
Identifying Critical Loads in Real Programs
for Decoupled VSM Systems

He Zhu and Ian Watson

Manchester University

Abst rac t . We present an interprocedural flow-sensitive analysis to iden-
tify critical load instructions in real C programs for Decoupled Virtual
Shared Memory (DVSM) systems. The analysis consists of the pointer
range analysis, the critical value analysis and the identifying steps. It
is implemented based on the SUIF compiler and tested using programs
from the SPLASH-2 suite. The results show that the method is safe.

1 Introduct ion

The idea of decoupling is suggested to split the address calculation and the
normal computation streams to reduce memory latency [3]. Simulations on
DVSM architectures with a dual CPU processor structure have shown optimistic
results [4]. In each processor node, both the execution CPU (CPU B) and the
prefetch CPU (CPU A) run identical codes. CPU B performs all operations as
usual, and it will wait if a page is not locally available. CPU A does the same,
but it will not wait even if a page fault happens,; instead it issues a prefetch
operation, and gets a special dirty value imme~iately,::rand then the execution
continues. A performance benefit is awarded ~because CPU A can go ahead of
CPU B and prefetch remote pages, hiding remote request~.latency. But loss of
decoupling events may arise, because of t h e in t roduct iomof dirty values. For
example, in Fig. 1, when accessing a[b[i]] and b[i] is d i r ty(C~U~A:may fail to
prefetch the correct element of a. A special critical load instruction, (LDC):is
introduced to force CPU A wait whenever a dirty value is not allowed.' Generally,
we use critical in this paper to refer to something that can not tolerate dirty
values.

We suggest an interprocedural flow-sensitive analysis based on a Full Data-
Flow Graph (FDFG) with the support of the SUIFo system [1] to detect critical
load instructions automatically.

2 A Solution to Identify Critical Load Instruct ions

Given a load instruction, if at least one of its instances accesses a global location,
and the loaded value is critical, then the load instruction is an LDC. It is desired
that CPU A will proceed along exactly the same control flow and access exactly
the same memory locations as CPU B. A critical value means a value which is

303

in t x, a[100], b[100];
p roc l (){

int i;

if (x) /* load to x should be critical */
x = x + a[b[i]] /* sl: load to x is not necessarily critical*/

/* but load to b[i] should be critical */
else

x = x + I; /* s2: load to x is not necessarily critical */
proc2(x); /* load to x should be critical, because the

value is critical inside proc2 */
)

proc2(int argl)~

if (a rg l) x = 0;
)

F igure 1. Some Critical Loads in an Example Program

used as an operand address or as a transfer condition. In Fig. 1, there are three
LDCs.

Dirty values are only introduced by a global load on CPU A with a page fault.
They exist in registers and local memory locations. Global memory locations
are isolated from dirty values by the system which assumes certain memory
coherency. A critical global load always provides a clean value, and a normal
global load can load a dirty value if a page fault occurs. A dirty value can
propagate through registers and local memory.

When tracing dirty values, there are two methods of finding critical loads. A
Register-dirty method, simple but conservative, traces only intermediate values
in registers and some temporary memory locations. It is assumed that any dirty
value is not allowed to propagate into any other local memory locations. A
Local-dirty method, powerful but complicated, releases the above constraint by
allowing any local memory location to hold a dirty value conditionally, only if
this dirty value is not used in any critical operation. The load which introduces
such a dirty value need not be critical.

To apply the local-dirty method, we have designed a Full Data Flow Graph
(FDFG) which is based on an Interprocedural Control Flow Graph(ICFG). In
an FDFG, for each data item, a data node is explicitly created. Interprocedural
dependence is represented by edges which connect interprocedural data nodes
between call sites and callees.

The critical load analysis operates on the FDFG of a program. It first an-
alyzes every pointer to compute their pointer ranges. Then a critical value
analysis is applied to trace all critical values. Finally, all critical loads are picked
out by checking operation nodes in the FDFG.

304

Pointer Range Analysis The pointer range analysis is intended to decide the
memory ranges referenced by each pointer. Unlike the pointer analysis in [5]
which tries to compute precise points-to information for each pointer in the
program, in our analysis only two memory ranges are distinguished from each
other. They are the shared memory space (global space) and the private memory
space (local space). It consists of the initialisation and the propagation steps.
The steps use marks to distinguish address ranges. The propagation step tries
to propagate these marks through the FDFG according to the propagation rules,
which are developed by control flow and operation nodes.

Critical Value Analysis This analysis is for identifying all the critical values in
the program by marking critical data nodes. It consists of setting address marks,
initial marking for critical nodes and back-tracing critical values steps. Starting
with a critical value, we can trace backwards along the definition-use links from
a critical value to identify all the other critical values and make sure no dirty
values could propagate into any critical location.

Finding Critical Loads in Program The final step to identify critical loads is
just to check all load operations in the program to decide if they are critical
loads. Then set a mark for each critical operation node. The marked FDFG
can be transferred back to a C program with the mark information reflected in
the source lines. A program transformation will employ this information to get
a transformed source program.

3 E x p e r i m e n t s

We have implemented a tool, known as Critical Analysis and Program Transfor-
mation (CAPT), based on the SUIF compiler, to identify LDCs. Examples with
complicated interprocedural relations are successfully processed with optimistic
results. Fig. 2 gives theresult for the code in Fig. 1 produced by CAPT, where
LDCs are marked by special critical_load functions.

Some real programs and, applications from the SPLASH-2 suite [2] have been
tested using CAPT. T h e results(see Fig. 1 show that LDCs in a program usually
will represent no more than 10% of the total memory access instructions.

Program water barnes raytrace fmm radiosity ocean
lines ~7Y6 2303 10022 3847 22118 4712

critical loads '435 426 787 750 1345 1622
accesses 4857 5199 14133 7362 25462 7852

Table 1. Statistics on Experimenting Programs in SPLASH-2 using CAPT

305

in t x, a[100], b[100];
p roc lO{

int i;

if (critical_load(x))
x = x + a[critical_load(b[±])]

else

x = x + l ;
proc2(critical_load(x));

}
proc2(int argl){

if (argl) x = O;
}

Figure 2. Identified Critical Loads

4 C o n c l u s i o n

The prefetch benefit exists if there is any global load ,which results in a page
fault, but is not critical. The solution has a good performance because, in most
cases, it can detect load instructions which need not be LDCs. It is safe because
it will not fail to mark any LDC. C A P T is implemented using C + + , and the
execution efficiency has not been emphasised in our research.

We have not found any other papers dealing with the LDC problem.
Our experiments show tha t a solution by data-flow analysis for the problem

is possible. But more work is needed to make it efficient. Our analysis, al though
not as aggressive as some other pointer analyses, is not limited to distinguishing
between two memory ranges but could be improved for other pointer analysis
applications.

R e f e r e n c e s

1. S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and A. W. Lim. An overview
of a compiler for scalable parallel machines. In Proceedings of the 6th Workshop
on Languages and Compilers for Parallel Computing. The Stanford SUIF Compiler
Group, August 93.

2. J.P. Singh, W. Weber, and A. Gupta. Splash:. Stanford parallel applications for
shared memory. Computer Architecture News, 20(1), March 1992.

3. J.E. Smith. Decoupled access/execute computer architecture. In ACM Transactions
on Computer Systems, Vol.2,No.4, pages 289-308, November 1984.

4. I. Watson and A. Rawsthorne. Decoupled pre-fetching for distributed shared mem-
ory. In Proceedings of the 28th HICSS, Vol i, pages 252~261, 1995.

5. Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis
for C programs. In David W. Wall, editor, ACM SIGPLAN '95 Conference on
Programming Language Design and Implementation (PbDI),..volume 30(6) of ACM
SIGPLAN Notices, pages 1-12, New York, NY, USA~ June 1995. ACM Press.

