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Abst rac t .  We present an interprocedural flow-sensitive analysis to iden- 
tify critical load instructions in real C programs for Decoupled Virtual 
Shared Memory (DVSM) systems. The analysis consists of the pointer 
range analysis, the critical value analysis and the identifying steps. It 
is implemented based on the SUIF compiler and tested using programs 
from the SPLASH-2 suite. The results show that the method is safe. 

1 Introduct ion 

The idea of decoupling is suggested to split the address calculation and the 
normal computation streams to reduce memory latency [3]. Simulations on 
DVSM architectures with a dual CPU processor structure have shown optimistic 
results [4]. In each processor node, both the execution CPU (CPU B) and the 
prefetch CPU (CPU A) run identical codes. CPU B performs all operations as 
usual, and it will wait if a page is not locally available. CPU A does the same, 
but  it will not wait even if a page fault happens,; instead it issues a prefetch 
operation, and gets a special dirty value imme~iately,::rand then the execution 
continues. A performance benefit is awarded ~because CPU A can go ahead of 
CPU B and prefetch remote pages, hiding remote  request~.latency. But loss of 
decoupling events may arise, because of t h e  in t roduct iomof  dirty values. For 
example, in Fig. 1, when accessing a[b[i]] and b[i] is d i r ty(C~U~A:may fail  to 
prefetch the correct element of a. A special critical load instruction, (LDC):is 
introduced to force CPU A wait whenever a dirty value is not allowed.' Generally, 
we use critical in this paper to refer to something that  can not tolerate dirty 
values. 

We suggest an interprocedural flow-sensitive analysis based on a Full Data- 
Flow Graph (FDFG) with the support of the SUIFo system [1] to detect critical 
load instructions automatically. 

2 A Solution to Identify Critical Load Instruct ions  

Given a load instruction, if at least one of its instances accesses a global location, 
and the loaded value is critical, then the load instruction is an LDC. It is desired 
that  CPU A will proceed along exactly the same control flow and access exactly 
the same memory locations as CPU B. A critical value means a value which is 
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in t  x, a[100], b[100]; 
p roc l ( ){  

int i; 

if (x) /* load to x should be critical */ 
x = x + a[b[i]] /* sl: load to x is not necessarily critical*/ 

/* but load to b[i] should be critical */ 
else 

x = x + I; /* s2: load to x is not necessarily critical */ 
proc2(x); /* load to x should be critical, because the 

value is critical inside proc2 */ 
) 

proc2(int argl)~ 

if (a rg l )  x = 0; 
) 

F igure  1. Some Critical Loads in an Example Program 

used as an operand address or as a transfer condition. In Fig. 1, there are three 
LDCs. 

Dirty values are only introduced by a global load on CPU A with a page fault. 
They exist in registers and local memory locations. Global memory locations 
are isolated from dirty values by the system which assumes certain memory 
coherency. A critical global load always provides a clean value, and a normal 
global load can load a dirty value if a page fault occurs. A dirty value can 
propagate through registers and local memory. 

When tracing dirty values, there are two methods of finding critical loads. A 
Register-dirty method, simple but  conservative, traces only intermediate values 
in registers and some temporary memory locations. It is assumed that  any dirty 
value is not allowed to propagate into any other local memory locations. A 
Local-dirty method, powerful but  complicated, releases the above constraint by 
allowing any local memory location to hold a dirty value conditionally, only if 
this dirty value is not used in any critical operation. The load which introduces 
such a dirty value need not be critical. 

To apply the local-dirty method, we have designed a Full Data Flow Graph 
(FDFG) which is based on an Interprocedural Control Flow Graph(ICFG).  In 
an FDFG, for each data  item, a data node is explicitly created. Interprocedural 
dependence is represented by edges which connect interprocedural data  nodes 
between call sites and callees. 

The critical load analysis operates on the FDFG of a program. It first an- 
alyzes every pointer to compute their pointer ranges. Then a critical value 
analysis is applied to trace all critical values. Finally, all critical loads are picked 
out by checking operation nodes in the FDFG. 
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Pointer Range Analysis The pointer range analysis is intended to decide the 
memory ranges referenced by each pointer. Unlike the pointer analysis in [5] 
which tries to compute precise points-to information for each pointer in the 
program, in our analysis only two memory ranges are distinguished from each 
other. They are the shared memory space (global space) and the private memory 
space (local space). It consists of the initialisation and the propagation steps. 
The steps use marks to distinguish address ranges. The propagation step tries 
to propagate these marks through the FDFG according to the propagation rules, 
which are developed by control flow and operation nodes. 

Critical Value Analysis This analysis is for identifying all the critical values in 
the program by marking critical data nodes. It consists of setting address marks, 
initial marking for critical nodes and back-tracing critical values steps. Starting 
with a critical value, we can trace backwards along the definition-use links from 
a critical value to identify all the other critical values and make sure no dirty 
values could propagate into any critical location. 

Finding Critical Loads in Program The final step to identify critical loads is 
just to check all load operations in the program to decide if they are critical 
loads. Then set a mark for each critical operation node. The marked FDFG 
can be transferred back to a C program with the mark information reflected in 
the source lines. A program transformation will employ this information to get 
a transformed source program. 

3 E x p e r i m e n t s  

We have implemented a tool, known as Critical Analysis and Program Transfor- 
mation (CAPT), based on the SUIF compiler, to identify LDCs. Examples with 
complicated interprocedural relations are successfully processed with optimistic 
results. Fig. 2 gives theresult  for the code in Fig. 1 produced by CAPT, where 
LDCs are marked by  special critical_load functions. 

Some real programs and, applications from the SPLASH-2 suite [2] have been 
tested using CAPT. T h e  results(see Fig. 1 show that LDCs in a program usually 
will represent no more than 10% of the total memory access instructions. 

Program water barnes raytrace fmm radiosity ocean 
lines ~7Y6  2303 10022 3847 22118 4712 

critical loads '435 426 787 750 1345  1622 
accesses 4857 5199 14133 7362 25462 7852 

Table  1. Statistics on Experimenting Programs in SPLASH-2 using CAPT 
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in t  x, a[100], b[100]; 
p roc lO{  

int i; 

if (critical_load(x)) 
x = x + a[critical_load(b[±])] 

else 

x = x + l ;  
proc2(critical_load(x)); 

} 
proc2(int argl){ 

if (argl) x = O; 
} 

Figure  2. Identified Critical Loads 

4 C o n c l u s i o n  

The prefetch benefit exists if there is any global load ,which results in a page 
fault, but  is not critical. The solution has a good performance because, in most  
cases, it can detect load instructions which need not be LDCs. It  is safe because 
it will not fail to mark  any LDC. C A P T  is implemented using C + + ,  and the 
execution efficiency has not been emphasised in our research. 

We have not found any other papers dealing with the LDC problem. 
Our experiments show tha t  a solution by data-flow analysis for the problem 

is possible. But  more work is needed to make it efficient. Our analysis, al though 
not as aggressive as some other pointer analyses, is not limited to distinguishing 
between two memory  ranges but  could be improved for other pointer analysis 
applications. 
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