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Abstract .  This paper analyzes the cost of performing broadcast, prod- 
uct and prefix computation on the ideal fat-tree, a model proposed here 
to capture distance and bandwidth properties common to a variety of 
fat-tree networks. Algorithm~ are developed and analyzed in terms of the 
capacity of channels at different levels of the fat-tree. Non trivial lower 
bounds are derived establishing the optimality of our algorithms for a 
wide range of channel capacities. 

1 Introduction 

A number of networks have been introduced in the literature and referred to 
as fat-trees, e.g., the concentrator fat-tree, the pruned-butterfly fat-tree, and 
the sorting fat-tree. Loosely speaking, a fat-tree is a complete binary tree whose 
leaves act as input /output  terminals, whose internal nodes are subnetworks with 
switching capability, and whose edges are channels of appropriate capacity. Pro- 
posed fat-trees differ in node structure and channel capacities. 

Fat-trees have interesting universality properties in VLSI and form the basis 
for a number of universal routers [Lei85,GL89,LMR88,BB95,Gre94,BCDM94] 
and universal circuits [BB93]. The CM-5 parallel supercomputer uses a fat-tree 
as its interconnection pat tern [LAD+92]. 

In spite of its wide use, the te rm fat-tree has not been defined precisely. A 
definition useful for the s tudy of layout area has been proposed in [BB94]. In the 
present paper (Section 2), we propose the ideal fat-tree model, which captures 
broad distance and bandwidth constraints of fat-tree networks and provides a 
basis to design algorithms portable among different fat-trees. We show how a 
fat-tree network can simulate an ideal fat-tree. 

We study two classes of algorithms for ideal fat-trees. In the first class, the 
communication network is not pipelined, in the sense that it will not accept new 
messages while others are already in transit.  This constraint, more precisely for- 
mulated in Subsection 4.2, leads to a natural  decomposition of the computation 
as as sequence of rounds, which makes algorithms easier to design and analyze. 

* This research was partially supported by the ESPRIT III Basic Research Programme 
of the EC under contract No. 9072 (Project GEPPCOM). 
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Perhaps surprisingly, in many cases this constraint does not prevent achieving 
optimal performance. In a second, unrestricted class, the network accepts mes- 
sages at any time. 

Sections 3 and 4 respectively deal with upper and lower bounds to broadcast 
time on the ideal fat-tree, with and without pipelining. The derived bounds are in 
the form of recurrence relations, expressed in terms of a function w(n), defining 
the capacity of the channels at the roots of subtrees with n leaves 1. We solve 
such recurrences for a number of significant shapes of w(n), obtaining the results 
reported in Table 1. 

Table 1. Time bounds for broadcasting in an ideal fat-tree of N leaves. 

Capacity Lower Bounds Upper Bounds 
w ( n )  Unrestricted No pipelining Unrestricted No pipelining 

0(1) n ( l°g2~v I l .O(log 2 N) log log N / ,  

n \ ,og ,og~/  
£2(Iog ~-~ N) 

log I+°(D n 

2 l°g# '~, ;3 < 1 
•1/log log  ~ 

0 \ log log N / ] O(log 2 N) 
r lo_s!z_,  h o iloglog,v / 

O(log 2-~ N) 
f2(log N log log N) O(log N log log N) 

n #, fl < 1 f2(logN) S2(logNloglogN) O(logNloglogN) 

The resulting running time ranges from O(log N log log N) (for channel ca- 
pacity proportional to subtree size) to O(log 2 N/log log N) (for constant channel 
capacity). We observe that pipellning is crucial to achieve optimal performance 
only for rather small capacities, whereas it plays no significant role for larger 
capacities (say, w(n) > logn). A comparison between upper and lower bounds 
shows that our algorithms are optimal for a wide range of channel capacities. A 
loglogN gap remains for large capacities, in the unrestricted case, pointing at 
interesting aspects of the problem that require further investigation. 

Associative product and prefix computations are the subject of Section 5. We 
show that these operations are related to broadcast in various ways, allowing an 
extension both of the algorithmic techniques and of the lower bound results 
developed for broadcast. 

Concluding remarks are in Section 6. 
As broadcast is a basic primitive for parallel computation, it has been widely 

studied in many different models. Among the most similar to the ideal fat-tree 
are a number of models based on bandwidth/latency parameters such as the 
postal model [BK92], LogP [CK+93,KSSS93], BSP [Va90,BHPPS96], and the 
ring of processors of [RSS94] where messages can cross k links in time O(logik) 
(modeling the use of cascaded drivers to accelerate message transmission along 
MOS lines). Clearly, broadcast algorithms for most models resemble each other 

1 We denote with N the size of a f a t - t r e e ,  while n usually denotes the size of a subtree. 
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Fig. 1. An ideal fat-tree with N = 16 and w(n) = log n + 1. Black circles represent 
processors. Grey circles represent the switching modules. 

to some extent, since they are all based on replicating and distributing the mes- 
sage to be broadcast. The strategies differ in making different tradeoff between 
replication and distribution. In part icular ,  while all the models cited in this para- 
graph are invariant under an a rb i t r a ry  permuta t ion  of the processors, the ideal 
fat-tree is faster when communicat ion occurs between processors that  belong to 
a small subtree, which leads to  different broadcasting strategies. 

2 The Ideal Fat-Tree 

We introduce the ideal fat-tree,  the  model  of computation used in the rest of 
this paper. 

For N a power of two, an ideal fat- t ree is a network of N processors P0, PI, 
• . . ,  P ly- l ,  placed from left to  right at  the leaves of a complete binary tree. We 
say that  p is the identity of Pp. 

The internal nodes of the t ree  represent  switching modules forming a routing 
network among the processors. Excep t  for the one at the root, each module is 
connected to its parent by two unidirect ional  channels (in opposite directions). 
Both such channels have capacity w(n),  where n E {1, 2, 4 , . . . ,  N/2} is the num- 
ber of leaves of the subtree rooted  at  tha t  module node (Figure 1 illustrates the 
structure of an ideal fat-tree). 

We assume global synchronization among the nodes of the fat-tree. In one 
period of the global clock, a processor can execute one local operation, submit 
one message to the network, and receive one message from the network. 

A message submitted to the network in isolation moves along the shortest 
path between its source and its dest inat ion in the tree, traversing one chan- 
nel per period. Thus, the message arrives 2h steps after it is sent, where h E 
{1, 2 , . . . ,  logN} is the height of the lowest common ancestor of source and des- 
tination. When several messages are submit ted  to the network in the same step, 
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each of them proceeds as if it were in isolation, as long as the number of messages 
traversing any channel does not exceed the capacity of that channel. If capacity 
is exceeded, the system halts. 

An algorithm for an ideal fat-tree can be specified by a program for the 
generic processor, with a distinguished read-only variable interpreted as the pro- 
cessor identity. It is the responsability of the algorithm writer to ensure compli- 
ance with the capacity constraints. However, once this is done, the model ideally 
assumes that messages do not get in each others way. In actual fat-trees, even 
when the necessary bandwidth is available, the problem of determing non con- 
flicting paths is non-trivial, and the performance of the ideal fat-tree can only 
be approximately achieved. 

We propose the ideal fat-tree as a potentially portable abstraction for the 
class of fat-tree networks. (For a model different from ours, but similar in spirit, 
see [LM88].) Indeed, it can be shown that a specific fat-tree with good routing 
properties can simulate an ideal fat-tree with moderate slowdown, as shown 
below. It is customary to express the routing time of a fat-tree in terms of a 
quantity A associated with a message set, called load factor [Lei85], defined as 
the maximum over all channels of the number of messages that must traverse that 
channel divided by its capacity. Typically, routing time is of the form O()~s(N) + 
d(N)); since ,k is a lower bound to routing time, small values of s(N) and d(N) 
denote near optimal algorithrn.~. Technically, we have: 

T h e o r e m  1. Let F be a fun-tree network of N leaves with capacity function 
w(n), such that a set of messages of load factor ~ can be routed on line, in time 
O(As(N) +d(N)). Then, F can simulate an ideal fat-tree with the same capacity 
function w(n) with slowdown O(s(N) -F d(N) ). 

The proof is left for the full paper. It hinges on the fact that the set of 
messages submitted to the network of the ideal fat-tree at any given step has 
load factor A < 1. 

As an example, for the randomized routing of constant-size messages on the 
butterfly fat-tree, s(N) = 1 and d(N) = logN [LMRR94]; thus, the slowdown to 
simulate an ideal fat-tree according to the preceding theorem would be O(log N). 
For the deterministic routing of O(logN)-size messages on the sorting fat-tree, 
s(N) = logN and d(N) = log s N [BB95], yielding a slowdown of O(log 2 N). 

We develop algorithms and derive lower bounds for a fat-tree with a general 
capacity function w(n), simply assllming two natural constraints: 

1. w(2n) > w(n), that is, the outgoing bandwidth of a subtree does not de- 
creases with its size; 

2. w(2n) < 2w(n), that is, the bandwidth toward the parent does not exceed 
the total bandwidth toward the children. 

Typical w(.) functions are w(n) = ~(nl/2) ,  for area-universal trees, and w(n) = 
O(n2/3), for volume-universal trees. 

We shall often make use of the following pseudo-inverse of w(n): 

= : > c } .  ( 1 )  
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Clearly, w-l(c) represents the number of leaves of the smallest subtree whose 
root capacity is at least c. 

3 A B r o a d c a s t  A l g o r i t h m  

Simple diameter considerations show that any broadcast algorithm on an ideal 
fat-tree takes time D(logN). An obvious algorithm using only one unit of ca- 
pacity per channel easily achieves time O(log 2 N). The goal of this section is to 
design algorithms that improve on the O(log 2 N) performance by taking advan- 
tage of larger channel capacity. We also investigate the further potential offered 
by pipelining. 

3.1 T h e  A l g o r i t h m  

We present a broadcast algorithm for fat-trees of size N with running time 
ranging fzom O(logNloglogN) (for w(n) = n) to O(log2 N/loglogN) (for 
w(n) = 1). The algorithm maximizes parallelization while avoiding congestion. 
Roughly speaking, a certain number of copies of the message is generated and 
then distributed so that each subtree of a suitable size holds a cop}" then the 
algorithm is recursively applied in each subtree. 

More precisely, algorithm Broadcast (Algorithm 1) relies on a recursive pro- 
cedure, Sparse-Broadcast (Algorithm 2). The goal of Sparse-Broadcast, called on 
a tree of size n, is to generate r = max(w(n), 2) uniformly spread copies of the 
message. 

This is accomplished in two phases: in the first phase Sparse-Broadcast calls 
itself on a subtree of size m = w -1 (v/r ") [line 6], thus generating v ~ copies of the 
message. This is the smallest subtree (hence the one with the minimum distance 
among the processors) whose root capacity is at least v/~ (hence affording these 
copies to be distributed without congestion) [lines 7,8]. In the second phase, each 
of the v ~ copies produced in the first phase is used to generates other v/~ copies, 
by means of x/~ simultaneous calls to Sparse-Broadcast on v ~ subtrees of size m 
[lines 9,10]. Finally, the resulting r copies are distributed uniformly [lines 11,14]. 

Broadcast (first, n) 
{Send copy originally at firsl; to leaves first + I,..., first -k n - I} 

1. if n > l  then 
2. r = ma~{~(n), 2) ; 
3. Sparse-Broadcast(first, n) 
4. for O < i < r - - 1  pardo 
5. Broadcast(first + i n/r, n/r); 
6. endif  

A l g o r i t h m  1. Broadcast. 
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Sparse-Broadcast(first, n) 
{Send copy originally at leaf first to max{w(n), 2} equally spaced leaves} 

1. r = m~x{~(n),  2}; 
2. if r = 2  t he n  
3. P[f i r s t ]  - .  P [ f i r ~ t  + n/2l;  
4. if r > 2  t he n  
5. 
6. Sparse-Br0adcast(first,m) 
7. for O<i<v/r--i pardo 
8. P [ f i r s t  + im/~-] .-~ P [ f i r s z  -t- in/vf~; 
9. for 0 < i < v / r -  1 pezdo 
lo .  Sparse-B~o~a=ast(~i~t + i ~ / v ~ ,  m); 
II. for 0 < i < Vq- I pardo 
12. for 0 _< j _< v/r- 1 pardo 
13. P[(first + i =/v~) + j ~/v~ ~ P[(first + i n/v~) + j-/=]; 
14. endfor 
15. endif 

Algori thm 2. Sparse Broadcast. (Notation: P[k] -+ P[h] means that processor k sends 
the message to processor h.) 

Algorithm Broadcast first calls procedure Sparse-Broadcast on the same tree 
[line 3], which generates r = max(w(n) ,  2) copies of the message to be broadcast, 
one in each subtree of size n/r. Then  Broadcast  is recursively called in parallel 
[lines 4,5] on each of these subtrees.  

3.2 Ana lys i s  

Let S(N) denote the t ime needed to  perform a Sparse-Broadcast on a tree of N 
leaves by Algorithm 2. We have: 

S(N) < 2S(m) + 4 1 o g N  ---- 2S(w-l(wl/2(N))) + 41ogN,  (2) 

where the term 2S(m) accounts for the two calls on subtrees of size m [lines 6 
and 10], and the term 41ogN accounts  for the time to spread the copies [lines 
7-8 and 11-15]. 

The time T(N) of the full broadcas t  (Algorithm 1) satisfies 

T(N) = S(N) + T (w~N) ) " (3) 

In the hill paper, we solve the  above equation for some interesting cases of 
function w(n), with the results repor ted  in Table 1 of the Introduction. We also 
provide a detailed discussion motivat ing the non-obvious choice m = w -1 (v~) 
in Line 5 of procedure Sparse-Broadcast .  
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3.3 Pipel in ing 

The performance of the algorithm described above can be improved by pipelin- 
ing. After the execution of the sparse broadcast routine, we have w(n) copies of 
messages. Note that, using pipelining, each message can be replicated O(log N) 
times in time O(log N). In fact, if a processor sends k messages in pipeline, the 
first message will reach its destination at most after 2 log N time steps, and the 
last one after 2 log N + k - 1 time steps. 

Thus, spending an additional O(logN) time, we can call recursively the 
broadcast algorithm on subtrees of size N/(w(N) logN)  instead of N/w(N) .  
The corresponding recurrence is 

( N )  T'(N) = S(N)  + T '  w(N)TogN + 7 1 ° g N '  (4) 

where 7 is a small constant. Again, see Table 1 for solutions in specific cases. 

4 L o w e r  B o u n d s  f o r  B r o a d c a s t  

In this section, we establish lower bounds for the running time T(N) of broad- 
casting algorithms on ideal fat-trees with N leaves. A first bound applies to 
any algorithm, even with pipelining. The pipelined algorithm of Subsection 3.3 
attains this lower bound for w(N)  < N 1/I°gl°gy. A stronger lower bound is 
also derived for a restricted class of algorithms. Algorithm 1 of Subsection 3.1 
belongs to this class and attains the lower bound for capacities w(N) >_ log N. 

4~1 A Genera l  Lower B o u n d  

The next theorem provides a lower bound in the form of a recurrence relation. 

Theorem 2. The running time of any broadcast algorithm on an ideal fat-tree 
satifies 

T(N)  > log(N/2) + T ~ (w(N/2)') 

where a is a constant such that o~ > 1/logo~ and ~ < e/loge, e.g. 1.56 _< c~ 
1.88. 

Proof. For n < N/2, consider a subtree T of n leaves and assume that, at a 
given time t, no node of 7" contains any copy of the message to be broadcast. 

At time t + log n no message has yet reached any leaves of 7-, because any 
copy must enter the root after time t and it will take log n steps before it can 
reach a leaf. We will argue next that  at least one subtree of 7" of suitable size is 
still empty. 

Let d = logw(n) + loglog(an/w(n)) and observe that, if w(n) < n and 
1 < a _< e/loge, then d < logn. Consider now the 2 d = w(n)log(an/w(n)) 
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subtrees of T of n/2 ~ leaves. The number of messages that have entered any of 
these subtrees is at most 

w(n)[log n - ~ = w(n)Oog(n/w(n)) - log log(an/w(n))], 

since (i) no replication of copies has taken place within T, (ii) at most w(n) 
copies can enter at each time unit, and (iii) only those copies entered between 
t + 1 and t + logn - d will have reached a subtree of those being considered, as 
their root is at distance d from the root of T. 

A straightforward comparison shows that, when a > 1/log ~, the number of 
subtrees considered exceeds the total number of copies they collectively contain 
at time t + log n, whence at least one of them is empty at that time. Therefore, 
we have :  

( ntw(n) ) 
T(n) >_ logn + T(n /2  d) - logn + T \log(an/w(n)) " 

The statement of the theorem follows by letting t = 0 and n = N/2. In fact, 
when t = 0, there is only one copy in the entire tree and therefore there is an 
empty subtree of size N/2. 

The lower bound of Theorem 2 matches the performance of our algorithm, 
for capacities not exceeding N 1/log log N. If w(N) > N 1/log log N, the trivial lower 
bound ~(log N) is obtained. 

4.2 A Lower B o u n d  for t h e  R o u n d  M o d e l  (no Pipe l in ing)  

The constraint that the network can not be pipelined can be conveniently trans- 
lated into the following rules. 

Round-Model Rules: 

- The algorithm consists of a sequence of rounds. 
- During a round a processor can send or receive at most one message. 
- All messages in a given round leave their source at the beginning of the 

round. 
- A round ends when all the messages sent have reached their destination. 

The time of a round is twice the round height, the maximum height in the 
tree reached by any message during that  round. The time of an algorithm is 
the sum of the times of its rounds. It is easy to see that, when w(N) >_ log N, 
Algorithm 1 of the previous section can be cast into the round model without 
increasing its running time. 

In the round model, we have the following lower bound. 

T h e o r e m  3. In the round model, the running time T(N) of any broadcast al- 
gorithm satisfies 

log log N--1 2i 

T(N) > (1/2) logN Z log(w(2 2') + 1) " 
/=0 
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Proof. Let rotmd(1), romxd(2), ..., round(K) be the rounds of the algorithm, with 
round(t) of round height height(Z) and duration 2 height( t ) .  Let g(h) denote 
the number of rounds with height greater than h. We focus on the sequence of 
heights 1, 2, 4 , . . . ,  H where H -- 2 [l°g log N-t]  is the largest power of two smaller 
than logN. Since there are (g(2 i) - g(U+l)) rounds with 2 i < height  < 2 i+1 
and each of them takes more than 2 • 2 i steps, the total number of steps of the 
algorithm satisfies the relation 

log H log H 

T > ~ (g(2')- g(2'+~))2 '+~ _> ~ 2'g(2'). (5) 
i----0 i=0 

Next, we seek a lower bound to g(h). For h = O, 1 , . . . ,  log N - 1, let sh(t) denote 
the number of subtrees of height h that, upon completion of round(t), contain at 
least one copy of the message to be broadcast. For convenience, also let Sh (0) = 1, 
for any h. Let round(t~) be the i-th round, in order of execution, among those 
of height greater than h. We have: 

8h(t~, +1) ___ (~(2 h) + 1) 8h(t~). (6) 
In fact, during round(t~ + I ) , . .  -,-i+1 ., round(r h -- 1), no message enters (from the 
root) a subtree of height h. During round(t~+t), each of the Sh(t~) subtrees of 
height h that already hold one copy of the message can send out to other subtrees 
at most w(2 h) copies. 

Considering that, upon termination of the broadcast algorithm, all the N/2 h 
subtrees have a copy of the message, we have sh(tgh (h)) >_ N/2 h. The lat ter  
relation, together with 5 and Sh(O) = 1, after simple manipulations yields 

log N - h 
g(h) > l o g ( ~  ~ 1) " (z) 

By using Relation 7 in Relation 5, we obtain: 

log H 2i  log H - 1  2i 
T >  ~ 2  i l o g N -  (8) 

i=o l°g(w(22') + 1) > (1 /2 ) logN Z log(w(22') + 1)' 
i=0 

where, in the last step, for i < logH,  we have used 2 i < (1/2)logN. 

It is straightforward to derive the following corollary. 

Corol lary  4. In the round model, the running time T(N) of any broadcast al- 
gorithm satisfies (log2N) 

T(N)  = / 2  \ l o g w ( N )  " 

Corol lary  5. In the round model, for an ideal fat-tree with w(N) = N .J, with 
fl <_ 1, the running time T(N)  of any broadcast algorithm satisfies 

T(N)  = ~2(log N log log N). 

Our results on the complexity of broadcast are summarized in Table 1. 
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5 A s s o c i a t i v e  P r o d u c t  ~ d  P r e f i x  C o m p u t a t i o n s  

this section, we consider two b~ ic  ~sociative computations, which are inti- 
mately related to the broadc~t  operation, i.e. prefix and ~sodative product in 
a semi~oup. 

Let S be a semigroup ~ t h  the * operation, ~ d  let a0, a l , . . .  ~ a g - 1  be ele- 
ments of S. 

- For the pref ix  computation, we ~sume  that 
- (i) ~ t ia l ly  processor ~ stores the ~ u e  a~, i = 0 ,1 , . . . ,  N -  1; 
- ( i i )a t  the end of the computation, ~ contains a o ,  at  * . ."  * ai ,  i = 
0,1, . . . , N  - 1. 

- For the produc$, we ~sume  that ~ t i a l l y  there is the same data distribution 
as above, ~ d  at the end of the computation P0 stores a0 * al * - - -*  aN-t .  

The f o l i o ~ g  relations, illustrated ~ o  m F i b r e  2, hold among the above com- 
putat io~ and broadc~t: 

; P  F,x) 

( _ _ P R o D u c T )  ~ue t ions  from the (:: ..:: ......... ........ ,,~ process of computation BROADCAST 

co ativity 

Fig. 2. Relatio~ b Broadc~t, Product and Prefix. 

1. Product is part of p r e ~ .  
2. A s s ~ n g  the existence of ~ identity element e, broadc~t is a subcase of 

prefix when ao = a (the ~ u e  to broadc~t)  ~ d  ai = e for i > 1. 
3. The interplay between product and broadcast is less obvious, it emerges by 

viewing ~ y  computation for broadc~t  ~ a sort of "reverse" of the product 
computation. (Sometimes, the reverse of broadcast is called accumulation 
[HKMP95].) More precisely, at each step of a product computation a node 
P~ computes, say, Ai * Aj, where A i  and Aj we parti~ products computed 
at nodes i and j,  respe~ively. ~ the corresponding broadc~t computation, 
processor Pk sends the data to processors Pi ~ d  Pj. On the other hand, 
we c ~  ~sociate to m-ly broadc~t  ~gorithm a computation graph, which 
keeps track, fi3r all the nodes, of the node which sent it the data first. This 
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computation graph is a tree, which, if visited from the leaves, provides a 
computation graph for the product. Note that the corresponding product 
algorithm requires, in general, commutativity. 

By taking advantage of these properties we establish the following results 
(details in the full paper): 

Th eo rem 6. In the ideal fat-tree, prefix and product have the same asymptotic 
complexity as broadcast. In particular the best lower bound is exactly the same 
for the three problems. 

6 Conclusions  

In this paper, we have designed efficient algorithms for broadcast and other re- 
lated computations on idealized fat-trees, which are optimal for a wide range 
of the capacity of the interconnection network. We conjecture that optimality 
holds even outside this range, although a different lower bound argaament might 
be needed. We have also presented a lower bound technique that applies to al- 
gorithms restricted to work in rounds. It would be interesting to establish that 
the above restriction is not necessary. Further work to be done include analyzing 
basic linear algebra computations, e.g. matrix-vector multiplication, using the 
primitive operations described in this paper. 

Acknowledgement .  The authors wish to thank an anonimous referee for a 
number of valuable suggestions. 

References  

[BK92] A. Bar-Noy and S. Kipnis. Designing Broadcasting Algorithms in the Postal 
Model for Message-Passing Systems. In Proceedings of the 4th Annual Sympo- 
sium on Parallel Algorithms and Architectures, pages 13-22. ACM, 1992. 

[BB93] P. Bay and G. Bilardi. An area-tmiversal VLSI circuit. In Proceedings of the 
1993 Symposium on Integrated Systems, pages 53-67, March 1993. 

[BB94] G. Bilardi and P. Bay. An area lower bound for a class of fat-trees. In Proceed- 
ings of the 1994 European Symposium on Algorithms, pages 413-423, Utrecht, 
The Netherlands, Springer-Verlag LNCS 855, 1994. 

[BB95] P. Bay and G. Bilardi. Deterministic on-line routing on area-universal net- 
works. Journal of the ACM, 42(3):614-640, May 1995. 

[BCDM94] G. Bilardi, S. Chauduri, D. Dubashi, and K. Mehlhorn. A lower bound for 
area-universal graphs. Information Processing Letters, 51, 101-105, 1994. 

[BHPPS96] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis, BSP 
vs LogP. In Proceedings of the 8th Annual Symposium on Parallel Algorithms 
and Architectures, pages 25-32. ACM, 1996. 

[CK+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, 
R. Subramonian, and T. yon Eicken. LogP: Towards a Realistic Model of 
Parallel Computation. In Proceedings of the 4th ACM SIGPLAN Symposium 
on Principles and Practice of Parallel Programming. ACM, 1993. 



207 

[HKMP95] J. Hromkovi~, R. Klasing, B. Monies, R. Peine. Dissemination of Informa- 
tion in Interconnection Networks (Broadcasting and Gossiping). In: Ding-Zhu 
Du and D. Frank Hsu (eds.), Combinatorial Network Theory, Kluwer Academic 
Publishers, 1995~ pp. 125-212. 

[KSSS93] R. Karp, A. Sahay, E. Santos, K. E. Schauser. Optimal Broadcast and 
Summation in the LogP Model. In Proceedings of the 5th ACM Symposium on 
Parallel Algorithms and Architectures, June 1993. 

[GL89] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In 
S. Micali, editor, Randomness and Computation, pages 345-374. JAI Press, 
Inc., 1989. 

[Gre94] R. I. Greenberg. The fat-pyramid and universal parallel computation inde- 
pendent of wire delay. IEBE Transactions on Computers, C-43(12):1358-1364, 
December 1994. 

[LAD+92] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R: Feynman, M. N. 
Ganmukhi, J. V. Hilly W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. 
Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network architecture of the 
Connection Machine CM-5. In Proceedings of the 4 th Annual ACM Symposium 
on Parallel Algorithms and Architectures, pages 272-285, July 1992. 

[Lei85] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercom- 
puting. IEEE Transactions on Computers, C-34(10):892-900, October 1985. 

[LM88] C. E. Leiserson and B. Maggs. Communication-efficient parallel algorithms for 
distributed random-access ma,-hlnes. Algorithmica, 3, 53-77, 1988. 

[LMRB8] T. Leighton, B. Maggs, and S. Rao. Universal packet routing algorithms. 
In Proceedings of the 29 th Annual Symposium on the Foundations of Computer 
Science, White Plains, New York, October 1988. 

[LMRR94] T. Leighton, B. Maggs, A. Ranade and S. Rao. Randomized Routing and 
Sorting on Fixed-Connection Networks. Journal of Algorithms, 17(1):157-205, 
1994. 

[RSS94] A.L. Rosenberg, V. Scarano and R.K. Sitaraman. The Reconfigurable Ring of 
Processors: Fine-grained Tree-structured Computations. 6th IEEE Symposium 
on Parallel and Distributed Processing, 1994. 

[Va90] L. G. Valiant. A Bridging Model for Parallel Computation. Communication of 
the ACM, 33:103-111, 1990. 




