
Broadcast and Assoc iat ive Operations on
Fat-Trees*

G. Bilardi 1, B. Codenotti 2, G. Del Corso 2, C. Pinotti 3, and G. Resta 2

1 DEI, Universith di Padova, Padova (Italy) and EECS, University of Illinois at
Chicago, Chicago (Illinois).

2 Istituto di Matematica Computazionale del CNR, Pisa (Italy).
3 Istituto di Elaborazione dell'Informazione del CNR, Pisa (Italy).

Abstract . This paper analyzes the cost of performing broadcast, prod-
uct and prefix computation on the ideal fat-tree, a model proposed here
to capture distance and bandwidth properties common to a variety of
fat-tree networks. Algorithm~ are developed and analyzed in terms of the
capacity of channels at different levels of the fat-tree. Non trivial lower
bounds are derived establishing the optimality of our algorithms for a
wide range of channel capacities.

1 Introduction

A number of networks have been introduced in the literature and referred to
as fat-trees, e.g., the concentrator fat-tree, the pruned-butterfly fat-tree, and
the sorting fat-tree. Loosely speaking, a fat-tree is a complete binary tree whose
leaves act as input /output terminals, whose internal nodes are subnetworks with
switching capability, and whose edges are channels of appropriate capacity. Pro-
posed fat-trees differ in node structure and channel capacities.

Fat-trees have interesting universality properties in VLSI and form the basis
for a number of universal routers [Lei85,GL89,LMR88,BB95,Gre94,BCDM94]
and universal circuits [BB93]. The CM-5 parallel supercomputer uses a fat-tree
as its interconnection pat tern [LAD+92].

In spite of its wide use, the te rm fat-tree has not been defined precisely. A
definition useful for the s tudy of layout area has been proposed in [BB94]. In the
present paper (Section 2), we propose the ideal fat-tree model, which captures
broad distance and bandwidth constraints of fat-tree networks and provides a
basis to design algorithms portable among different fat-trees. We show how a
fat-tree network can simulate an ideal fat-tree.

We study two classes of algorithms for ideal fat-trees. In the first class, the
communication network is not pipelined, in the sense that it will not accept new
messages while others are already in transit. This constraint, more precisely for-
mulated in Subsection 4.2, leads to a natural decomposition of the computation
as as sequence of rounds, which makes algorithms easier to design and analyze.

* This research was partially supported by the ESPRIT III Basic Research Programme
of the EC under contract No. 9072 (Project GEPPCOM).

197

Perhaps surprisingly, in many cases this constraint does not prevent achieving
optimal performance. In a second, unrestricted class, the network accepts mes-
sages at any time.

Sections 3 and 4 respectively deal with upper and lower bounds to broadcast
time on the ideal fat-tree, with and without pipelining. The derived bounds are in
the form of recurrence relations, expressed in terms of a function w(n), defining
the capacity of the channels at the roots of subtrees with n leaves 1. We solve
such recurrences for a number of significant shapes of w(n), obtaining the results
reported in Table 1.

Table 1. Time bounds for broadcasting in an ideal fat-tree of N leaves.

Capacity Lower Bounds Upper Bounds
w (n) Unrestricted No pipelining Unrestricted No pipelining

0(1) n (l°g2~v I l .O(log 2 N) log log N / ,

n \ ,og ,og~/
£2(Iog ~-~ N)

log I+°(D n

2 l°g# '~, ;3 < 1
•1/log log ~

0 \ log log N /] O(log 2 N)
r lo_s!z_, h o iloglog,v /

O(log 2-~ N)
f2(log N log log N) O(log N log log N)

n #, fl < 1 f2(logN) S2(logNloglogN) O(logNloglogN)

The resulting running time ranges from O(log N log log N) (for channel ca-
pacity proportional to subtree size) to O(log 2 N/log log N) (for constant channel
capacity). We observe that pipellning is crucial to achieve optimal performance
only for rather small capacities, whereas it plays no significant role for larger
capacities (say, w(n) > logn). A comparison between upper and lower bounds
shows that our algorithms are optimal for a wide range of channel capacities. A
loglogN gap remains for large capacities, in the unrestricted case, pointing at
interesting aspects of the problem that require further investigation.

Associative product and prefix computations are the subject of Section 5. We
show that these operations are related to broadcast in various ways, allowing an
extension both of the algorithmic techniques and of the lower bound results
developed for broadcast.

Concluding remarks are in Section 6.
As broadcast is a basic primitive for parallel computation, it has been widely

studied in many different models. Among the most similar to the ideal fat-tree
are a number of models based on bandwidth/latency parameters such as the
postal model [BK92], LogP [CK+93,KSSS93], BSP [Va90,BHPPS96], and the
ring of processors of [RSS94] where messages can cross k links in time O(logik)
(modeling the use of cascaded drivers to accelerate message transmission along
MOS lines). Clearly, broadcast algorithms for most models resemble each other

1 We denote with N the size of a f a t - t r e e , while n usually denotes the size of a subtree.

198

2) :2

,(i)=~

Fig. 1. An ideal fat-tree with N = 16 and w(n) = log n + 1. Black circles represent
processors. Grey circles represent the switching modules.

to some extent, since they are all based on replicating and distributing the mes-
sage to be broadcast. The strategies differ in making different tradeoff between
replication and distribution. In part icular , while all the models cited in this para-
graph are invariant under an a rb i t r a ry permuta t ion of the processors, the ideal
fat-tree is faster when communicat ion occurs between processors that belong to
a small subtree, which leads to different broadcasting strategies.

2 The Ideal Fat-Tree

We introduce the ideal fat-tree, the model of computation used in the rest of
this paper.

For N a power of two, an ideal fat- t ree is a network of N processors P0, PI,
• . . , P ly- l , placed from left to right at the leaves of a complete binary tree. We
say that p is the identity of Pp.

The internal nodes of the t ree represent switching modules forming a routing
network among the processors. Excep t for the one at the root, each module is
connected to its parent by two unidirect ional channels (in opposite directions).
Both such channels have capacity w(n), where n E {1, 2, 4 , . . . , N/2} is the num-
ber of leaves of the subtree rooted at tha t module node (Figure 1 illustrates the
structure of an ideal fat-tree).

We assume global synchronization among the nodes of the fat-tree. In one
period of the global clock, a processor can execute one local operation, submit
one message to the network, and receive one message from the network.

A message submitted to the network in isolation moves along the shortest
path between its source and its dest inat ion in the tree, traversing one chan-
nel per period. Thus, the message arrives 2h steps after it is sent, where h E
{1, 2 , . . . , logN} is the height of the lowest common ancestor of source and des-
tination. When several messages are submit ted to the network in the same step,

199

each of them proceeds as if it were in isolation, as long as the number of messages
traversing any channel does not exceed the capacity of that channel. If capacity
is exceeded, the system halts.

An algorithm for an ideal fat-tree can be specified by a program for the
generic processor, with a distinguished read-only variable interpreted as the pro-
cessor identity. It is the responsability of the algorithm writer to ensure compli-
ance with the capacity constraints. However, once this is done, the model ideally
assumes that messages do not get in each others way. In actual fat-trees, even
when the necessary bandwidth is available, the problem of determing non con-
flicting paths is non-trivial, and the performance of the ideal fat-tree can only
be approximately achieved.

We propose the ideal fat-tree as a potentially portable abstraction for the
class of fat-tree networks. (For a model different from ours, but similar in spirit,
see [LM88].) Indeed, it can be shown that a specific fat-tree with good routing
properties can simulate an ideal fat-tree with moderate slowdown, as shown
below. It is customary to express the routing time of a fat-tree in terms of a
quantity A associated with a message set, called load factor [Lei85], defined as
the maximum over all channels of the number of messages that must traverse that
channel divided by its capacity. Typically, routing time is of the form O()~s(N) +
d(N)); since ,k is a lower bound to routing time, small values of s(N) and d(N)
denote near optimal algorithrn.~. Technically, we have:

T h e o r e m 1. Let F be a fun-tree network of N leaves with capacity function
w(n), such that a set of messages of load factor ~ can be routed on line, in time
O(As(N) +d(N)). Then, F can simulate an ideal fat-tree with the same capacity
function w(n) with slowdown O(s(N) -F d(N)).

The proof is left for the full paper. It hinges on the fact that the set of
messages submitted to the network of the ideal fat-tree at any given step has
load factor A < 1.

As an example, for the randomized routing of constant-size messages on the
butterfly fat-tree, s(N) = 1 and d(N) = logN [LMRR94]; thus, the slowdown to
simulate an ideal fat-tree according to the preceding theorem would be O(log N).
For the deterministic routing of O(logN)-size messages on the sorting fat-tree,
s(N) = logN and d(N) = log s N [BB95], yielding a slowdown of O(log 2 N).

We develop algorithms and derive lower bounds for a fat-tree with a general
capacity function w(n), simply assllming two natural constraints:

1. w(2n) > w(n), that is, the outgoing bandwidth of a subtree does not de-
creases with its size;

2. w(2n) < 2w(n), that is, the bandwidth toward the parent does not exceed
the total bandwidth toward the children.

Typical w(.) functions are w(n) = ~(nl/2) , for area-universal trees, and w(n) =
O(n2/3), for volume-universal trees.

We shall often make use of the following pseudo-inverse of w(n):

= : > c } . (1)

200

Clearly, w-l(c) represents the number of leaves of the smallest subtree whose
root capacity is at least c.

3 A B r o a d c a s t A l g o r i t h m

Simple diameter considerations show that any broadcast algorithm on an ideal
fat-tree takes time D(logN). An obvious algorithm using only one unit of ca-
pacity per channel easily achieves time O(log 2 N). The goal of this section is to
design algorithms that improve on the O(log 2 N) performance by taking advan-
tage of larger channel capacity. We also investigate the further potential offered
by pipelining.

3.1 T h e A l g o r i t h m

We present a broadcast algorithm for fat-trees of size N with running time
ranging fzom O(logNloglogN) (for w(n) = n) to O(log2 N/loglogN) (for
w(n) = 1). The algorithm maximizes parallelization while avoiding congestion.
Roughly speaking, a certain number of copies of the message is generated and
then distributed so that each subtree of a suitable size holds a cop}" then the
algorithm is recursively applied in each subtree.

More precisely, algorithm Broadcast (Algorithm 1) relies on a recursive pro-
cedure, Sparse-Broadcast (Algorithm 2). The goal of Sparse-Broadcast, called on
a tree of size n, is to generate r = max(w(n), 2) uniformly spread copies of the
message.

This is accomplished in two phases: in the first phase Sparse-Broadcast calls
itself on a subtree of size m = w -1 (v/r ") [line 6], thus generating v ~ copies of the
message. This is the smallest subtree (hence the one with the minimum distance
among the processors) whose root capacity is at least v/~ (hence affording these
copies to be distributed without congestion) [lines 7,8]. In the second phase, each
of the v ~ copies produced in the first phase is used to generates other v/~ copies,
by means of x/~ simultaneous calls to Sparse-Broadcast on v ~ subtrees of size m
[lines 9,10]. Finally, the resulting r copies are distributed uniformly [lines 11,14].

Broadcast (first, n)
{Send copy originally at firsl; to leaves first + I,..., first -k n - I}

1. if n > l then
2. r = ma~{~(n), 2) ;
3. Sparse-Broadcast(first, n)
4. for O < i < r - - 1 pardo
5. Broadcast(first + i n/r, n/r);
6. endif

A l g o r i t h m 1. Broadcast.

201

Sparse-Broadcast(first, n)
{Send copy originally at leaf first to max{w(n), 2} equally spaced leaves}

1. r = m~x{~(n), 2};
2. if r = 2 t he n
3. P[f i r s t] - . P [f i r ~ t + n/2l;
4. if r > 2 t he n
5.
6. Sparse-Br0adcast(first,m)
7. for O<i<v/r--i pardo
8. P [f i r s t + im/~-] .-~ P [f i r s z -t- in/vf~;
9. for 0 < i < v / r - 1 pezdo
lo . Sparse-B~o~a=ast(~i~t + i ~ / v ~ , m);
II. for 0 < i < Vq- I pardo
12. for 0 _< j _< v/r- 1 pardo
13. P[(first + i =/v~) + j ~/v~ ~ P[(first + i n/v~) + j-/=];
14. endfor
15. endif

Algori thm 2. Sparse Broadcast. (Notation: P[k] -+ P[h] means that processor k sends
the message to processor h.)

Algorithm Broadcast first calls procedure Sparse-Broadcast on the same tree
[line 3], which generates r = max(w(n) , 2) copies of the message to be broadcast,
one in each subtree of size n/r. Then Broadcast is recursively called in parallel
[lines 4,5] on each of these subtrees.

3.2 Ana lys i s

Let S(N) denote the t ime needed to perform a Sparse-Broadcast on a tree of N
leaves by Algorithm 2. We have:

S(N) < 2S(m) + 4 1 o g N ---- 2S(w-l(wl/2(N))) + 41ogN, (2)

where the term 2S(m) accounts for the two calls on subtrees of size m [lines 6
and 10], and the term 41ogN accounts for the time to spread the copies [lines
7-8 and 11-15].

The time T(N) of the full broadcas t (Algorithm 1) satisfies

T(N) = S(N) + T (w~N)) " (3)

In the hill paper, we solve the above equation for some interesting cases of
function w(n), with the results repor ted in Table 1 of the Introduction. We also
provide a detailed discussion motivat ing the non-obvious choice m = w -1 (v~)
in Line 5 of procedure Sparse-Broadcast .

202

3.3 Pipel in ing

The performance of the algorithm described above can be improved by pipelin-
ing. After the execution of the sparse broadcast routine, we have w(n) copies of
messages. Note that, using pipelining, each message can be replicated O(log N)
times in time O(log N). In fact, if a processor sends k messages in pipeline, the
first message will reach its destination at most after 2 log N time steps, and the
last one after 2 log N + k - 1 time steps.

Thus, spending an additional O(logN) time, we can call recursively the
broadcast algorithm on subtrees of size N/(w(N) logN) instead of N/w(N) .
The corresponding recurrence is

(N) T'(N) = S(N) + T ' w(N)TogN + 7 1 ° g N ' (4)

where 7 is a small constant. Again, see Table 1 for solutions in specific cases.

4 L o w e r B o u n d s f o r B r o a d c a s t

In this section, we establish lower bounds for the running time T(N) of broad-
casting algorithms on ideal fat-trees with N leaves. A first bound applies to
any algorithm, even with pipelining. The pipelined algorithm of Subsection 3.3
attains this lower bound for w(N) < N 1/I°gl°gy. A stronger lower bound is
also derived for a restricted class of algorithms. Algorithm 1 of Subsection 3.1
belongs to this class and attains the lower bound for capacities w(N) >_ log N.

4~1 A Genera l Lower B o u n d

The next theorem provides a lower bound in the form of a recurrence relation.

Theorem 2. The running time of any broadcast algorithm on an ideal fat-tree
satifies

T(N) > log(N/2) + T ~ (w(N/2)')

where a is a constant such that o~ > 1/logo~ and ~ < e/loge, e.g. 1.56 _< c~
1.88.

Proof. For n < N/2, consider a subtree T of n leaves and assume that, at a
given time t, no node of 7" contains any copy of the message to be broadcast.

At time t + log n no message has yet reached any leaves of 7-, because any
copy must enter the root after time t and it will take log n steps before it can
reach a leaf. We will argue next that at least one subtree of 7" of suitable size is
still empty.

Let d = logw(n) + loglog(an/w(n)) and observe that, if w(n) < n and
1 < a _< e/loge, then d < logn. Consider now the 2 d = w(n)log(an/w(n))

203

subtrees of T of n/2 ~ leaves. The number of messages that have entered any of
these subtrees is at most

w(n)[log n - ~ = w(n)Oog(n/w(n)) - log log(an/w(n))],

since (i) no replication of copies has taken place within T, (ii) at most w(n)
copies can enter at each time unit, and (iii) only those copies entered between
t + 1 and t + logn - d will have reached a subtree of those being considered, as
their root is at distance d from the root of T.

A straightforward comparison shows that, when a > 1/log ~, the number of
subtrees considered exceeds the total number of copies they collectively contain
at time t + log n, whence at least one of them is empty at that time. Therefore,
we have :

(ntw(n))
T(n) >_ logn + T(n /2 d) - logn + T \log(an/w(n)) "

The statement of the theorem follows by letting t = 0 and n = N/2. In fact,
when t = 0, there is only one copy in the entire tree and therefore there is an
empty subtree of size N/2.

The lower bound of Theorem 2 matches the performance of our algorithm,
for capacities not exceeding N 1/log log N. If w(N) > N 1/log log N, the trivial lower
bound ~(log N) is obtained.

4.2 A Lower B o u n d for t h e R o u n d M o d e l (no Pipe l in ing)

The constraint that the network can not be pipelined can be conveniently trans-
lated into the following rules.

Round-Model Rules:

- The algorithm consists of a sequence of rounds.
- During a round a processor can send or receive at most one message.
- All messages in a given round leave their source at the beginning of the

round.
- A round ends when all the messages sent have reached their destination.

The time of a round is twice the round height, the maximum height in the
tree reached by any message during that round. The time of an algorithm is
the sum of the times of its rounds. It is easy to see that, when w(N) >_ log N,
Algorithm 1 of the previous section can be cast into the round model without
increasing its running time.

In the round model, we have the following lower bound.

T h e o r e m 3. In the round model, the running time T(N) of any broadcast al-
gorithm satisfies

log log N--1 2i

T(N) > (1/2) logN Z log(w(2 2') + 1) "
/=0

204

Proof. Let rotmd(1), romxd(2), ..., round(K) be the rounds of the algorithm, with
round(t) of round height height(Z) and duration 2 height(t) . Let g(h) denote
the number of rounds with height greater than h. We focus on the sequence of
heights 1, 2, 4 , . . . , H where H -- 2 [l°g log N-t] is the largest power of two smaller
than logN. Since there are (g(2 i) - g(U+l)) rounds with 2 i < height < 2 i+1
and each of them takes more than 2 • 2 i steps, the total number of steps of the
algorithm satisfies the relation

log H log H

T > ~ (g(2')- g(2'+~))2 '+~ _> ~ 2'g(2'). (5)
i----0 i=0

Next, we seek a lower bound to g(h). For h = O, 1 , . . . , log N - 1, let sh(t) denote
the number of subtrees of height h that, upon completion of round(t), contain at
least one copy of the message to be broadcast. For convenience, also let Sh (0) = 1,
for any h. Let round(t~) be the i-th round, in order of execution, among those
of height greater than h. We have:

8h(t~, +1) ___ (~(2 h) + 1) 8h(t~). (6)
In fact, during round(t~ + I) , . . -,-i+1 ., round(r h -- 1), no message enters (from the
root) a subtree of height h. During round(t~+t), each of the Sh(t~) subtrees of
height h that already hold one copy of the message can send out to other subtrees
at most w(2 h) copies.

Considering that, upon termination of the broadcast algorithm, all the N/2 h
subtrees have a copy of the message, we have sh(tgh (h)) >_ N/2 h. The lat ter
relation, together with 5 and Sh(O) = 1, after simple manipulations yields

log N - h
g(h) > l o g (~ ~ 1) " (z)

By using Relation 7 in Relation 5, we obtain:

log H 2i log H - 1 2i
T > ~ 2 i l o g N - (8)

i=o l°g(w(22') + 1) > (1 /2) logN Z log(w(22') + 1)'
i=0

where, in the last step, for i < logH, we have used 2 i < (1/2)logN.

It is straightforward to derive the following corollary.

Corol lary 4. In the round model, the running time T(N) of any broadcast al-
gorithm satisfies (log2N)

T(N) = / 2 \ l o g w (N) "

Corol lary 5. In the round model, for an ideal fat-tree with w(N) = N .J, with
fl <_ 1, the running time T(N) of any broadcast algorithm satisfies

T(N) = ~2(log N log log N).

Our results on the complexity of broadcast are summarized in Table 1.

205

5 A s s o c i a t i v e P r o d u c t ~ d P r e f i x C o m p u t a t i o n s

this section, we consider two b~ ic ~sociative computations, which are inti-
mately related to the broadc~t operation, i.e. prefix and ~sodative product in
a semi~oup.

Let S be a semigroup ~ t h the * operation, ~ d let a0, a l , . . . ~ a g - 1 be ele-
ments of S.

- For the pref ix computation, we ~sume that
- (i) ~ t ia l ly processor ~ stores the ~ u e a~, i = 0 ,1 , . . . , N - 1;
- (i i)a t the end of the computation, ~ contains a o , at * . ." * ai , i =
0,1, . . . , N - 1.

- For the produc$, we ~sume that ~ t i a l l y there is the same data distribution
as above, ~ d at the end of the computation P0 stores a0 * al * - - -* aN-t .

The f o l i o ~ g relations, illustrated ~ o m F i b r e 2, hold among the above com-
putat io~ and broadc~t:

; P F,x)

(_ _ P R o D u c T) ~ue t ions from the (:: ..:: ,,~ process of computation BROADCAST

co ativity

Fig. 2. Relatio~ b Broadc~t, Product and Prefix.

1. Product is part of p r e ~ .
2. A s s ~ n g the existence of ~ identity element e, broadc~t is a subcase of

prefix when ao = a (the ~ u e to broadc~t) ~ d ai = e for i > 1.
3. The interplay between product and broadcast is less obvious, it emerges by

viewing ~ y computation for broadc~t ~ a sort of "reverse" of the product
computation. (Sometimes, the reverse of broadcast is called accumulation
[HKMP95].) More precisely, at each step of a product computation a node
P~ computes, say, Ai * Aj, where A i and Aj we parti~ products computed
at nodes i and j, respe~ively. ~ the corresponding broadc~t computation,
processor Pk sends the data to processors Pi ~ d Pj. On the other hand,
we c ~ ~sociate to m-ly broadc~t ~gorithm a computation graph, which
keeps track, fi3r all the nodes, of the node which sent it the data first. This

206

computation graph is a tree, which, if visited from the leaves, provides a
computation graph for the product. Note that the corresponding product
algorithm requires, in general, commutativity.

By taking advantage of these properties we establish the following results
(details in the full paper):

Th eo rem 6. In the ideal fat-tree, prefix and product have the same asymptotic
complexity as broadcast. In particular the best lower bound is exactly the same
for the three problems.

6 Conclusions

In this paper, we have designed efficient algorithms for broadcast and other re-
lated computations on idealized fat-trees, which are optimal for a wide range
of the capacity of the interconnection network. We conjecture that optimality
holds even outside this range, although a different lower bound argaament might
be needed. We have also presented a lower bound technique that applies to al-
gorithms restricted to work in rounds. It would be interesting to establish that
the above restriction is not necessary. Further work to be done include analyzing
basic linear algebra computations, e.g. matrix-vector multiplication, using the
primitive operations described in this paper.

Acknowledgement . The authors wish to thank an anonimous referee for a
number of valuable suggestions.

References

[BK92] A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms in the Postal
Model for Message-Passing Systems. In Proceedings of the 4th Annual Sympo-
sium on Parallel Algorithms and Architectures, pages 13-22. ACM, 1992.

[BB93] P. Bay and G. Bilardi. An area-tmiversal VLSI circuit. In Proceedings of the
1993 Symposium on Integrated Systems, pages 53-67, March 1993.

[BB94] G. Bilardi and P. Bay. An area lower bound for a class of fat-trees. In Proceed-
ings of the 1994 European Symposium on Algorithms, pages 413-423, Utrecht,
The Netherlands, Springer-Verlag LNCS 855, 1994.

[BB95] P. Bay and G. Bilardi. Deterministic on-line routing on area-universal net-
works. Journal of the ACM, 42(3):614-640, May 1995.

[BCDM94] G. Bilardi, S. Chauduri, D. Dubashi, and K. Mehlhorn. A lower bound for
area-universal graphs. Information Processing Letters, 51, 101-105, 1994.

[BHPPS96] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis, BSP
vs LogP. In Proceedings of the 8th Annual Symposium on Parallel Algorithms
and Architectures, pages 25-32. ACM, 1996.

[CK+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. yon Eicken. LogP: Towards a Realistic Model of
Parallel Computation. In Proceedings of the 4th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, 1993.

207

[HKMP95] J. Hromkovi~, R. Klasing, B. Monies, R. Peine. Dissemination of Informa-
tion in Interconnection Networks (Broadcasting and Gossiping). In: Ding-Zhu
Du and D. Frank Hsu (eds.), Combinatorial Network Theory, Kluwer Academic
Publishers, 1995~ pp. 125-212.

[KSSS93] R. Karp, A. Sahay, E. Santos, K. E. Schauser. Optimal Broadcast and
Summation in the LogP Model. In Proceedings of the 5th ACM Symposium on
Parallel Algorithms and Architectures, June 1993.

[GL89] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In
S. Micali, editor, Randomness and Computation, pages 345-374. JAI Press,
Inc., 1989.

[Gre94] R. I. Greenberg. The fat-pyramid and universal parallel computation inde-
pendent of wire delay. IEBE Transactions on Computers, C-43(12):1358-1364,
December 1994.

[LAD+92] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R: Feynman, M. N.
Ganmukhi, J. V. Hilly W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S.
Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network architecture of the
Connection Machine CM-5. In Proceedings of the 4 th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 272-285, July 1992.

[Lei85] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercom-
puting. IEEE Transactions on Computers, C-34(10):892-900, October 1985.

[LM88] C. E. Leiserson and B. Maggs. Communication-efficient parallel algorithms for
distributed random-access ma,-hlnes. Algorithmica, 3, 53-77, 1988.

[LMRB8] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms.
In Proceedings of the 29 th Annual Symposium on the Foundations of Computer
Science, White Plains, New York, October 1988.

[LMRR94] T. Leighton, B. Maggs, A. Ranade and S. Rao. Randomized Routing and
Sorting on Fixed-Connection Networks. Journal of Algorithms, 17(1):157-205,
1994.

[RSS94] A.L. Rosenberg, V. Scarano and R.K. Sitaraman. The Reconfigurable Ring of
Processors: Fine-grained Tree-structured Computations. 6th IEEE Symposium
on Parallel and Distributed Processing, 1994.

[Va90] L. G. Valiant. A Bridging Model for Parallel Computation. Communication of
the ACM, 33:103-111, 1990.

