, based on a rapid synthesis-
evaluation design cycle, in the emerging breed of parallel programmers.
Success of the environment depends critically on the accuracy of the un-
derlying simulation system. Preliminary validation experiments showed
an error for the PPF model of less than 10% between the simulation
and the real execution. CPU modelling, PVM group functions and the
simulator speed will be addressed in future work.

Acknowledgments
The authors wish to acknowledge the early contribution of Dr F. Spies.
Also T. Delaitre wishes to acknowledge the contributions of his supervi-
sor, Dr. S. Poslad, in the simulation aspects of this work.

References
1o T. Bemmerl. The TOPSYS architecture. In H. Burkhart, editor,

CONPAR90- VAPPIV Conf., Zurich, Switzerland, Springer, Septem-
ber 1995. Lecture Notes in Computer Science, 457, 732-743.

2. A.C. Downton, K.W.S. Tregidgo and A. Cuhadar, Top-down struc-
tured parallelisation of embedded image processing applications, in:
fEE Proc.-Vis. Image Signal Process. 141(6) (1994) 431-437.

3. EDPEPPS Web Site, http://www.cpc.wmin.ac.uk/--~edpepps.
4. A. Geist, et al. PVM: Parallel Virtual Machine (MIT Press, 1994).
5. K. Hockney and M. Berry, Public International benchmarks for par-

allel computers report-1. Tech. Rep., Parkbench Committee, 1994.
6. E. Hart and S. Flavell, Prototyping transputer applications, in: H.

Zedan, ed., Real-time systems with transputers (IOS Press, 1990).
7. HENCE ~Veb Site, http://netlib2.cs.utk.edu/hence.
8. W. Kuhn and H. Burkhart. The ALPSTONE project: An overview

of a performance modelling environment. In 2nd Int. Conf. on
HiPC'96, (McGraw Hill 1996) 491-496.

149

9. T. Ludwig, e ta / . The Tool-Set - an integrated tool environment for
PVM. Ia EuroPVM'95, Lyon, France, September 1995. Techo Kep.
95-02, Ecole Normale Superieure de Lyon.

10. E. M~i||et, TAPE/PVM an efficient performance monitor for
PVM applications - User guide. LMC-IMAG, ftp://ffp.imag.fr/in
pub/APACHE/TAPE, March 1995.

11. P. Newton, J. Dongara, Overview of VPE: A visual environment for
message-passing, Heterogeneous Computing Workshop, 1995.

12. C. Pancake, M. Simmons and J. Yah, Performance evaluation tools
for parallel and distributed systems, Computer 28 (1995) 16-19.

13. P. Pouzet, J. Paris and V. Jorrand, Parallel application design: The
simulation approach with HASTE, in: W. Gentzsch and U. Harms,
ed., HPCN2 (1994) 379-393.

14. Scientific and Engineering Software Inc. SES/workbench Reference
Manual, Release 3.1, Scientific Engineering Software Inc., 1996.

