
Applicability of Program Comprehension
to Sparse Matrix Computations*

Christoph W. Kegler

FB 4 - Informatik, Universit~it Trier, D-54286 Trier, Germany
e-maih kessler~psi, uni-trier, de

Abst rac t . Space-efficient data structures for sparse matrices typically yield programs
in which not all data dependencies can be determined at compile time. Automatic pa-
rallelization of such codes is usually done at run time, e.g. by applying the inspector-
executor technique, incurring tremendous overhead. - - Program comprehension tech-
niques have been shown to improve automatic parallelization of dense matrix computa-
tions. We investigate how this approach can be generalized to sparse matrix codes. We
propose a speculative program comprehension and parallelization method. Placement
of parallelized run-time tests is supported by a static data flow analysis framework.

Data structures for sparse matrices storing only the nonzero elements save space
for the matrix elements and time for operations on them, at the cost of some
space and time overhead to keep the data structure consistent. Irregular spar-
sity patterns are usually defined by run-time data. Typical data structures in
Fortran77 are, beyond a data array containing the nonzero elements themselves,
several organizational variables, e.g. arrays with suitable row and/or column in-
dex information for each data array element. C implementations may also use
linked lists which enhance dynamic insertion and deletion of elements.

While the problems of automatic parallelization for dense matrix computa-
tions are, meanwhile, well understood and sufficiently solved, these problems
are, for sparse matrix computations, solved in a rather conservative way, e.g. by
run- t ime parallelization techniques such as the inspector-executor method [6] or
run- t ime analysis of sparsity patterns for load-balanced array distribution [9],
because indirect array indexing or pointer dereferencing makes exact static ac-
cess analysis impossible. Run-time analysis, though, usually incurs tremendous
overhead which is not always likely to be weighed out by parallel speedup, as
the good volume-to-surface ratio of computation to communication typical for
dense matr ix computations is usually not present in sparse ones.

For automatic parallelization of dense matrix computations and other com-
pletely statically analyzable codes, program comprehension techniques appeared
to be useful [4]. After suitable preprocessing, the intermediate program represen-
tat ion - - abstract syntax tree and/or program dependence graph - - is submitted
to a concept recognition tool which locally identifies code fragments for which
there exist special code transformations or particular parallel algorithms tailored
to the target machine. In the back-end phase, these code pieces can be replaced
by suitable parallel implementations. The information derived in the recognition
phase also supports automatic data layout and performance prediction.

We are interested in how far this approach can be extended to sparse matr ix
codes. One problem we are faced with is that there is no standard data structure
to store a sparse matrix, compared to the two-dimensional array which is the
"natural" storage scheme for the dense matrix. A survey of sparse storage for-
mats is given e.g. in [1] and [11]. We have examined several representative source

* For the full version of this paper see http ://www. informatik.llni-trier, de/~kessler/sparamat

348

codes for implementations of basic linear algebra operations like dot product,
matrix-vector multiplication, matrix-matrix multiplication, or LU factorization
for sparse matrices [2, 3, 5] and recorded a preliminary list of basic computa-
tional kernels (also often called "templates" or "concepts") for sparse matrix
computations, together with their various syntactical appearances ("idioms").

The other main difference is that space-efficient data structures for sparse
matrices use either indirect array references or (if available) pointer data struc-
tures. Thus the array access information required for safe concept recognition
and code replacement is no longer completely available at compile time. Regard-
ing program comprehension, this means that it is no longer sufficient to consider
only the declaration of the matrix and the code of the computation itself, in
order to safely determine the semantics of the computation. Code can only be
recognized as an occurrence of, say, sparse matrix-vector multiplication, subject
to the condition that the data structures occurring in the code really implement
a sparse matrix. Generally, it is not always possible to statically evaluate this
condition. In such a case, a concept recognition engine can only suspect, based
on its observations of the code while tracking the life ranges of program objects,
that a certain set of program objects implements a sparse matrix; the final proof
of this hypothesis has then to be done at run time. For instance, such a run time
test has to be executed always when one of the organisational variables is mod-
ified. Nevertheless, static program flow analysis can substantially support such
a speculative comprehension and parallelization. Only at program points where
not sufficient static intbrmation is available, the run-t ime tests are applied to
confirm (or reject) the speculative comprehension.

We propose to generate two variants of parallel code for the speculatively
recognized program parts: (1) an optimized parallel sparse matrix algorithm
(library routine) which is executed speculatively, and (2) a conservative paral-
lelization, maybe using the inspector-executor technique, or just sequential code.
Then we let one of the p available processors execute the sequential code while
the remaining p - 1 processors are spent to execute the speculatively parallelized
variant (including run time checks where required). If the latter processors find
out during execution that the hypothesis allowing parallel execution was wrong,
they abort and wait tbr the sequential variant to complete. Otherwise, they abort
the sequential variant and return the computed results. --- Nevertheless, if the
sparsity pattern is static, it may be more profitable to execute the run time test
once at the beginning and then branch to the suitable code variant.

The expected benefit from successful recognition is large. Beyond automatic
parallelization, it may also support program maintenance and debugging, and
could help with the exchange of one data structure for a sparse matrix against
another, more suitable one.

S ta t i c a n d d y n a m i c m a t c h i n g of sparse m a t r i x concep ts . Safe identi-
fication of a sparse matrix operation consists of (1) a test for the syntactical
properties of this operation, which can be performed by concept recognition at
compile time, and (2) a test for the semantic properties which may partially
have to be performed at run time.

Testing the static part is, in principle, not hard. Just in the same way as
we did for dense matrix operations [4], we work bot tom-up on the abstract
syntax tree, incrementally compute dataflow relations ("cross edges"), and de-
terministically identify concepts based on already matched subconcepts. For ef-

349

Fig. 1. S o m e c o m m o n c o n c e p t s in sparse m a t r i x c o m p u t a t i o n s
This survey is far from being exhaustive. It is rather an illustration of our intention. D0
rng(i) stands for a common f o r resp. D0 loop where loop variable i iterates over a regular
range rng(i). The example computations given in the column "could look like" serve only
as an illustration; there may be many more possibilities to express that concept. It is the
job of program comprehension to abstract from such syntactical variations.

Concepts for some elementwise indirect vector operations
name parameters could look like
VGATHER rng(i), x, y, ix DO i=rng(i) x [i] =y [ix [i]]
VSCATTER rng(i), x, ix, y DO i=rng(i) x [ix [i]] =y [i]
VXAADDSV rng(i)~ x, ix~ x, u~ v DO i=rng(i) x [ix [i]] =x [ix [i]] ±u*v [i]

Concepts for some indirect ID reductions
VXSUM rng(i) , s ,
VXDOTV rng(i),s,
VXMAXVAL rng(i) , s ,
VXMAXLOC rng(i),k,

y, s=c; ix~ C
y, s=c; Z~ ix, C

DO i=rng(i) s=s±y[ixEi]]
DO i=rng(i)
DO i=rng(i) xj ix, c s=c;

x, ix, t k=t; DO i=rng(i)

s, c, k, t are scalar (not indexed by loop variable i) . Initializers s=c, k=t are optional.
Concepts for some kinds of sparse matrix-vector multiplication

MXFV

s=sz~y [i] *z [iz [i]]
if (s>xEix[i]]) s=x[ix[i]]
if (x[ix[k]] <x[ix[i]]) k=i

VMXF

rng(i), j , f i r s t ,
a, b, col, C, init

rng(i), j, first,
a~ b, col, C~ init

DO i:rng(i)
DO i=rng(i)

DO i=rng(i)
DO i:rng(i)

a[i] = init[i];
DO j=first [i] ,first [i+l]-I

a [i] =a [i] ±b [col [j]] *C [j]
a[i] = init[i];
DO j=first [i] ,first [i+l]-I

a [col [j]] =a [col [j]] ±b [i] *C [j]

Explicit names like col , first etc. for the variable symbols are used here only for bet-
ter readability. Although taken from the row-compressed storage format, the column-
compressed storage format shows exactly the same syntactical appearance: Matrix vector
multiplication (MY) for row-compressed format looks like transposed matrix vector multi-
plication (VM) for column-compressed format, and vice versa. Thus we need not define two
distinct sets of concepts for them. - - The initializing loops are optional.

ficiency reasons, the matching rules are hierarchically organized ("concept hier-
archy graph"), following the natural hierarchical composition of computations
by applying loops and sequencing to subcomputations. Normalizing transforma-
tions, such as rerolling of unrolled loops, are done whenever applicable.
S p e c u l a t i v e c o n c e p t m a t c h i n g a n d r u n t i m e tes t s . We call an integer
vector iv injective over an index range L:U at a program point q iff for any
control flow path through q, at q for all i ,j ElL:U] holds i # j ==~ i v [i]
iv [j] . Injectivity of a vector is usually not statically known, but is an important
condition that we need to check at various occasions.

We must verify the speculative transformation and parallelization of a recog-
nized computation on a set of program objects which are strongly suspected to
implement a sparse matrix A. This consists typically of a check for injectivity of
an index vector, plus maybe some other checks on the organizational variables.
For instance, for non-transposed and transposed sparse matr ix-vector multipli-
cation using implicit row-compressed format (MXFV resp. VMXF, see Fig. 1) we
have to check for the following conditions on the concept parameters

1. f i r s t [i]___first [i + 1] i n for all i 6 rag(i)

350

2. array co l [] is injective over the index domain [f i r s t [i] : f i r s t [i + 1] - 1]
for all i E rag(i)

These conditions may be checked for separately. Here we consider the verification
of injectivity; the other conditions can be checked in a straightforward way. We
use a dataflow framework to minimize the number of generated injectivity tests.

For a program point d and an array z, we set DEF(d, x) = i if d is a definition
of an element of x, and 0 otherwise. Similarly, we set USE(d, x) = 1 if d is a
use of an element of x, and 0 otherwise. - - A definition d of an element of an
array x is called def-safe with respect to x if it can be statically shown for all
execution paths containing d that x is injective immediately after execution of d.
- - For each program point q and each array x to be tested, we compute, based
on reaching definitions (see e.g. [10]), a boolean value SAFEDEF(q,z) which
equals 1 if only def-safe definitions of x reach q, and 0 otherwise.

Let u be any program point, u may contain a use of an element of x. Assume
tha t definitions dl, d2,..., dk of x reach u, via paths 7r~, ~r2,..., 7rk 2. Then we call
u use-safe with respect to x if for all i = 1, 2, ..., k, definition di is def-safe or
there is a run- t ime test test(x) for injectivity of x placed on pa th 7ri between di
and u. Otherwise we call u ambiguous with respect to x.

Let TEST(q, x) denote a function tha t returns 1 if there is a run- t ime test
test(x) placed immediately before program point q, and 0 otherwise.

Use-safety of any program point q with respect to x can be computed by
s tandard dataflow analysis techniques, see e.g. [10]. Let SAFEUSE(q, x) denote
the characteristic function of use-safety to be computed for each program point
q with respect to each array x. Value 0 means ambiguous and 1 means use-
safe. (1) If q is not a meeting point of joining control flow paths, let u denote
its immediate predecessor in the control flow graph. If u is not a definition
of x, q inherits the value SAFEUSE(u, z) from u. Moreover, TEST(q, x) and
SAFEDEF(u, x) influence SAFEUSE(q, z). (2) At a meeting point q of joining
control flow paths 7Q,~r2,..., with the direct predecessors of q being ul E ~rl,
u2 E 7r2 etc., we can assume use-safety only if for each ui, def-safety holds for
ui or, (if ui is not a definition of x) use-safety holds already for ui. As general
i teration equation for any program point q, we obtain

SAFEUSE(q,x)= TEST(q,x) V {SAFEUSE(q,x) A
As(SAFEDEF(q~,x) V (~DEF(qi,x) A SAEEUSE(qi,x)))}

provided tha t we have initialized SAFEUSE(q,x) = 1 for all q and x. TEST and
SAFEDEF are constant during the computat ion of SAFEUSE. Since for each
q the sequence of SAFEUSE(q, x) values over the iterations is monotonically
decreasing and bounded by O, the iterative algorithm converges.

We must eliminate all ambiguous uses for array x in whose injectivity we are
interested in. This is described by the following simple nondeterministic

A l g o r i t h m : Elimination of ambiguous uses
for all q do TEST(q,x)=O o d
f o r e v e r do (re)compute SAFEUSE(q, x) for all program points q and arrays x

i f USE(q, x) < SAFEUSE(q, x) for all q t h e n b r e a k ;
place a run- t ime test test(z) appropriately o d

Note that these d~ axe usually a conservative overestimation of the actual definition
of the array element(s) used in u.

351

The goal is to place the run- t ime tests in such a way that the total run t ime
overhead induced by them in the speculatively parallelized program is mini-
mized, where the weights are given by the s ta tement frequencies computed from
(estimated or profiled) loop iteration counts, true ratios etc. for the parallelized
program. This constitutes an interesting static optimization problem.
P a r a l l e l i z e d i n j e c t i v i t y t e s t . For a shared memory parallel target machine
we apply an algorithm similar to bucket sort 3 to test injectivity of an integer
array in parallel. - - On a distributed memory system, an existing parallel sorting
algorithm can be extended for our purposes (for details, see the full paper).

F u t u r e r e s e a r c h 4 will address several directions: The list of concepts for the
various da ta structures will be completed. The syntactic matching rules will be
implemented, e.g. on top of the existing PARAMAT concept recognizer. More
efficient parallel run t ime tests for distributed memory machines may be devised,
as well as an algorithm for optimization of the placement of the run t ime tests.
Finally, the concepts and matching rules for linked list data structures have to
be formally defined and implemented. The interdependence with pointer alias
analysis has to be investigated. - - Moreover, we will address automat ic array
distribution and redistribution. I t seems to be a reasonable idea to integrate
run- t ime distribution schemes for sparse matrices [9] into this framework; for
instance, the run- t ime analysis of the sparsity pattern, which is required for
load-balancing parti t ioning of the sparse matrix, may be integrated into the
run- t ime tests.

References
1. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, 1994.

2. I. S. Duff. MA28 - a set of Fortran subroutines for sparse unsymmetric linear
equations. Tech. rept. AERE R8730, HMSO, London. Sources at netlib [7], 1977.

3. R. Grimes. SPARSE-BLAS basic linear algebra subroutines for sparse matrices, writ-
ten in Fortran77. Source code available via netlib [7], 1984.

4. C. W. Ket~ler. Pattern-driven Automatic Parallelization. Scientific Programming,
5:251-274, 1996.

5. K. Kundert. SPARSE 1.3 package of routines for sparse matrix LU factorization,
written in C. Source code available via netlib [7], 1988.

6. 1~. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles of run-
time support for parallel processors. In Proc. 2nd A CM Int. Conf. on Supercom-
puting, pages 140-152. ACM Press, July 1988.

7. NETLIB. Collection of free scientific software. Accessible by anonymous ftp to
netlib2, cs. utk. edu or netlib, no or e-mail "send index" to netlib@netlib, no.

8. L. Rauchwerger and D. Padua. The Privatizing DOALL Test: A Run-Time Tech-
nique for DOALL Loop Identification and Array Privatization. In Proc. 8th ACM
Int. Conf. on Supercomputing, pages 33-43. ACM Press, July 1994.

9. M. Ujaldon, E. Zapata, S. Sharma, and J. Saltz. Parallelization Techniques for
Sparse Matrix Applications. Y. of Parallel and Distr. Computing, 38(2), 1996.

10. H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.
ACM Press Frontier Series. Addison-Wesley, 1990.

11. Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer, 1991.

a A similar test on independent array accesses was suggested in [8].
4 The new research project SPARAMAT funded by DFG will begin in 1997.

