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Abstract: Interval routing is an attractive space-efficient routing method for
point-to-point communication networks which found industrial applications in
novel transputer routing technology.

Recently much effort is devoted to relate the efficiency (measured by dilation
or stretch factor) to space requirements (measured by compactness or total
memory bits) in a variety of compact ronting methods [1, 5, 9, 10, 11, 15]. We
add new results in this direction for interval routing.

For the shortest path interval routing we give a technique for obtaining lower
bounds on compactness. We apply this technique to shuffle exchange graph of
order n and get improved lower bound on compactness in the form £2(n'/2~¢),
where ¢ is arbitary positive constant. In [8] we applied this technique also to
other interconnection networks, obtaining new lower bounds £2(1/n/ log n) for
cube connected cycles and butterfly, and 2(n(loglog n/log n)®) for star graph.
Previous lower bounds for these networks were only constant [4].

For the dilation bounded interval routing we give a routing algorithm with the
dilation [1.572] and the compactness O(y/nlogn) on n-node networks with
the diameter D. It is the first nontrivial upper bound on the dilation bounded
interval routing on general networks. Moreover, we construct a network on
which each interval routing with dilation 1.5D — 3 needs compactness at least
£2(4/n). It is an asymptotical improvement over the previous lower bounds in
[15] and it is also better than independently obtained lower bounds in [16].

1 Introduction

Interval routing is an attractive compact routing method for point-to-point com-
munication networks. Interval routing was introduced in [13] and generalized in
[17]. Tt has found industrial applications in INMOS T9000 transputer design.

Interval routing is based on compact routing tables, where the set of nodes
reachable via outgoing links is represented by interval labels. By compactness
we measure the maximum number of interval labels per link. By dilation we
measure the length of the longest routing path in the network.

Most of the previous work was oriented towards optimal (shortest path)
interval routing. Several classes of networks have optimal 1-IRS (i.e., routing
schemes using up to 1 interval label per link). But there are also networks without
optimal 1-IRS [4, 12, 14]. To overcome this inefficiency, a multi-label interval
routing schemes were introduced. General n-node networks can be optimaly
routed using [%] intervals. When no specific assumption about the network
topology is made, the number of required intervals does not significantly reduce.
In [2], a technique for proving lower bounds on compactness was developed and

* This research has been partially supported by the EC Cooperative Action IC 1000
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it has been used in [6] to construct n-node networks for which each optimal
k-IRS requires k& = #(n). A similar result for random networks was obtained in
[2].

For certain symmetric and regular networks (such as hypercubes or tori),
ontimal k-IRS exists for small constant k. Natural question arises whether there
a:7 also optimal k-IRS for small k for the well-known interconnection networks,
such as shuffle exchange (SE), cube connected cycles (CCC), butterfly (BF) and
star networks (S). In [4], it was proved that these networks have no optimal 1-
IRS. We introduce a technique for obtaining lower bounds on compactness for the
optimal IRS on arbitrary networks. Using this technique we give a lower bound
2(nz=¢), ¢ > 0, for SE of order n. In the full version of the paper [8] we applied
this technique also to other networks, obtaining lower bounds on compactness

in the form 2(y/n/logn) for CCC and BF, and £2 (n(log logn/log n)5> for S.

Recently, much effort is devoted to relate the efficiency (measured by dilation)
to space requirements (measured by compactness). Each network has 1-IRS with
dilation 2D, where D is the diameter of the network [13]. However, there are
also networks having long dilation for each 1-IRS. For n-node networks the
lower bound for k-IRS with dilation 1.76D — O(1) was k > 2 [14], with dilation
1.25D — O(1) it was k > 3 [15] and with dilation 23D — 1 and & D — 1 it
was k = £2(/n) and k = £2(/n), respectively [15]. The basic question is whether
there are interval routing schemes for arbitrary networks attaining short dilation
with reasonable small compactness. We answer this question in the negative way?
by constructing an n-node network with the diameter D for which each routing
scheme with dilation 1.5 — 3 needs compactness §2(1/n). Moreover, we give a
routing algorithm with dilation [1.5D] and compactness O(y/nlogn). It is the
first nontrivial upper bound for the dilation bounded interval routing on general
networks.

1.1  Definitions
We assume a point-to-point asynchronous communication network. The network
topology is modeled by a simple connected graph G = (V, E), where V is a set of
vertices (or processors) and F is a set of edges (or bidirectional links). Assume
|V| = n. The diameter of G is denoted as D(G). Given a vertex v € V, by I{(v)
we denote the set of arcs outgoing from v. By deg{v) we denote the degree of v.

In k-interval routing scheme (shortly k-IRS), each vertex is labeled by unique
element from the set {1,...,n} and each arc is labeled by up to & cyclic intervals.
The routing is performed in the following way. Let a message destinated to
a vertex w currently reach some vertex u, u # w. Determine the unique arc
e € I(u) such that the label of w belongs to an interval assigned to e and
transmit a message along e. The scheme should be correct, i.e. it is possible to
send a message between any two vertices. The label of a vertex v in routing p is
denoted p(v).

Given a graph (7 and a k-IRS p on G, a routing path system (for p on G) is
the set of routing paths between all pairs of vertices in V. The dilation, denoted
as dil(G, p), is the length of the longest path in the routing path system for p on

2 The same conclusion, independently of {8], was obtained by Tse and Lau [16]. How-
ever, they proved weaker results of compactness §2(log=n) for dilation 1.582 — O(1)
and of compactness £2(y/n) for dilation 1.250 ~ O(1).
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G. k-IRS is called optimal, if all paths in the routing path system are the shortest
ones. k-IRS is called a-bounded (shortly (k, a)-IRS) if the dilation dil(G, p) is
limited to «. For optimal routing the compactness of G is the minimum k such
that there is k-IRS on G. For a-bounded routing the compactness of G denotes
the minimum k such that there is (k, @)-IRS on G.

2 Shortest Path Interval Routing

This section is devoted to the shortest path interval routing for some inter-
connection networks. We present a technique for obtaining a lower bound on
compactness for the shortest path routing on arbitrary graphs. A similar tech-
nique is given in [2] and also used in [6]. Then, we apply this technique to shuffle
exchange graphs and get asymptotical improvement over the previous constant
lower bound [4]. Further results concerning cube connected cycles, butterfly and
star graphs are given in the full version of the paper [8].

2.1 A Lower Bound Technique for General Graphs

Let G = (V, E) be a simple connected graph. Let @ = {qo,..., 11} and W =
{wy, ..., wm-1} be disjoint subsets of V. We say that W and @ satisfy the wg-
property iff for any distinct vertices w;, w; € W there exists a vertex v € () such
that in arbitrary optimal routing scheme the messages from v to w; and w; are
routed along different outgoing arcs (i.e., for any arc e outgoing from v there
don’t exist shortest paths to vertices w; and wj, both starting with arc e.)

Theorem 1 Let p be an optimal k-IRS of a given graph G = (V, E). Let W and
Q) be sets satisfying wg-property. Then it holds

S L —
- ZvEQ deg(v)

Proof: W.l.o.g. assume that p(wo) < p{wy) < ... < p(wm-1). For any v
and ¢ € I(v) denote R(v,e) the set of vertices such that the messages from
v destinated to them are routed along arc e in routing p. There are at most
k intervals on any arc, therefore for any pair v € @ and e € I(v) it holds 3
ijew(wi € R(v,e) Awjg1 & R(v,e)) < k and consequently

> D (wj € R(v,e) Awjgy & R(v,e)) < k- > deg(v) (2)

vEQ eel(v)w;EW vEQ

(1)

On the other hand, for any w;, w; g1 take the v from the wq-property. Let e € I(v)
be an arc along which messages from v to w; are routed. From the wq-property

wig1 ¢ R(v,e) and therefore 37, o 3" e pey(wi € R(v,e) Awjgr & R(v,e)) > 1.
Hence
D > D (w €R(ve) Awigr € R(v,€)) > W], (3)
w;EW vEQ e€I{v)
Combining inequalities (2) and (3) we get (1). O

3 We use @ and © for the addition and subtraction modulo m.
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2.2 A Lower Bound for Shuffle Exchange

Denote the left cyclic shift and the right cyclic shift operations on binary strings
as L and R respectively and the shuffle operation corresponding to altering least
significant bit as S.

Shuffle exchange graph of degree d (denoted as SE(d)) is a graph whose
vertices are all binary strings of length d and two vertices u,v are connected
by an edge if v can be obtained from w using L,R or § operatlon The arc
(u, ) is called L-arc, R-arc or S-arc depending on whether v = L(u), v = R(u)
or v = S(u). To each path C = vg,...,vp in SE(d) assign the characteristic
sequence C’' = ey, ..., ep_1, where e; € {L, R, S} is the name of the arc (v;, v;41).

Claim 1 Let C be a path in SE(d) from vy to vy, and C' be its characteristic
sequence. Then #5C' > |#1v0 — #10p).

It is convenient to represent vertices of SE(d) as binary strings with cursors
denoting the least significant bit, cyclicly. For example, 11110101 denotes the
string 10111110. To move to neighbouring vertex it’s enough to move the cursor
to the left, to the right or change the bit pointed by cursor. If C' = vg, ..., vy is
a path with characteristic sequence C' = ey, ..., €,_1, then the cursor positions
k(.0 < § < p are as follows: k(0) = 0, 0+D) = kg 1ife; = L, k0D = k(G 1
if e; = R, (a.l)'ld k(“‘l; = k(i() if e; = 5. The string with cursor which represents v;

3 (7 %)

: i) —
ISG()—G ak()

In [8] we have proved the following lemma * used in Theorem 2.

Lemma 1 Let C = vg,...,vp, be a path in the graph SE(d) with associated
characteristic sequence C' = eg, ..., ep_1 and cursor positions O k), Let
21 < ...< x4_1 be the positions at which vy = a(® and Lkm(vp) = a®) differ
and let 2o = 0. It holds #1 rC' > d — maxeqo,... 1—1){Tie1 © %i). Moreover, if
the equality holds, then there are either only L’s or only R’s in C' /1 g.

Theorem 2 For arbitrary constant € > 0 each optimal k-IRS of the shuffle
exchange graph SE(d) requires k = 2 (|V|3¢) intervals.

Proof: Let d = 2(m+1)? +p — 1, where p = O(v/d). Consider the following
sets W and @):
W = 1P({0,1}™1)™0™10™ (1{0, 1}™)™

Q= U{OP+M(m+1)—|al—1Qa0moorn(m+2)} U U{0P+m(m+2)Oombgom(m+1)—|b|_1}

where the first union in Q is taken over all suffixes a of all strings from ({0, 1}™1)™
with the length different from (m + 1)i 4+ 1 for all ¢ € {0,...,m — 1} and the
second union is taken over all prefixes b of all strings from (1{0, 1}™)™ with the
length different from (m + 1}i+ 1 for alli € {0,...,m—1}.

Clearly, |W| = 22m% and Q| = 2_(2’"2"'1 —1). We need to show that W, @ sa-
tisfy the wg-property of Theorem 1. Consider w1, ws from W, w1 # wa. W.l.o.g.
suppose that w; and w,y differ at some position to the left of the cursor. Then

* We use #C' for the number of occurences of L in C' and C'/L, R for the maximal
subsequence of G’ consisting of I, R.
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wy = 1Pr10q0™10™ sy, wy = 1Pry1q0™10™s5. Choose the following v from Q:
v = 020l"110¢0™00™0!51!. Take the following path from v to w;: move the cursor
to the left until it reaches the same position as the cursor in w;, and along the way
change all bits in which w; and v differ. We have obtained a path of the length
#i1w; —F#1v+d—|gq|—m—1. Due to the Claim 1, for any shortest path from v to
w; with associated characteristic sequence C’, we obtain #5C’ > #1w; — #1v.
Combining this bound with the previous upper bound for the length of the path

we obtain #r rC’ < d —|¢| — m — 1. Observe that Lkm(wi) doesn’t contain
m + 1 consecutive 0’s for any k). If z; < ... < z4_; are positions at which v
and L+ (w;) differ and 2o = 0, then

—If 2; < 2ig1 < d—1—|q|, we have ;g1 © z; < m+ 1, because of previous
observation and also due to the fact that bits 0,...,d — 1 — |¢| are 0’s in v.

— If ; < d—1—|q| and either z;g1 = 0 or z;51 > d—1~|q/|, then zig1 O 2; <
m + 1+ |g| due to the same reason.

— Ifz; >d—1-|q|, then simply z;41 © z; < |g| — 1.

So we have max;eqo,... t~1}{%ig1 © ;) <m+1+|q| and using Lemma 1 we get
#1,rC' > d—|q| — m — 1. Therefore, for the shortest path it holds #r rC’ =
d—|g| — m — 1 and from the second part of Lemma 1 it follows that there are
only R’s or only L’s in C'/r g. The case that there are only L’s does not work,
because we will need more than d cursor moves to the right. It follows, that there
is exactly one shortest path from v to w;, which starts with R-edge and there
is exactly one shortest path from v to ws, which starts with S-edge, therefore
wq-property from Theorem 1 is satisfied and the following bound on k necessary
for any optimal k-IRS of SE(d) holds:

1i4 92m” 2_4
k> = qm .
= T eodeg(v)  3-2-(2mHo1)

It holds m = [4/(d — O(V/d))/2]—1. Hence 9m* =4 = 9d(3-0(d™"*)) ynd therefore
for any positive constant € it holds k = £2(|V|27¢). O

3 Interval Routing with Bounded Dilation

Dilation bounded interval routing was studied in [12, 13, 14, 15]. Each graph has
(1,2D)-IRS [13] and can be optimaly routed with compactness |V|/2. Moreover,
there are graphs for which (1.75D — 1)-bounded routing requires compactness
at least 2 [14] and (1.25D — 1)-bounded routing compactness at least 3 [15].
The basic question is whether one can hope to find interval routing scheme
for an arbitrary graph with short dilation and simultaneously with reasonably
small compactness. The main result of this section is a negative answer to this
question, stating that there are graphs for which routing with dilation 1.6D — 3

needs compactness £2(1/|V]). We also show that O(y/|V]log|V]|) compactness
is sufficient for routing arbitrary graphs with dilation [1.5D].

3.1 A Lower Bound on Dilation Bounded Interval Routing
Assume B C {1,...,n}. A set A is called k-interval representable (shortly k-I) in
the set B if there exist k cyclic intervals I, ..., I} such that (Uf=1 IL)n B =A.
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The elements of the set B are cyclicly ordered, therefore define successor of
b € B as the next element in this cyclic ordering. An element ¢ of A C B is called
an isolated element in A w.r.t. B, if its successor in B is not in A, otherwise a
is called an inner element in A w.r.t. B. It is obvious, that if A is k-1 w.r.t. B
then the number of isolated elements in A is at most & and that there are at
least |A] — & inner elements in A.

Lemma 2 Assume M = {a;; |1 <i<s,1<j<vw} issxv matric of distinct
elements from {1,...,n} such that every column C; = {a;; | 1 < i < s} and
every row R; = {a;; |1 <j<wv}isk-Tin M. Then k > 2~

s+v "
Proof: Let P be the number of isolated elements in sets Ry,..., R, w.r.t.
M. In every k-1 set there are at most k isolated elements, so we have P < sk.
Similarly, there are at least v(s — k) inner elements in sets Cj,...,C, and one

can observe that each of them is isolated in some R;. It follows P > v(s — k).

Combining both inequalities we get £ > % O

Further, we construct a graph F(s,v,r) such that due to the Lemma 2 each
interval routing scheme on F' with the dilation bounded by 1.5D — 3 requires
compacity at least 5%

Graph F(s,v,r) is defined as follows. There are s x v middle vertices {a; ;}
which form s x v rectangle, v column vertices {c;}, s row vertices {b;} and two
special vertices b,c. A column vertex ¢; (row vertex b;) is connected with every
vertex from the ¢-th column (j-th row) of the rectangle via unique path of the
length . The vertex ¢ is connected with all column vertices ¢; and the vertex
b with all row vertices b;. Graph F(s,v,r) has (2r — 1)sv + s + v + 2 vertices,
2svr + s + v edges and its diameter is 2r + 2. We give an example of F(3, 3, 2).

ai s b
2 +«° 1
a
. C3 a1 '4%3 bg )
1Y P
¢ \. x a a3,3
1 21 P b
—
as 1

Theorem 3 For arbitrary k, there is a graph F' of the size @(k?) such that there
is no (k,1.5D — 3)-IRS of the graph F.

Proof: Let p be some (k, 1.5D—3)-IRS of the graph F(s,v,r). As pis (1.5D—
3)-bounded, for all ¢, j, messages from ¢ (from b) must be routed along arc (c, ¢;)
(along arc (b,5;)), otherwise the length of some routing path would be at least
3r+1, thus longer than 1.5 —3. Now, take s x v matrix M consisting of labels of
vertices a; ;,1 <1 <s,1 < j <w. Columns and rows of this matrix must be k-1 in
M and therefore applying Lemma 2, we get k > ;%% Choosing s = v = 2(k+1)
we get a contradiction, hence there does not exist (1.5 — 3)-bounded £-IRS of
the graph F(2k+1,2k+1,7). O

Corollary 1 There are graphs F = (V, E) such that each (k,1.5D — 3)-IRS of
F needs k = 2(+/|V]).
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3.2 An Upper Bound on Dilation Bounded Interval Routing

In this subsection we show that every graph has interval routing with dilation
[1.5D] and compactness O(1/|V]log|V]). We need the following lemma.

Lemma 3 Let G=(V,E) be a graph. There is a set C C V such that |C] =
O(/\V]log|VI) and for v € V it holds d(v,C) < [3D].

Proof: Let V ={l,...,n}and m = [Vnlnn]. For every vertex v € V define
the set V, C V as the set of vertices whose distance from v is at most ]'%D]
If there exists v € V such that |V,] < m, then it is obvious that we can set
C =V, and the lemma holds. If such v doesn’t exist (i.e, for all v € V it holds
|Vy| > m), we prove the lemmaby contradiction. Suppose that the lemma doesn’t
hold. Therefore if we take the union of any m sets from Vi, ..., V},, then at least
one element from V is not contained in this union. There are (;‘l) possibilities
how to choose these m sets and from the pigeon-hole principle follows that there
exists ¢ € V such that o is missing in at least (::L)/n choices. On the other
hand |V,| > m, therefore a is not contained in at most n — m sets and the
number of choices with a missing is at most (*~™). From this we get inequality

(*~™) > (")/n, which is a contradiction. O

m

Theorem 4 Let G = (V, E) be a graph. There is an inierval routing scheme of
G with the dilation [1.5D] and compactness O(\/|V|.log|V]).

Proof: Taketheset C = {ecy,...,¢;n} C V from the previous lemma. Divide the
set V into non-intersecting subsets Ry, ..., B, such that for any vertex v € R;
it holds d(c;,v) < [1D] and the subgraph of G induced by R; (denoted as
G/ R;) is connected for all ¢ € {1, ..., m}. Subgraphs G/R; are called clusters and
vertices ¢; cluster centers. Given the set C we can find this division as follows.
Set Vi € {1,...,m} : R; = {¢;}. Then repeat [$D] times: for each i € {1, ..., m}
set R; := R; U { free vertices adjacent to R;}.

Construct BFS spanning tree T; from each center ¢; € C'. First, create tree-
labeling scheme on the subtree T;/R; from the root ¢; following the technique
{rom [13] (two intervals per arc are required). Vertices in R; will have consecutive
labels for all ¢ € {1, ..., m}. Then, assign interval corresponding to R; to each arc
of T; not belonging to the cluster G/R; and oriented towards the center ¢;. Such
interval routing scheme has compactness at most m + 1 (as each arc belongs to
at most m trees, in m — 1 trees it is assigned 1 interval and in one tree it is
assigned two intervals). The dilation is at most D + [D/2] = [1.56D]. O

As a consequence of the above techniques for general graphs we can obtain
asymptoticaly tight trade-offs between dilation and compactness for some special
classes of graphs. In [8] we proved that the compactness §(1/n) can be achieved
for dilation up to 1.25D — 1 and O(1) for dilation 1.25D on multiglobe graphs
and the compactness §(1/n) can be achieved for dilation D and O(1) for dilation
(14 €)D on globe graphs.

4 Conclusion

We proved that large compactness is needed for optimal interval routing on
certain regular and symmetric topologies used in parallel architectures. The main
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question remains whether this phenomenon holds also for near-optimal interval
routing on these topologies.

We also improved a lower bound on compactness for the dilation bounded
interval routing on general n-vertex graphs®. An upper bound shows that for
interval routing with dilation [1.5D] the compactness is O(y/nlogn). Thus the
compactness threshold is achieved for dilation 1.5D —O(1). The main unresolved
problem is to exhibit a tight trade-off between dilation and compactness for
general graphs.
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