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Abst rac t .  We describe a method to derive safe approximations for data 
dependences in programs with pointers and structures. In our approach, 
alias information and reaching definitions' information at each program 
point is simultaneously covered by a single representation. We perform a 
single-pass data dependence analysis for imperative programs by solving 
a monotone data flow system. Advantages of our method are improved 
accuracy, economical storage use, and reduced analysis time. 

1 I n t r o d u c t i o n  

Determination of data  dependences is mandatory when restructuring imperative 
programs [1]. An essential step in data dependence analysis is the calculation 
of reaching definitions. Once the reaching definitions have been determined, we 
are then able to infer def-use associations, i.e., dependences. The accuracy of the 
performed data  dependence analysis directly affects the efficacy of its applica- 
tion: underestimation usually becomes disastrous in context of code restructuring 
techniques that  rely on semantics-preserving transformations, overestimation is 
safe albeit it degrades the merits of the analysis. We are thus striving for safe 
approximations that  are as accurate as possible. 

Our method is based on expressing the data dependence analysis for pro- 
grams with pointers and structures as a monotone data flow system [2], that  can 
be solved by a well-known algorithm from data  flow analysis [3, 4]. In this me- 
thodical context, it is easy to change the source language or the approximation 
strategy, and to estimate its specific merits and drawbacks; the chosen approach 
also enables us to easily prove the correctness of our method. For each kind 
of approximation, we use a specific data flow framework (L, V, F) ,  where L is 
called the data flow information set, V is the union operator, and F is the set of 
semantic functions. 

The data  flow analysis presented in the following sections, in principle works 
for imperative languages like Pascal, Fortran 90, Modula-2, or C, when excluding 
type casting, arithmetic on pointers and other special features as setjmp, longjmp 
or exception handling. Target programs can contain pointers and dynamically 
allocated structures, allowing an unbounded number of levels of indirection; 
pointer variables may obtain their values via assignment or by allocation. Our 
current implementation accepts Modula-2 programs, that  work on linked lists 
which are also allowed to be cyclic. 
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1 : New(p) ; 

2: i := O; 

3: q := p; 
4: WHILE i < i0 DO BEGIN 

5: IF i < 5 THEN 

6: q^.data := i 

7 : ELSE 

8: q^.data := 2 * i; 

9: New(q" .next) ; 

I0: q := q~.next; 
ii: i := i + 1 

12: END; 

13: x := p~.next'.data; 

d a t a ~ t a . "  6,8 next^ data: 
oe t:  next.. 

\ ^ 

n e x t  ^ 

Fig. 1. A program segment and one of its corresponding A/D graphs 

2 D a t a  f l o w  i n f o r m a t i o n  s e t s  

We use approximate data dependence description graphs (A/D graphs) as data 
flow information sets. Each A/D graph denotes, in a finite form, the structure of 
the store and some aspects of its state at a certain point in program execution. 
From A/D graphs we can derive essentially the following information: First, the 
combination of paths through which we can access a memory cell at one program 
point; second, the program statements which defined respectively used--which 
depends on the kind of data dependence, that is calculated--the contents of a 
memory cell last. The actual data dependences for the statement in consideration 
can then be read off by looking for relevant def-use combinations concerning the 
same memory cell. 

The nodes of an A/D graph represent the objects present in memory. A refer- 
ence of one of these storage objects to another storage object by use of a pointer 
is expressed by an edge in the A/D graph. There may be nodes of two kinds in 
an A/D graph: A simple node represents objects that can be accessed through 
any of the paths by which we can reach this node in the A/D graph; the sets of 
objects represented by distinct simple nodes need not be disjoint. Introduction 
of condensation nodes is necessary to force the finiteness of our representation. 
Condensation nodes are distinguished from simple nodes by loops emanating 
from them; a condensation node stands for objects that can be accessed through 
the infinite set of paths targeting the condensation node in the A/D graph. 

Figure 1 shows a program segment and a corresponding A/D graph that 
describes the store immediately before execution of statement 13. The nodes of 
this A/D graph record write accesses to memory cells. The program segment 
presented here generates a linked list with 10 elements and initializes these as 
a function of the index value. In the A/D graph, two list elements are shown 
as distinct nodes; all further list elements are represented by a condensation 
node. Since statement 13 reads the contents of memory cells accessed through p, 
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~ ~ i ~ ° e x t ^  0ex{ ^ next ̂ Dext ̂ 

next ̂ ^ next ̂ 
P P ~ 
q q 

Fig. 2. Sample application of the union operator 

p*. next ,  and p^. n e x t ' ,  da ta ,  we infer from this A/D graph a true dependence 
of statement 13 on statements 1, 6, 8, and 9. 

An A/D graph A is cal led/-bounded if, after deleting the edges emanating 
from any condensation node, there is no directed path of length greater than l. To 
avoid some ambiguities in context with/-bounded A/D graphs, edges originating 
at a condensation node must point back to this same node. Also, we require that  
for any condensation node n2 there should not exist any other node nl ,  so that  
Pre(nl) C Pre(n2), where Pre(n) is the set of all predecessor nodes of a node 
n .  

3 D a t a  d e p e n d e n c e  a n a l y s i s  w i t h  A / D  g r a p h s  

In data  flow frameworks, the effects of joining paths in the flow graph is imple- 
mented by the union operator. We may invent several variants of union operators, 
that  would be consistent with a chosen data flow information set. Our current 
version of the union operator V works as following: 
First, we merge the nodes that  are reachable in both graphs by the same set 
of paths; new labels are calculated as the union of the corresponding old labels. 
Since this procedure does not always yield an / -bounded  A/D graph, we may 
have to further reduce the resulting graph. Reduction continuously merges a 
condensation node n with all successors as well as with all nodes that  could be 
exclusively reached via some predecessors of n. 
We have proven, that  for a fixed l E N, the set of all /-bounded A/D graphs 
in conjunction with this union operator constitutes a bounded semi-lattice with 
an one element and a zero element. Figure 2 shows a sample application of the 
union operator. 

We can unambiguously assign a semantic function to every node; this seman- 
tic function serves to modify an A/D graph when processing the node. Figure 
3 specifies the semantic functions of our method; ADi,  and ADopt stand for an 
A/D graph before resp. after the application of the semantic function. We limit 
our description to the case of true dependences and output dependences. 

Our semantic functions are composed of auxiliary functions, each performing 
a transformation on some/-bounded A/D graph A. Field(X) yields the longest 
suffix of path X not containing any pointer reference, and is used to access a 
single field within a record structure. Define(A, X, s, f)  updates with s field f 
of every simple node, that  is reached by path X; if X leads to a condensation 
node n, s will be joined to the label of field f in n. GenerateNode(A, X) marks 
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Assignment to a pointer variable 

- s : X : =  Y 

ADopt = Define(InsertAndComplete(DeleteEdge(ADin ,X, Y),X, Y),X~s,FieId(X)) 
- s :  X := NIL 

ADo~ = Define(DeleteEdge(ADin,x, gIL),X~s,Field(X)) 
- s: New(X) 

ADo~ = Define(GenerateNode(DeIeteEdge(ADi~ ,X, g lL ) ,X) ,X ,  s y i e ld (X ) )  
- s: Dispose(X) 

ADo~ = Define(DeleteEdge(ADin,X~NIL),Z,s,Field(X)) 

Assignment to a non-pointer variable 

- -  S :  Z : ~  . . .  

ADo~, = Define(ADi~,X,s,Field(X)) 
Other statements 

ADopt = AD~  

Fig. 3. Semantic functions 

all simple nodes in A tha t  are reachable via pa th  X ,  starts a new edge on every 
marked node that  cannot be reached via a pa th  of length l, and attaches a blank 
node to the new edge. In contrast, each marked node reachable via a pa th  of 
length l becomes a condensation node, by insertion of a loop. 

DeleteEdge(A,  X ,  Y )  first t ransforms A into an expanded A/D g raph- - in  such 
a graph, none of the nodes can be reached via different paths start ing at the same 
variable. Then we mark  all simple nodes that  are reachable via X,  but not via 
a prefix of Y; we ignore Y, when set to NIL. We erase all edges emanat ing from 
any marked node, and delete unreachable nodes. Finally, we merge all nodes 
tha t  are reachable exactly by the same set of paths, and reduce the emerging 
graph to an / -bounded  A/D graph. 

Inser tAndComple te (A ,  X ,  Y )  first expands A. Now, nodes tha t  are reachable 
via pa th  X and via a prefix of Y must be t reated differently from nodes tha t  
are reachable via X ,  but  not via a prefix of Y. Let v be the variable where 
pa th  Y starts. First, we mark  all nodes that  are reachable via X and via a pa th  
start ing at v, as well as all these nodes'  outgoing edges. We insert edges from any 
marked node n to all successors of n that  are reachable via Y^, and then delete 
all marked edges emanating from n. Finally, we delete all unreachable nodes. 

In a second step, we have to mark  all nodes that  can be reached via X,  but 
not via a pa th  start ing at v. For any marked node n we do the following: Let 
node be the set of nodes tha t  are reachable via pa th  Y~,  but not reachable via 
a pa th  start ing at a variable for which a path  to n exists, s tart ing at the same 
variable. Then we copy each subgraph that  starts by an element rn E node and 
insert an edge from each predecessor of rn, and from n, to the entry node of this 
subgraph. 

Figure 4 illustrates, step by step, the application of a semantic function tha t  
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v 

q q ~  q 

Fig. 4. Sample application of a semantic function 

corresponds to a node of the control flow graph representing an assignment to a 
pointer variable. 

We have implemented the use of A/D graphs into our data dependence anal- 
ysis and have received the first empirical results. Analyzing our test programs 
resulted in an average of 2.24 data dependences per statement. In an other in- 
vestigation we analyzed the time behavior of our method. The analysis time 
required from our technique was in average about i~ of the time the WRL 
compiler (from DEC) needed for the total compilation of the same programs. 

4 C o n c l u s i o n s  

We have presented a single-pass method to derive data dependences in imper- 
ative programs with pointers and structures that  is safe, accurate, fast, and 
storage economical. Our method solves a monotone data  flow system, and is 
based on representations called A/D graphs, that  cover both reaching defini- 
tions and alias information simultaneously. The use of A/D graphs for data  
dependence analysis promises to be a significant improvement over other known 
methods: data  dependence analysis becomes more accurate, and therefore useful 
information can be transmitted to subsequent processing phases. 
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