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Abst rac t .  Space-efficient data structures for sparse matrices typically yield programs 
in which not all data dependencies can be determined at compile time. Automatic pa- 
rallelization of such codes is usually done at run time, e.g. by applying the inspector- 
executor technique, incurring tremendous overhead. - -  Program comprehension tech- 
niques have been shown to improve automatic parallelization of dense matrix computa- 
tions. We investigate how this approach can be generalized to sparse matrix codes. We 
propose a speculative program comprehension and parallelization method. Placement 
of parallelized run-time tests is supported by a static data flow analysis framework. 

Data structures for sparse matrices storing only the nonzero elements save space 
for the matrix elements and time for operations on them, at the cost of some 
space and time overhead to keep the data structure consistent. Irregular spar- 
sity patterns are usually defined by run-time data. Typical data structures in 
Fortran77 are, beyond a data array containing the nonzero elements themselves, 
several organizational variables, e.g. arrays with suitable row and/or  column in- 
dex information for each data  array element. C implementations may also use 
linked lists which enhance dynamic insertion and deletion of elements. 

While the problems of automatic parallelization for dense matrix computa- 
tions are, meanwhile, well understood and sufficiently solved, these problems 
are, for sparse matrix computations, solved in a rather conservative way, e.g. by 
run- t ime parallelization techniques such as the inspector-executor method [6] or 
run- t ime analysis of sparsity patterns for load-balanced array distribution [9], 
because indirect array indexing or pointer dereferencing makes exact static ac- 
cess analysis impossible. Run-time analysis, though, usually incurs tremendous 
overhead which is not always likely to be weighed out by parallel speedup, as 
the good volume-to-surface ratio of computation to communication typical for 
dense matr ix computations is usually not present in sparse ones. 

For automatic parallelization of dense matrix computations and other com- 
pletely statically analyzable codes, program comprehension techniques appeared 
to be useful [4]. After suitable preprocessing, the intermediate program represen- 
tat ion - -  abstract syntax tree and/or  program dependence graph - -  is submitted 
to a concept recognition tool which locally identifies code fragments for which 
there exist special code transformations or particular parallel algorithms tailored 
to the target machine. In the back-end phase, these code pieces can be replaced 
by suitable parallel implementations. The information derived in the recognition 
phase also supports automatic data  layout and performance prediction. 

We are interested in how far this approach can be extended to sparse matr ix 
codes. One problem we are faced with is that  there is no standard data  structure 
to store a sparse matrix, compared to the two-dimensional array which is the 
"natural" storage scheme for the dense matrix. A survey of sparse storage for- 
mats is given e.g. in [1] and [11]. We have examined several representative source 

* For the full version of this paper see http ://www. informatik.llni-trier, de/~kessler/sparamat 
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codes for implementations of basic linear algebra operations like dot product, 
matrix-vector multiplication, matrix-matrix multiplication, or LU factorization 
for sparse matrices [2, 3, 5] and recorded a preliminary list of basic computa- 
tional kernels (also often called "templates" or "concepts") for sparse matrix 
computations, together with their various syntactical appearances ("idioms"). 

The other main difference is that  space-efficient data  structures for sparse 
matrices use either indirect array references or (if available) pointer data  struc- 
tures. Thus the array access information required for safe concept recognition 
and code replacement is no longer completely available at compile time. Regard- 
ing program comprehension, this means that  it is no longer sufficient to consider 
only the declaration of the matrix and the code of the computation itself, in 
order to safely determine the semantics of the computation. Code can only be 
recognized as an occurrence of, say, sparse matrix-vector multiplication, subject 
to the condition that  the data structures occurring in the code really implement 
a sparse matrix. Generally, it is not always possible to statically evaluate this 
condition. In such a case, a concept recognition engine can only suspect, based 
on its observations of the code while tracking the life ranges of program objects, 
that  a certain set of program objects implements a sparse matrix; the final proof 
of this hypothesis has then to be done at run time. For instance, such a run time 
test has to be executed always when one of the organisational variables is mod- 
ified. Nevertheless, static program flow analysis can substantially support such 
a speculative comprehension and parallelization. Only at program points where 
not sufficient static intbrmation is available, the run-t ime tests are applied to 
confirm (or reject) the speculative comprehension. 

We propose to generate two variants of parallel code for the speculatively 
recognized program parts: (1) an optimized parallel sparse matrix algorithm 
(library routine) which is executed speculatively, and (2) a conservative paral- 
lelization, maybe using the inspector-executor technique, or just sequential code. 
Then we let one of the p available processors execute the sequential code while 
the remaining p - 1 processors are spent to execute the speculatively parallelized 
variant (including run time checks where required). If the latter processors find 
out during execution that  the hypothesis allowing parallel execution was wrong, 
they abort and wait tbr the sequential variant to complete. Otherwise, they abort 
the sequential variant and return the computed results. --- Nevertheless, if the 
sparsity pattern is static, it may be more profitable to execute the run time test 
once at the beginning and then branch to the suitable code variant. 

The expected benefit from successful recognition is large. Beyond automatic 
parallelization, it may also support program maintenance and debugging, and 
could help with the exchange of one data  structure for a sparse matrix against 
another, more suitable one. 

S ta t i c  a n d  d y n a m i c  m a t c h i n g  of  sparse  m a t r i x  concep ts .  Safe identi- 
fication of a sparse matrix operation consists of (1) a test for the syntactical 
properties of this operation, which can be performed by concept recognition at 
compile time, and (2) a test for the semantic properties which may partially 
have to be performed at run time. 

Testing the static part is, in principle, not hard. Just in the same way as 
we did for dense matrix operations [4], we work bot tom-up on the abstract 
syntax tree, incrementally compute dataflow relations ("cross edges"), and de- 
terministically identify concepts based on already matched subconcepts. For ef- 
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Fig. 1. S o m e  c o m m o n  c o n c e p t s  in sparse  m a t r i x  c o m p u t a t i o n s  
This survey is far from being exhaustive. It is rather an illustration of our intention. D0 
rng(i) stands for a common f o r  resp. D0 loop where loop variable i iterates over a regular 
range rng(i). The example computations given in the column "could look like" serve only 
as an illustration; there may be many more possibilities to express that concept. It is the 
job of program comprehension to abstract from such syntactical variations. 

Concepts for some elementwise indirect vector operations 
name parameters could look like 
VGATHER rng(i), x, y, ix DO i=rng(i) x [i] =y [ix [i] ] 
VSCATTER rng(i), x, ix, y DO i=rng(i) x [ix [i] ] =y [i] 
VXAADDSV rng(i)~ x, ix~ x, u~ v DO i=rng(i) x [ix [i] ] =x [ix [i] ] ±u*v [i] 

Concepts for some indirect ID reductions 
VXSUM rng( i ) , s ,  
VXDOTV rng(i),s, 
VXMAXVAL rng( i ) , s ,  
VXMAXLOC rng(i),k, 

y, s=c; ix~ C 
y, s=c; Z~ ix, C 

DO i=rng(i) s=s±y[ixEi]] 
DO i=rng(i ) 
DO i=rng(i) xj ix, c s=c; 

x, ix, t k=t; DO i=rng(i ) 

s, c, k, t are scalar (not indexed by loop variable i ) .  Initializers s=c, k=t are optional. 
Concepts for some kinds of sparse matrix-vector multiplication 

MXFV 

s=sz~y [i] *z [iz [i] ] 
if (s>xEix[i]]) s=x[ix[i]] 
if (x[ix[k]] <x[ix[i]]) k=i 

VMXF 

rng(i), j ,  f i r s t ,  
a, b, col, C, init 

rng(i), j, first, 
a~ b, col, C~ init 

DO i:rng(i ) 
DO i=rng(i) 

DO i=rng(i ) 
DO i:rng( i ) 

a[i] = init[i]; 
DO j=first [i] ,first [i+l]-I 

a [i] =a [i] ±b [col [j] ] *C [j] 
a[i] = init[i]; 
DO j=first [i] ,first [i+l]-I 

a [col [j ] ] =a [col [j] ] ±b [i] *C [j ] 

Explicit names like col ,  first etc. for the variable symbols are used here only for bet- 
ter readability. Although taken from the row-compressed storage format, the column- 
compressed storage format shows exactly the same syntactical appearance: Matrix vector 
multiplication (MY) for row-compressed format looks like transposed matrix vector multi- 
plication (VM) for column-compressed format, and vice versa. Thus we need not define two 
distinct sets of concepts for them. - -  The initializing loops are optional. 

ficiency reasons, the matching rules are hierarchically organized ("concept hier- 
archy graph"),  following the natural hierarchical composition of computations 
by applying loops and sequencing to subcomputations. Normalizing transforma- 
tions, such as rerolling of unrolled loops, are done whenever applicable. 
S p e c u l a t i v e  c o n c e p t  m a t c h i n g  a n d  r u n  t i m e  tes t s .  We call an integer 
vector iv  injective over an index range L:U at a program point q iff for any 
control flow path through q, at q for all i ,j  ElL:U] holds i # j ==~ i v [ i ]  
iv  [ j ] .  Injectivity of a vector is usually not statically known, but is an important  
condition that  we need to check at various occasions. 

We must verify the speculative transformation and parallelization of a recog- 
nized computation on a set of program objects which are strongly suspected to 
implement a sparse matrix A. This consists typically of a check for injectivity of 
an index vector, plus maybe some other checks on the organizational variables. 
For instance, for non-transposed and transposed sparse matr ix-vector  multipli- 
cation using implicit row-compressed format (MXFV resp. VMXF, see Fig. 1) we 
have to check for the following conditions on the concept parameters 

1. f i r s t  [i]___first  [ i +  1] i n for all i 6 rag(i) 
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2. array co l  [] is injective over the index domain [ f i r s t  [i] : f i r s t  [i + 1 ] - 1 ]  
for all i E rag(i) 

These conditions may be checked for separately. Here we consider the verification 
of injectivity; the other conditions can be checked in a straightforward way. We 
use a dataflow framework to minimize the number  of generated injectivity tests. 

For a program point d and an array z, we set DEF(d, x) = i if d is a definition 
of an element of x, and 0 otherwise. Similarly, we set USE(d, x) = 1 if d is a 
use of an element of x, and 0 otherwise. - -  A definition d of an element of an 
array x is called def-safe with respect to x if it can be statically shown for all 
execution paths containing d that  x is injective immediately after execution of d. 
- -  For each program point q and each array x to be tested, we compute,  based 
on reaching definitions (see e.g. [10]), a boolean value SAFEDEF(q,z) which 
equals 1 if only def-safe definitions of x reach q, and 0 otherwise. 

Let u be any program point, u may contain a use of an element of x. Assume 
tha t  definitions dl, d2,..., dk of x reach u, via paths 7r~, ~r2,..., 7rk 2. Then we call 
u use-safe with respect to x if for all i = 1, 2, ..., k, definition di is def-safe or 
there is a run- t ime test  test(x) for injectivity of x placed on pa th  7ri between di 
and u. Otherwise we call u ambiguous with respect to x. 

Let TEST(q, x) denote a function tha t  returns 1 if there is a run- t ime  test  
test(x) placed immediately before program point q, and 0 otherwise. 

Use-safety of any program point q with respect to x can be computed by 
s tandard dataflow analysis techniques, see e.g. [10]. Let SAFEUSE(q, x) denote 
the characteristic function of use-safety to be computed for each program point 
q with respect to each array x. Value 0 means ambiguous and 1 means use-  
safe. (1) If q is not a meeting point of joining control flow paths, let u denote 
its immediate predecessor in the control flow graph. If u is not a definition 
of x, q inherits the value SAFEUSE(u, z) from u. Moreover, TEST(q, x) and 
SAFEDEF(u, x) influence SAFEUSE(q, z). (2) At a meeting point q of joining 
control flow paths 7Q,~r2,..., with the direct predecessors of q being ul E ~rl, 
u2 E 7r2 etc., we can assume use-safety only if for each ui, def-safety holds for 
ui or, (if ui is not a definition of x) use-safety holds already for ui. As general 
i teration equation for any program point q, we obtain 

SAFEUSE(q,x)= TEST(q,x) V {SAFEUSE(q,x) A 
As(SAFEDEF(q~,x)  V (~DEF(qi,x) A SAEEUSE(qi,x)) )} 

provided tha t  we have initialized SAFEUSE(q,x) = 1 for all q and x. TEST and 
SAFEDEF are constant during the computat ion of SAFEUSE. Since for each 
q the sequence of SAFEUSE(q, x) values over the iterations is monotonically 
decreasing and bounded by O, the iterative algorithm converges. 

We must eliminate all ambiguous uses for array x in whose injectivity we are 
interested in. This is described by the following simple nondeterministic 

A l g o r i t h m :  Elimination of ambiguous uses 
for  all  q do  TEST(q,x)=O o d  
f o r e v e r  do  (re)compute SAFEUSE(q, x) for all program points q and arrays x 

i f  USE(q, x) < SAFEUSE(q, x) for all q t h e n  b r e a k ;  
place a run- t ime test test(z) appropriately o d  

Note that these d~ axe usually a conservative overestimation of the actual definition 
of the array element(s) used in u. 
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The goal is to place the run- t ime tests in such a way that  the total  run t ime 
overhead induced by them in the speculatively parallelized program is mini- 
mized, where the weights are given by the s ta tement  frequencies computed from 
(estimated or profiled) loop iteration counts, true ratios etc. for the parallelized 
program. This constitutes an interesting static optimization problem. 
P a r a l l e l i z e d  i n j e c t i v i t y  t e s t .  For a shared memory parallel target  machine 
we apply an algorithm similar to bucket sort 3 to test  injectivity of an integer 
array in parallel. - -  On a distributed memory system, an existing parallel sorting 
algorithm can be extended for our purposes (for details, see the full paper).  

F u t u r e  r e s e a r c h  4 will address several directions: The list of concepts for the 
various da ta  structures will be completed. The syntactic matching rules will be 
implemented,  e.g. on top of the existing PARAMAT concept recognizer. More 
efficient parallel run t ime tests for distributed memory  machines may be devised, 
as well as an algorithm for optimization of the placement of the run t ime tests. 
Finally, the concepts and matching rules for linked list data  structures have to 
be formally defined and implemented. The interdependence with pointer alias 
analysis has to be investigated. - -  Moreover, we will address automat ic  array 
distribution and redistribution. I t  seems to be a reasonable idea to integrate 
run- t ime  distribution schemes for sparse matrices [9] into this framework; for 
instance, the run- t ime  analysis of the sparsity pattern,  which is required for 
load-balancing parti t ioning of the sparse matrix,  may be integrated into the 
run- t ime  tests. 
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