
A Full Program Control Flow Representa t ion
for Real Programs

He Zhu and Ian Watson

Manchester University

A b s t r a c t . This paper reports on constructing an exhaustive full pro-
gram control flow framework for precise data flow analysis of real pro-
grams. We discuss the problem of ambiguous calling relations in the
presence of function pointers. A flow insensitive analysis is suggested
and implemented for real C programs.

1 Introduction

This paper discusses the problem of constructing a full Interprocedural Con-
trol Flow Graph (ICFG) for real programs in the presence of function pointers.
Without ambiguous calling relations through function pointers, it is quite easy
to build an ICFG for a program consisting of well-defined control constructs,
such as those defined by the C language. But in a real program, such as those
in the SPLASH-2 suite, the procedure calling relations become complex because
there are pointer addressed call sites, that is, call sites through function point-
ers (see Table 1). So, to solve interprocedural flow-sensitive problems for real
programs, a precise ICFG which considers function pointers is necessary.

A few ICFG Frameworks (ICFFs) have been suggested in the li terature for
various flow-sensitive problems, such as those in [6, 1, 5, 3]. A few papers have
mentioned the function pointer problem [8, 4, 7, 2].

Our ICFF endeavours to design a general framework which is applied to real
programs in the presence of function pointers for flow-sensitive interprocedural
problems.

2 Interprocedural Control Flow Representation

For simplicity without losing generality, in this paper programs consist of C
language statements with low-level control constructs.

Our ICFF combines the intraprocedural control flow representation with the
interprocedural call graph which is represented by links connecting call sites and
the callees. This idea is similar to those in the literature [6, 1, 5]. But our ICFF
is extended to facilitate real C programs by introducing a general call site node
which can keep a list of its callees and a skeleton procedure which will represent
source-absent procedures for a full ICFF representation.

The control flow of a single procedure is represented by a directed Control
Flow Graph (CFG) G = (V, E), where the set of nodes V consists of a start

163

node, an exit node and other nodes which correspond to each statement in the
procedure. The set E consists of directed edges which connect the nodes in V
if the statement for the source node can reach the statement for the destination
node without executing any other statement.

To represent an ICFG, interprocedural edges are inserted between call sites
and their callees. If call site csi calls a procedure pi, an edge (csi,pi) is created.
If a call site is to call a procedure through a function pointer, the callee could
be any one of the candidate procedure set to which the function pointer could
point. In this case, edges are created from the call site to every procedure in the
callee set.

3 A n A p p r o a c h t o C o m p u t i n g t h e C a l l e e S e t s

The difficulty of constructing an ICFG is in computing the callee set for each
pointer addressed call site. To compute the set precisely, we have to predict all
the possibilities to which the function pointer may point. It could be possible by
intraprocedural analysis to compute the set if the analysis of the pointer is not
interprocedural flow-sensitive. But in most of cases, the function pointer gets
its value from an interprocedural argument. So, initially, we have to predict the
set using a flow-insensitive analysis.

An initial approach is designed to compute the callee set for a call site with-
out considering any data flow information° It is inevitably conservative, but it
exploits other information in the program to make this approach far less conser-
vative than it may appear.

The idea is to use flow-insensitive information such as type information to
refine the callee sets. This method was considered not safe in [2], but [7] has
shown the possibility of a flow-insensitive pointer analysis by type inference. The
method checks all procedures for each call site to match the required procedure
pattern. Given a call site c~ the computed callee set of c by this initial approach
is represented by Z(c).

We designed the following algorithm to compute Z(c).

1. Mark each procedure as an aliased procedure if its address is taken, that
is, the procedure address is assigned to a function pointer. There are three
cases where a procedure name may possibly be an alias,

(a) the procedure name appears on the right hand side of an assignment
without an argument list,

(b) the procedure name is used as an actual argument,
(c) the procedure name is used to initialize a function pointer variable.

2. For each pointer addressed call site c which calls a procedure through a
function pointer p,

(a) set Z(c) to be null.
(b) check every aliased procedure proci. If one of the following conditions

is true, add proci to/:(c). If there is any type cast between two func-
tion types, we assume conservatively that the two function types are
compatible unconditionally.

164

- The function type tp referenced by p is compatible with the function
type t~ of the procedure proc~, tp and t~ are compatible if they have
compatible return types and have the same number of arguments
and the corresponding argument types are also compatible.

- The function type tp referenced by p has a null argument list, and
its return type is compatible with the return type of proc~, and the
type of every formal argument of proci is compatible with the type
of the corresponding actual argument in the argument list of the call
site c. Note tha t the number of formal arguments could be less than
the number of actual arguments.

Apparently, the computed callee set :T(c) includes the real callee set 7~(c). I t is
possible tha t I (c) contains redundant procedures which are those tha t will never
be called by call site c. Some of the redundant entries could be reduced by an
incremental approach which , in theory, improves the set by gradual refinement
with the help of an interprocedural flow-sensitive analysis based on the initially
created callee set.

4 Experiments

We implemented an ICFG builder based on the SUIF system in C + + using the
approach discussed above. I t uses linked lists of edges. The s tar t node and the
exit node are combined into one start-end node for convenience.

In a real program, source lines of procedures are not always available, such
as for external and l ibrary procedures. If a source-absent procedure has any
call site in its body, interprocedural links are lost if the procedure is not t reated
specially. For such a procedure, we define a skeleton procedure which is not
necessarily complete, but describes the correct interprocedural calling relations.

Table 1 lists the statistics from our experiments on some programs from the
SPLASH-2 suite.

Program water barnes raytrace from radiosity ocean
lines 1776 2303 10022 3847 22118 4712

call sites 153 242 697 463 663 210
procedures 38 82 163 120 208 36

procs not called 2 10 44 7 25 1
aliased proc 1 2 1 12 24 1

pointed call sites 1 1 11 7 10 1
pointed sites(no callees) 0 0 4 0 9 0

interproc edges 153 242 693 495 677 210
interproc edges(ambi sites) 1 1 7 39 24 1

T a b l e 1. Statistics on Programs in SPLASH-2

It shows tha t our FCFG builder works on programs of various sizes, from

165

1776 lines to 22118 lines. The table also reveals that , on average, each procedure
is called at 3 to 6 call sites. Usually only a few procedures, less than 1% , are
aliased, but in some programs, such a s / m m , up to 12% of procedures are aliased.
Among the call sites, less than 2% are pointer addressed call sites. The number
of interprocedural edges for a pointer addressed call site could be greater than
one because a callee site could have a few aliased procedures. We have also
noticed tha t a real program could have some procedures which are never called
and there are call sites which call no callees because programs developed at
various stages could have test codes which remain in the final code.

5 C o n c l u s i o n s

This paper has addressed the problem of building an ICFF of real programs
in the presence of function pointers. We suggested a flow-insensitive initial
approach to compute callee sets. The approach has been implemented in our
FCFG builder and some preliminary results have shown tha t the approach is
consistent with tha t in [7]. Further research is required on refinement of callee
sets and improvement of the approach for a bet ter performance.

R e f e r e n c e s

1. D. Callahan. The program summary graph and flow-sensitive interprocedural data
flow analysis. In SIGPLAN Conf. on Prog. Lang. Design and Imple. June 1988.

2. M. Emami and et al. Context-sensitive interprocedural points-to analysis in the
presence of function pointers. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 242-256, New York, NY, USA, June
1994. ACM Press.

3. M. W. Hall and et al. Fiat: A framework for interprocedural analysis and trans-
formation. In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, pages 522-
545, Portland, Oregon~ August 12-14, 1993. Springer-Verlag.

4. Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Letters on
Programming Languages and Systems, 1(3):227-242, September 1992.

5. Mary Jean Harrold and Mary Lou Sofia. Efficient computation of interprocedural
definition-use chains. A CM Transactions on Programming Languages and Systems,
16(2):175-204, March 1994.

6. E. Myers. A precise interprocedural data flow algorithm. In Conference Record
of the Eighth annual ACM Symposium on Principles of Programming Languages,
pages 219-230. ACM, ACM, January 1981.

7. B. Steensgaard. Points-to analysis by type inference of programs with structures
and unions. Lecture Notes in Computer Scienee~ 1060:136-??, 1996.

8. William E. Weihl. Interprocedural data flow analysis in the presence of pointers,
procedure variables and label variables. In Conference Record of the Seventh Annual
A CM Symposium on Principles of Programming Languages, pages 83-94, Las Vegas,
Nevada, January 1980.

