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Abstrac t .  Starting with cellular automata as a model of parallel ma- 
chines we investigate the constraints for the energy consumption of r- 
dimensional machines which are motivated by fundamental physical lim- 
itations for the case r = 3. Depending on the operations which must be 
considered to dissipate energy (state changes, communication), relations 
between the relative performance of 2-D and 3-D machines are derived. 

1 I n t r o d u c t i o n  

At now feasible clock speeds approaching 1 GHz, information can travel at most 
30 em during one clock cycle. Hence transmission latencies are an issue for large 
parallel computers and there is an interest in (physically and economically) fea- 
sible architectures with short interconnections. 

Usually these issues are discussed for the case r = 2 because chips and printed 
circuit boards allow only a constant number of layers. The starting point for this 
paper is to look at the the general r-D case with an emphasis on the case r = 3 
and scaling issues which are not a trivial generalization of the case r = 2. More 
specifically we will consider the cooling problem and simulations between 2-D 
and 3-D systems. 

What  kind of model is adequate here? A (conceptually) very simple model is 
the grid model of circuits [8] which describes the circuit as a regular orthogonal 
grid of cells. This model is adequate since inaccuracies in the production technol- 
ogy forbid to exploit arbitrarily accurate placement of materials. The cell model 
is in turn equivalent to cellular automata  (CA) where the state of an automaton 
cell encodes the states of a fixed number of VLSI-cells. The additional feature 
of synchronous operation does not increase the performance of CA [5]. The en- 
ergy consumption of 2-D VLSI circuits is an area of intense study. For example 
refer to [4] for a theoretical t reatment and to the PATMOS series of workshops 
for practical aspects. The results for higher dimensions presented here illumi- 
nate additional aspects like the relation between speed and energy consumption. 
Also, our results apply to functions with a single output  bit making it possible 
to use the formalisms developed in formal language theory. 

In Sect. 2 we introduce some basic notions. In Sect. 3 it turns out that  the 
energy consumption has to be taken into account for r = 3 and that  this has 
some interesting implications for the performance of the machine. The tradeoffs 
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between different models are considered in Sect. 4. Finally, Sect. 5 summarizes 
the paper. For the proofs of all propositions and a more detailed discussion of 
related topics readers are referred to the technical report [6]. 

2 S o m e  B a s i c  N o t i o n s  

A F r - C A  consists of a collection of identical deterministic finite au tomata  po- 
sitioned at all grid points of the underlying integer lattice Z r. Q denotes the set 
of states and N the r-dimensional von Neumann neighborhood. 

A (global) configuration of a CA is a mapping c : F r --+ Q. The local rule of 
a CA determines the new state of a cell depending on the current states of all 
cells belonging to its neighborhood. All cells synchronously update their state 
according to the local rule ~f : QN __~ Q. 

As an example, the recognition of formal languages by CA will be considered. 
Let A C Q denote some input alphabet with [A I >_ 3 containing a symbol ©. We 
assume the symbols of an input w E A + of length n to be numbered from 0 to 
n - 1. Input symbols are provided in a "row major order" to a small input cube 
of cells. For k E N+ denote by Wk the cube { ( X l , . . . , x r )  I Vi : 0 < xi < k}. Let 
rn = [n l / r ] .  At the beginning of a computation a cell in Wm with coordinates 
( x l , . . . , x r )  receives the j - th  symbol of w, if 0 < j = ~ = 1  xirni-1 < n. In 
the initial configuration for an input w all cells not containing an input symbol 
initially are in a so-called quiescent state. Cell 0 has to produce the result whether 
the input has been accepted or rejected. 

The time complexity of a CA is defined as usual. By W(n) we denote the 
smallest cube comprising all cells used during the computation for at least one 
input of size n. The extent of W(n) is denoted by d(n); the size of W(n) is d(n) r. 

We will consider (variants of) two languages throughout the paper: 

Lparity :~--- {w [W E {O,i} + and w contains an even number of ls} 

Lvv := Iv e {0,1}+} 

For a language L let L["] := {w e L I Iwllz /3 is an integer}. 
Lparlty and Lvv can be accepted without using cells outside the input cube 

in time (9 (nU~) which is asymptotically optimal. 

3 E n e r g y  C o n s u m p t i o n  

Cooling of chips and computers is a crucial issue in hardware design. In two 
dimensions, cooling poses no limit to building larger machines since the surface 
of the machine grows in proportion with the number of active elements. But in 
three dimensions this is no longer the case. 

A 3-D machine with extent d can have O (d 3) active elements while all the 
dissipated energy has to be transported through the surface of some cube with 
surface area (9 (d2). But the maximum allowable temperature at any point in the 
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machine must not exceed a certain constant value, i.e., it cannot be scaled with 
d. Hence, in a large machine it is not feasible to consume one unit of energy in 
each cell in each step because eventually the machine would become overheated. 

P r o p o s i t i o n  1. For every physically feasible computation, every subcube of the 
machine with extent d ~ and every interval of the computation of length t ~, no 
more than O(d '3 + t'd '2) units of energy may be dissipated within this space-time 
interval of the computation. (Analogously for the general r-dimensional case.) 

Which operations consume energy? From the laws of thermodynamics it only 
follows that  each irreversible computation consumes at least kBTln 2 of energy 
(kB is the Boltzmann constant, T the temperature in Kelvin). In principle, uni- 
versal computers can be built using only reversible gates. However, gates which 
actually consume very little energy are currently only gedanken experiments 
and/or  trade speed for energy consumption, so they cannot be used for build- 
ing fast computers. For a more detailed discussion refer to [3]. So let us start 
by approximating the actual energy consumption of a machine by counting the 
(proper) state changes of its cells. Especially for CMOS this is quite accurate. 

Proposition 1 can now be reformulated in terms of the numbers of state 
changes [9]. The (state) change complexity of a CA with time complexity t is the 
function s where s(n) is the maximum number of proper state changes of all cells 
which happen for computations on inputs of size n. Obviously s(n) >__ t(n). On 
the other hand, a CA which fulfills Prop. 1 must have a time complexity of at 

if2 (s (n)-d(n) 3 ~ if s(n) changes occur in a cube of extent d(n). We call least t(n) E \ d(~)2 / 
such a constrained CA a Z r - C A c E  (where CE stands for "cold everywhere"). 

In the remainder of this section, we identify two related languages which 
cannot be accepted in time O(n Ur) by Z r - C A c E  due to a large change com- 
plexity in some subcube. We call a nondecreasing function f(n) almost-log if 
f(n) e O(Poly(logn)) and f(n) ~ O(logn). 

P r o p o s i t i o n  2. A Z ~ - C A  recognizing Lvv makes a total of $2(n(~+l)/~/f(n)) 
state changes for every almost-log f(n) in the subcube of extent 3n 1/r containing 
the input cube in its center (and analogously for r[r]) ~ V V ] .  

C o r o l l a r y  3. No z r - C A c E  can accept Lvv in less than n2/r/f(n) steps. 

On the other hand, note that as a consequence of Proposition 6 below Lvv can 
be recognized by Zr--CAcE in time (9(n2/~). 

In addition, there are languages where any CAcE has to be slower than a 
general CA due to a large change complexity in a subcube although the overall 
change-complexity is small. Let L1 denote the language of all words with the 
following r-dimensional arrangement: The central subcube of extent n 1/(~+1) 
(and size n r/(~+l)) contains a word from L~ +1] and the remainder of the whole 
cube is filled with © symbols everywhere. Proposition 2 implies: 

C o r o l l a r y  4. A z r - C A  C recognizing L1 will make a total of I2(n/f(n)) state 
changes in the central subcube A.I of the input cube of extent 3n 1/(~+1). Therefore, 
a Z~ - C A c E  needs at least Y2(n2/(r+D/f(n)) steps to accept L1. 
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We have seen that technologies which limit the change complexity consider- 
ably constrain the performance of 3-D machines. One candidate for a relaxation 
is communication. In terms of CA, handing information from one cell to another 
must involve state changes. Therefore, communicating one bit of information 
through a "wire" requires energy proportional to its length. But there are tech- 
nologies which do have negligible energy consumption per unit of wire length, 
e.g., modern optical fibers. On the other hand the problem really is an issue for 
current CMOS technology (e.g., [2,7]). 

Therefore we introduce a modification of the CAcE model, denoted CAww 
("with wires"): Each cell has access to unidirectional "wire'-registers for each of 
the 2. r coordinate directions. The information in these registers moves without 
consuming energy. However, reading or writing a wire register requires one unit 
of energy. On this model one can recognize L~  in time O (n 1/~) without violating 
Proposition 1. 

4 C o m p a r i s o n  o f  t h e  M o d e l s  

After having introduced the different models (CA, CAcE, CAww) in different 
dimensions, we are now going to state some results about the relations between 
the models. Proofs can be found in [6]. 

For no language a 7~ -CA has to be slower than a Z~-CAww or a Z~-CAcE. 
From Corollary 3 and the remark above it follows that in some cases they are 
faster, i.e., the restriction of energy consumption implies a restriction of the 
computational power of CA for fixed time bounds: 

P ropos i t i on  5 (Res t r i c t ed  vs. un re s t r i c t ed  CA).  There are problems for 
which Z~-CA are faster than Z ~- CACE by a factor of Y2(n2/~/f(n)) for every 
almost-log f(n).  The same holds for 7 r - C A w w  instead of z r - C A .  

On the other hand each CA can be transformed into an equivalent (but 
slower) CAcE. Let Z~-CA-ExT-TIME(d , t )  denote the family of languages 
recognized by Z~-CA with extent at most O(d) and time complexity at most 
O(t); for z r - C A c E  a similar notation will be used. 

P ropos i t i on  6 (Reduc t ion  of s ta te  changes per  step).  
7 r - C A - E x T - T I M E ( d ,  t) C_ Zr--CACE-EXT-TIME(d, d. t) . 

Even for unrestricted CA one can ask what price one has to pay when chang- 
ing the dimensionality (see also [1]). 

P ropos i t i on  7 (Change  of d imension) .  
If d is space-constructible in time t: 

1. Zr-CA-EXT-TIME(d,  t) C 7r - I -CA-ExT-TIME(dr / ( r -1 ) ,  dl/r(r-1)t) 
2. Z r-  1_ C A -  EXT-- TIME(d, t) C_ Z r -  C A -  ExT--TIMe,(d (~- 1)/~, t) 

Algorithms for Lparlty and Lvv, Cor. 3 and Prop. 7.1 and Prop. 6 verify the 
following statements, where Lv~ may be used for deducing the tightness facts: 
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Proposition 8 ( D i m e n s i o n a l l t l e s  vs.  r e s t r i c t i o n s ) .  There are problems for 
which Z r - C A c E  are faster than Z r - a - C A  by a factor of n 1/(r(r-1)) which is 
tight. On the other hand, there are problems for which z r - I - C A  are faster than 
Z r -  CAcE by a factor of ni/("(r-1))/f(n) which is tight up to the f(n) factor. 

In other words, e.g., for Lvv the time saved by going from (feasible) 2- 
dimensional CA to (feasible) 3-dimensional CA due to the smaller extent gets 
more than lost because of the restriction on the number of state changes. 

5 Conclusions 

This paper discusses some present and future problems of parallel machine design 
using the CA model. For classical irreversible computing (having CMOS technol- 
ogy in mind), change complexity elegantly models the energy consumption and 
mirrors the amount  of information transmission. In the light of this model, the 
third space-dimension turns out to play an important  role. In a sense, even ma- 
chines traditionally thought as two-dimensional require the third dimension for 
cooling and architectures exploiting the third dimension for additional purposes 
must not increase the energy consumption per volume by more than a constant 
factor. If we have a technology where the energy consumption of information 
transmission does not grow with wire length there is still a lot of freedom. For 
example, a moderately coarse grained machine with n processors and ~2(n 1/2) 
memory cells per processor can be economically equipped with a full multistage 
butterfly using 3-D wiring. 

Interesting future work in this direction includes different wire models, scal- 
ing properties of free space optical interconnects and more detailed models for 
memory cells and memory hierarchies. 
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