
Sample Sort on Meshes

Jop E S i b e y n x

Abstract
Sorting on interconnection networks has been solved 'optimally'. However, the "lower-

order' terms are so large that they dominate the overall time-consumption for many practical
problem sizes. Particularly for deterministic algorithms, this is a serious problem.

In this paper a refined deterministic sampling strategy is presented, by which the addi-
tional term of the presented deterministic sorting algorithm is hardly larger than the one of
the best raadomized algorithm.

1 Introduction
Routing and sorting are probably the two most extensively studied algorithmic problems on
fixed-connection networks. In a routing problem, a set of packets has to be redistributed in the
network such that every packet ends up at the PU specified in its destination field. In a sorting
problem, instead of a destination address each packet contains a key from a totally ordered set,
and they have to be rearranged such that the packet of rank i ends up in the memory position
with index i with respect to some fixed indexing of the memory positions. A routing problem in
which each PU is the source and destination of at most k packets is called a k-k routing problem.
A k-k sorting problem is defined similarly. For an introduction on the problems of routing and
sorting, and a survey of basic results, we refer to Leighton's book [15].

One of the dominant interconnection schemes for parallel computers is the n × n mesh, in
which n 2 processing units, PUs, are connected by a two-dimensional grid of communication
links. Its immediate generalizations are d-dimensional n x . . - x n meshes. While meshes have
a large diameter in comparison to th~ various hypercubic networks, they are nonetheless of great
importance due to their simple structure and efficient layout.

Ear l ier Work. On d-dimensional n x -- . x n meshes a lower bound of k . n /2 for k-k routing
and k-k sorting is implied by the bisection width of the network. Several algorithms running in
max{2 • d . n, k - n /2} + o(k • n) steps have been presented [9, 10, 12, 1 1, 19]. For k >_ 4 - d,
they match the lower-bound up to a lower order term, which is usually called optimality. This
'optimality' is a doubtful notion if we take into account that the lower order term typically is
10. k 5/6. n 2/3 or larger. It means that only for fairly large input sizes these algorithms outperform
more down-earth algorithms with sub-optimal performance (see [19] for more details). In this
paper we consider randomized and deterministic sorting algorithms. Our special attention goes
to the size of the 'lower-order' term. Implicitly we assume rather small n and fairly large k as
these reflect the practically important cases. Reasonable orders of magnitude are 10 < n d < 104
and10 a < k < 107 .

Often randomized algorithms are simpler and faster than deterministic algorithms. One
might even believe that deterministic algorithms are just of theoretical importance. In this paper
we show that for sorting on meshes this is not necessarily so.

Sample Sort. As a parallel sorting strategy, sample sort was developed by Reischuk [17]. It
was applied to sorting on networks in [16, 8]. Most sorting algorithms on meshes implicitly or

• Max-Planck-lnstitut fiir lnformatik, Im Stadtwald, 66123 Saarbriicken, Germany, Email: jopsi@mpi-sb.mpg.dc.
URL: http://www.mpi-sb.mpg.del~jopsi/

390

explicitly apply sample sort. That is. the mesh is divided into non-overlapping submeshes, and
then somehow proceed as follows:

Algorithm BASIC-SORT
1. Select a small subset of the packets as splitters. Broadcast the splitters to all submeshes.
2. In every submesh, for every splitter determine how many packets are smaller.

3. In every submesh, determine the exact global ranks of the splitters by adding together the
locally computed numbers.
4. Estimate the ranks of the packets by comparison with the splitters.

5. Route the packets to their preliminary destinations.
6. Complete the sorting locally, exploiting the fact that the ranks of the splitters are known.

Results. In recent deterministic algorithms [12, 11, 19], the splitters have become obsolete and
were omitted: if the packets are suitably redistributed (unshuffled), then the rank of a packet can
be estimated by comparing its value with the other packets in its submesh. Here we reintroduce
splitters in deterministic sorting algorithms. The use of splitters allows to decouple the routing
from the rank estimation. As routing can be performed with a smaller lower-order term than the
conventional sorting algorithms, this may be profitable. The number of splitters is reduced to a
minimum, by applying a variant of 'successive sampling' (term used in [2]), handling them and
comparing the packets with them is cheaper than before.

In the context of selection and ranking, comparable splitter selection methods have been
used before. In [4] Cole and Yap give an algorithm for finding the median based on successive
sampling. For selection on a hypercube it has been applied by Berthom6 ca. [2]; for selection on
a PRAM by Chaudhuri, Hagerup and Raman [3]. Our variant resembles most the application in
[2]. Application of successive sampling for meshes requires specific adaptation to the features
of the network. It appears that we are the first to apply it for sorting.

Contents. We start with preliminaries. Then we consider the presented basic sorting algorithm
in more detail, giving basic deterministic and randomized variants and refinements thereof. Our
main deterministic sorting algorithm is presented in Section 5 et seq. Many details had to be
omitted due to a lack of space. These can be found in [20].

2 Preliminaries

Model of Computation. A d-dimensional mesh consists of N = n d processing units, PUs
laid out in a d-dimensional grid of side length n. Every PU is connected to each of its (at most)
2 . d immediate neighbors by a bidirectional communication link. We assume that in a single
step of the computation, a PU can perform an unbounded amount of internal computation, and
exchange a bounded amount of data with each of its neighbors. This basic amount is called a
packet and consists of some data plus the information for routing it to its destination. In some
papers this model is called 'MIMD' model.

Indexing Schemes. We only consider two-dimensional meshes, the definitions for higher
dimensional meshes are analogous. Let P~,j be the PU located in row i and column j . Here
position (0.0) lies in the upper left corner of the mesh. [z, y] denotes the set {Jr..v + 1 y}.

The index of a PU is determined by an indexing scheme, a bijection I : [0, n - 1] 2 --+
[0, n 2 - 1]. For a given indexing, Pi denotes the PU with index i. The most natural indexing
is the row-major order under which Pi,j has index i • T~ + j . In a k-k sorting problem, the
packet of rank i has to be moved to the PU with index [i/k}. Throughout this paper we assume
some blocked indexing scheme. That is, the mesh is regularly divided into m × m submeshes
for some m, and the PUs in the submesh with index j , 0 _< j < n 2 / m 2, have indices in
[j - m 2, (j + 1) - m e - 1]. We assume that the submeshes are indexed such that block j is
adjacent to block j + 1 for all 0 < j < n'2/m 2 - 1. Such a blocked indexing is particularly
suited for sorting algorithms like BASIC-SORT (but more general indexings can be used as well,

391

as was shown in [19]). Sometimes the packets are sorted in semi-layered order. This means
that the packet with rank r, 0 ___ 1" < k - 7~ 2, stands in memory position Lr/nJ rood k of
Pl~/(k.,)j,~ mod,,: the indexing obtained when perceiving the o × n mesh with k memory
positions per PU as a k • n × n mesh with row-major indexing.

Randomness. An event A happens with high probability if Pr(.4) > 1 - n -e , for some e > 0.
All our results for randomized algorithms bold with high probability.

We use Chernoff bounds to bound the tail probabilities of binomial distributions, B(n , p).
Using the estimates in [6], it is easy to derive that

Lemma 1 Let Xo X t - x be random variables with t = poly (l~) and Xi : B(n , p) fo r
0 <_ i < l. Then IXi - p . n[: (.9((p. ~ • l ogn) l /2) fora l lO < i < f, withhighprobabilit3,.

Definition 1 A k-randomization is a distribution of packets in which initially every PU holds at
most k packets, that have to be routed to randomly chosen destinations.

Using Lemma t, it is easy to show that

Lemma 2 [9] On d-dimensional meshes, i f k > 4 • d, then k-randomizations can be routed in
k. n / 4 + O ((k • n • log n) 1/'z) steps, with high probabilit3'.

Unshuffles. We formally define the "handing-out operation" under which the packets are reg-
ularly redistributed over the whole mesh. This operation is the deterministic counterpart of a
randomization. See [11] for details.

Definition 2 Consider a processor network of N PUs and a division in blocks with M PUs
each. Suppose that every PU holds k packets. Consider the packet p in position i, 0 < i < k,
in PU j , O < j < N / M , in block l, O < l < M. Let r : l . N / M + k . j + i. Then, under
the (N, M, k)-unshuffie, p has to be routed to bloc,': 7" rood M, and there to PU [r /MJ rood
(.'\+/-~I), and in this PU to position [, ' /NJ.

On meshes, it can be easily figured out how to schedule the packets such that never two packets
are competing for the use of the same connection. Using such a schedule the routing can be
performed without loosing a single step:

Lemma 3 On a d-dimensional mesh. i f k > 4 • d, and the munber of packets in a submesh is a
multiple o f the number of submeshes, then an unshuffle can be performed in k • n /4 steps.

3 Basic Sample Sort
We consider a randomized and a deterministic sample-sort algorithm of the type of BASIC-
SORT. Both algorithms are well-known and only the essential points are recalled. The number
of packets to sort is N.

Definition 3 The inaccuracy of an algorithm of the type of BASIC-SORT, is the maximum differ-
ence between the rank o f a packet as estimated in Step 4, and its actual rank.

3.1 Randomized Sample Sort
Each key is selected as splitter independently and uniformly with probability M / N , for some
0 < M < N. Choosing too few splitters means that the inaccuracy becomes too large; choosing
too many of them means that handling them and ranking the keys among them becomes too
expensive. Denote the resulting inaccuracy by inac(N. M) . Using elementary probability theory
it can easily be estimated that any two consecutive splitters lie at most O(log N • N / 3 I) apart,
with high probability. Thus, using that the exact ranks of the splitters are determined before the
packets are compared with them to estimate their ranks,

inac(N. M) = O(log N . N / M) , (1)

392

with high probability. We can take the number of splitters as large as the inaccuracy: then the
sorting operations in Step 2 and Step 6 can be performed in submeshes of approximately the
same size. The result is a well-balanced algorithm with minimal total cost. Solving gives

M m = (N . logN) a/:~.

For Step 5 of BASIC-SORT we can first route all packets to random positions [21,9]. From
there they are routed to their preliminary destinations. This second routing is approximately the
inverse of a randomization. Working out the details gives

Theorem 1 [10] For randomizedk-k sorting, for all k >_ 8. d.

1 ~ 1/2 log.,~(h rid)). T R l (k , d . n) = k . n / 2 + O (k -7 .~ .n •

The algorithm in [10] is slightly different. There the ranks of the packets are estimated before
the global ranks of the splitters are determined. In this way the routing and the other operations
can be maximally overlapped, and there is no additional term O(n) already for k > 4 • d. The
price is that much more splitters must be selected to assure a sufficient accuracy.

3.2 Deterministic Sample Sort
Instead of selecting approximately M splitters randomly, we can also sort the packets that stand
in submeshes holding M ' packets each, and selecting from these packets those with ranks i -
N / M , for 0 _ < i < M I . M / N . In order to balance the costs of the various routing and sorting
operations it is best to choose M ' = M. By comparison with the splitters the rank of a packet
among the packets from a submesh can be determined up to .V/M positions. There are N / M
submeshes, so

inac(N, M) = (N / M) "2. (2)

The inaccuracy should equal the number of splitters, and thus we should take

iIID1 =-V 2/3.

This idea is the basis of [11, 12], and was already present in [13, 18].
In a deterministic algorithm, the routing in Step 5 of BASIC-SORT can be achieved by per-

forming two suitable unshuffles. This yields

Theorem 2 [19] For deterministic k-k sorting, for all k >. 4. d,

Tm(k, d, n) = I,', n/2 + O(k 1--~--~1~ -j, 2/3).

4 Subsplitter Selection
There is a method to reduce the number of splitters considerably. It can be used to reduce
the amount of work in PRAM algorithms, and also in network algorithms it is advantageous.
Probably this method has been applied for the first time by Reif and Valiant in [16].

4.1 Selection Method
Suppose that we have selected M splitters randomly, as we did in Section 3.1. The resulting
inaccuracy is expressed in (1). Now consider the following procedure to select the splitters:

Algorithm SUBSPLITTERS
1. Select each packet as splitter with probability M / N .
2. Sort all splitters.
3. Select the elements with ranks i - log N, for all 1 < i < M~ log A' as subsplitters.

Let M ~ = M~ log N be the number of subsplitters. They are almost optimal:

393

Lemma 4 With the computed set of subsplitters,

inac(N, M') = O (N / M ') .

Proof: With help of the Chernoff bounds we bound the maximum number of packets that lie
between any pair of consecutive subsplitters. Consider an arbitrary subset of o • log N - N / M ,
which are consecutive in the sorted order. The expected number of selected splitters from among
them is o - log N. For sufficiently large c~ at least log N of them are actually selected. Hence
there are no intervals of length 2 - o - log N . N / M = O(X /M') without subsplitters. []

4.2 Application for Meshes
Subsplitter selection has been used for sorting on meshes by Hightower, Prins and Reif [7]. The
idea was also present in [9], but there it was not applied in a xery profitable way. It is important
to perform the sorting in Step 2 of SUBSPLITTERS on the whole mesh such that all PUs hold on
the average only M/n ~ splitters during the sorting.

We consider some details of an implementation on two-dimensional n x n meshes:
Algorithm RANDSORT

1. SUBSPLITTERS is performed on the whole mesh. The number of selected subsplitters is
M / = M~ log N.
2. The subsplitters are broadcast to all n r x W submeshes, with n ' = (M' /k) t /2
3. Perform Step 2 through 6 of BASIC-SORT. The operations in Step 6 are performed in

n" x n" submeshes, with n" = O ((N / (k . M'))l12).

Theorem 3 For M = N 1/2 • l ogN and k > 26, RANDSORT performs k-k sorting on two-
dimensional meshes in

TRe(k, n) = k . n/2 + O((k . n) 112" (k 1/4 - 1 0 g l / 2 (]¢ " '1))).

5 Better Splitter Selection
The improved randomized algorithm RANDSORT of Section 4.2 leaves little to desire: it is fairly
simple, and the additional term is almost as small as we could hope for. On the other hand,
the deterministic algorithm of Section 3.2 gives a much larger additional term. In this section
we present a refined deterministic splitter selection method. In Section 6 we show how it can
be applied in a deterministic algorithm with performance comparable to RANDSORT. Similar
methods have been used before in [4, 2, 3].

First we give a high-level description of the algorithm without considering details of the
network. The packets are divided in N / M subsets of size M each. Suppose that N / M = y~,
for some y and x. Thus,

x = l o g (N / M) / l o g y. (3)

The subsets are sorted. Then, the following procedure is repeated .e times:
Algorithm REDUCE

1. Merge y subsets together.
2. Only retain elements p with ranks rp = j • y, for all 1 _< j < M.

The M packets that finally come out of this process are called the splitters. REDUCE is an almost
trivial operation which can be performed efficiently on networks.

We prove that the ranks of the packets gradually become iess accurate, but not too much:

Lem ma 5 Let 1 < I < x, denote the number of so far performed iterations of REDUCE. Con-
sider a packet p, which has rank rp in its actual subset Up, t of M elements. Let Rv,t denote the
rank of p in the subset o f t t . M elements that has been reduced to 7"p.t. Then

r v . u ~ <_ Rp,~ <_ (r v + (t - 1) • (1 - i / u)) - u ~, (4)

394

Proof: In the first iteration, y subsets of 3 I packets each are sorted together and the packets
with ranks i • y, for 1 < i < M are selected. Clearly the rank Hp.1 of the packet p with rank rp
among the M selected packets equals y - rp, and hence (4) is satisfied for t = 1.

We proof the lower bound on Rp,t by applying induction on I. So, assume that Rp.t- 1 >_
rp • yt-1, for a[l p for some I > 1. Consider some packet p with rank r~, in T~,.t. Denote the y
subsets that were merged to obtain Up,t by .At, 1 < i < y. Without loss of generality we may
assume that p C .,41. Define oi = #{packets q E .Ailq <_ p) (here we identified a packet and
its key). Remind that all keys are different. By the selection in Step 2 of REDUCE, we know that

Y 0 J - 1 ~[]Q 1 oi = rp. y, and thus, applying the induction assumption, Rp,t > Elm 1 i" Fp" y t
Let dt be the number such that Hp,t < rp • yt -t- (it. That (il = 0 was shown above. For

t > 1 we have Rp,t _< O l - y t - 1 ..{_ (it-1 + zY=2((Oi -}- 1)" ~)t--1 _ 1 + (it--l) = rp . yt +
Y " (it-t + (Y -- 1) • (yt-1 _ 1). Thus, (i t is given by the following recurrence: (il = 0 and
(it = y" (it-1 + (Y - 1) • (yt-1 _ 1). By induction we proof that

dt <_ (t - 1) - (y - 1) .y t -X. (5)

for all t > 1. Suppose (5) holds for some t - 1, then (it _< (t - 2) • (y - 1) - yt-1 + (y _ 1) -
(yt-1 _ 1) = (l - 1) - (y - 1). .qt-1 _ y + 1. []

From this we obtain an estimate on the quality of the selected splitters:
Theorem 4

inac(N, M) < y - 1 . l o g (N / M) . N/M.
y- log y

Proof: Denote by . ~ the set of selected splitters. And for any packet p by Rp its rank among
the N packets. REDUCE is iterated x times, for x as in (3). Hence, omitting the factor (1 - l /y) ,
for any p E 34, with rank rp in . ~ , we know that Rp = Rp,~ satisfies rp • N / M < Rp <
(r/, + x - 1). N / M . For any packet q ¢ A d , we can find p,p' E AA, such that rp, = r e + 1 and
p < q < p'. So, Rp < Rq < Rp,, and hence, rp • N / M < Rq < (rp + x) • N / M . []

The optimum is reached for M = @ ((N . logN) t /2) . For this M, the inaccuracy is of the
same order as the number of elements on which the merge operations are performed. In the
spirit of Section 4, it may be profitable to reduce the number of selected splitters further without
substantially impairing the accuracy of the estimated ranks.

In view of the inaccuracy given in Theorem 4, the number of splitters can be reduced by a
factor O(log(N/M)) . We will see that a reduction by a factor

z - (1 y - 1 --) l og (N/M) v. log y -
is a reasonable choice. We summarize the splitter-selection procedure:

Algorithm SELECT 1
1. Sort subsets of M packets;
2. f o r / : = l t o x d o

apply REDUCE;
3. only retain elements with ranks

j - z f o r a l l l < j < M / z.

With the chosen z, the inaccuracy is hardly larger than before:
Theorem 5

inac(N, M / z) < log(N/M) • N /M.

Proof: The proof is analogous to the proof of Lemma 4. Important is that (Y - l) / (y • log Y) "
log (~ \ /M) + ~ = l o g (N / M) . []

395

6 Sorting on 2D Meshes
We consider in detail a k-/," sorting algorithm of the type of BASIC-SORT for two-dimensional
~ x n meshes. N = k. n 2. We apply REDUCE for the splitter selection. We take y = 4, and use
a merge operations from [19].

6.1 Rank Estimation
We present an algorithm to efficiently obtain an estimate of the ranks of the packets. For conve-
nience we assume that all occurring numbers divide each other nicely, particularly we assume
that J l , the number of selected splitters, is a power of four.

Algorithm ESTI M ATE
1. m := max{l , ~ } . Sort the packets in all m x m submeshes. Copy all packets to

splitters. If 7n = 1, then only retain the splitters with ranks i . h I M . for 1 < i < M.

2. Repeat the following operation for i := 0 to l o g (n / m) - 1 as long as M / (4 ' • m 2) >_ 4:
merge four 2' • m x 2' • m submeshes, and retain only the splitters with ranks 4 • j , for
1 <_ j < M. After iteration i every PU should hold exactly M / (4 i+1 ..m z) splitters.

3. Sort the remaining splitters in the whole mesh and retain the splitters with ranks j . N / M ,
for 1 _< j < M.

z := m a x { I , 5 / 8 , l og (N/M)} , M ' := M / : . m' = m a x { 1 , ~ } . Only retain the
splitters with ranks j - z, for 1 _< j < M ' .

4. Broadcast the splitters to all rn' x rn' submeshes Bi, 1 < i < M ' / N .
5. In every Bi, 1 < i < M ' / N , for every splitter pj , 1 < j _< M' , determine the number

ai . j = #{packets q in B~Ipy-I < q < pj}. Place this number in PU Lj/kJ of Bi. Discard
the splitters.

6. Add the numbers o~i, j together such that afterwards the numbers ai.j = }-~l<i Otl,j and
v-~M'] N Aj = 2..,i= 1 oi , j stand in PU [j / k j of Bi for all i and j .

7. In every Bi, 1 < i < M ' / N , for every packet q, with pj_ 1 *(q ~ Pj and with rank r
among the packets counting for oH,j, determine its preliminary rank a s Z l < j .4, @"¢1i, j + r.

In Step !, the size of the initial submeshes is determined. Afterwards. the number of splitters
in every submesh is exactly M. Step 2 corresponds to REDUCE. In every iteration the number
of splitters in every PU is halved and eventually may become one. In that case the selection of
the splitters is completed in Step 3. The number of splitters is reduced by a factor z in order to
reduce the further costs to handle them. In Step 4, 5 and 6, the global ranks of the splitters are
computed and made available in all m ' x m ' submeshes. Hereafter, in Step 7, the ranks of the
packets can be estimated by local comparisons. All together, ESTIMATE corresponds to Step 1
through 4 of BASIC-SORT. Here, contrary to BASIC-SORT, the splitters are discarded early.

Lemma 6 [19] For all n, k >_ 4, k-k sorting on an n x n mesh can be performed in 2 . k • n
steps. 1-1 sorting can be performed in 41/2. n steps.

During Step 2 the packets are kept in semi-layered order. This facilitates the merging. At
a certain stage of the merging and pruning, let n ' /2 be the size of the submeshes, and k' the
number of packets hold by every PU. Then we perform

Algorithm KKMERGE
1. Pi.j, 0 ~ i , j < n', sends its packet with rank r, 0 < r < k', to P~,(j+,,/2) rood n' if

odd(/,"- i + r + j) .

2. In all columns, sort the packets.

3. In every Pi,j, 0 < i < n ' - 1, 0 _< j _< n ' - 1, copy the smallest packet to P i - l . j . In
every Pi,j, 0 < i < n / - 1, 0 < j <_ n ' - 1, copy the largest packet to Pi+l,j .

396

4. Sort the rows from left to right or vice versa depending on the position of this n ' × n '
submesh in the next merge.

5. In every row, throw away, the n ' packets with the smallest and the n' packets with the
largest indices. From the remaining packets only retain those whose ranks is a multiple of
four. Route the packets such that they come to stand in semi-layered order.

For the correctness of KKMERGE it is important that, by the semi-layered indexing, our merging
corresponds to a 1-1 merge on a / ," • n' × 77' mesh. It is not hard to estimate that KKMERGE
essentially takes 9/8 •/," - 71' steps. A reduction can be achieved by combining the routing of
Step 5 of iteration i and Step 1 of iteration i + 1. Further details are given in [1 9].

L e m m a 7 ESTIMATE runs in 6a/2 • ~/1,'. M + 63/4 • v/-k -'- M ' + O(n) steps. Afterwards the
prelimina, 3' ranks satisf3. the following properties:

1. Ever3" packet q has a unique preliminary rank 1"q.

2. For any splitter p and packets ql, q2, qt < P <_ q2 implies rqi < 7"u:.

Proof: Step I is a/~'-k sorting in m x 777 meshes and takes 2. ~ M steps. Step 2 of ESTIMATE
can be performed in 41/2 • ~//," • M steps. Step 3 is at worst a 1-1 sorting in the whole mesh
and takes at most 41/2 - n steps. The broadcasting in Step 4 can be performed in at most 3 /4 •
x/k • M i + 2- n steps. In Step 5 one should exploit that the packets and the splitters were already
sorted before. Then it can be performed in 21/2 . x/L'- M ' steps. Step 6 is a multiple parallel
prefix operation, which requires at most v'k" - M ' + 2 • n steps. Step 7 is similar to Step 5, and
requires at most 21/2 . v/k • M ' steps. []

The uniqueness of the preliminary ranks assures that the subsequent routing of the packets to
their preliminary destinations is a perfect k-k routing. The second property means that after this
routing all packets which lie between any two splitters stand in PUs with consecutive indices.
From Theorem 5, we know that the number of packets between two splitters is at most

inac(N, M) = l o g (N / M) . N / M . (6)

One might think that the properties are more than needed and mean a waste of routing steps.
However, the global ranks of the splitters have to be determined anyway, and at some time the
packets must find out their precise positions by one more comparison with them.

6.2 Completing the Sorting
ESTIMATE correspond to Step 1 and 2 of BASIC-SORT. It remains to route the packets to their
preliminary ranks and to sort the subsets of packets that fall between two splitters.

For the sorting we use a blocked-indexing scheme. The blocks have size b x b, with b =
(l o g (N / M) . N / (2 . k . M)) 1/2. By (6) this means that the packets stand either in their destination
block, or in the preceding or succeeding block. Thus, the sorting can be completed as follows:

Algorithm COMPLETE
1. Sort the packets in all b x b blocks.

2. Merge the packets in all pairs of blocks (Bi, B i -1), with i even.

3. Merge the packets in all pairs of blocks (Bi, Bi-1), with i odd.

L e m m a 8 COMPLETE completes the sorting in 5 / v/22 • (l; • l o g (N / M) . . V / . 1 I) 1 / ~ steps.

Proof: Step 1 takes 2 • k • b steps. Step 2 and 3 can be performed in .'3/2 • ,~'. b steps each. []

397

There remains one point to settle: how do we route the packets to their preliminary des-
tinations? A problem is that deterministically there is no known routing algorithm which is
substantially faster than a sorting algorithm. Randomizedly we can apply the algorithm from
[9]. As we intend to develop in this paper a new approach for sorting in practice, we might
even assume that the input is more or less random. In that case we could apply an easy greedy-
routing strategy (see [14] for an analysis of a special case). We leave this issue open. The
optimal choice should be made depending on the application and the values of k and TL Denote
the time consumption for k-k routing by Troute(k, 7~). Adding all together yields

Lemma 9 For k-k sorting on n × n meshes with M ~_ N 1/2,

TD2(k, ,,) < Tr,,ute(k. n)+O(r t)+ (6 . :3+ 17.1/log 1/2 N) . ~/k . ~I q-2.5. (k . l o g N . . V / M) 1/2.

Theorem 6 For A" < 2 "24, the sorting algorithm based on ESTIMATE and COMPLETE, with
M : (logN- N)l/ '274yields

TD2(k, n) < Tr,,,te(k, n) + O(n) -4- 22. k 3/4 . 7~ 1/2.

6.3 Evaluation
The result of Theorem 6 shows an additional term of the same order of magnitude as we find in
the result of Theorem 3. However, the constant 22 looks rather disappointing. Let us compare
the obtained algorithm with the other three algorithms in this paper. We have not analyzed their
constants, but making the same assumptions (k-k sorting takes 2 - k • n steps and log N = 24),
they can be estimated fairly reliably as follows:

TRl (k ,n) "~ Troute'4-25"k314"n 1/2, TR2(k,n) "" Troute+12"k3/4"n 1/2,
TDI(k, 7/) ~ ~route + lO" k5/6 " ~ 2/3, TD2(k,n) "~ Troute + 22 . k3/4 . n if2.

For an average sized problem TD2 is considerably smaller than Tin. For example, consider
the case n = 16, k = 10,000, then T m = 1.11 • k- n, and TD2 = 0.80- k • n. Even more
important is that in the refined algorithm, all local operations may be performed internally in a
single PU for k = O(n2), whereas for the original algorithm, this desirable state is reached only
for k = O(n4). So, particularly in the range n 2 < k < n 4, the new algorithm will be much
faster. Practically, this range is higly relevant. The improved randomized algorithm outperforms
all others, but, for sufficiently large k and n, the difference with the improved deterministic
algorithm is small, and in that case the stability of a deterministic algorithm may be profitable.

7 Conclusion
We proposed a sorting algorithm based on an improved deterministic splitter-selection method.
It clearly outperforms earlier deterministic algorithms. Only for sorting small numbers of pack-
ets bitonic- or merge-sort algorithms perform better, for example the algorithm presented in
[19]. A similar two-fold situation is reported to occur in practice: Diekmann e.a. [5] considered
implementations of sorting algorithms on a Parsytec GCel with up to 1024 PUs. They found
that bitonic sort is the best if there are less than 1000 packets per PU, while sample sort is bet-
ter for larger numbers of packets. Similar observations were made for the CM-2 (a hypercubic
network) in [1].

In [20] we consider some possible applications of the refined deterministic splitter selection
for sorting on RAMs, PRAMs and hypercubes. Especially for sorting on RAMs it is a good
strategy. Most promising though, appear to be applications for real parallel computers: by its
simple structure and its regular routing operations our algorithm can easily be implemented. As
for real problems we may assume that k exceeds the number of PUs, all local operations can be
performed in single PUs. Currently the algorithm is being implemented on an Intel Paragon.

Aeknowledgement: Torsten Suel gave valuable pointers to previous work in this field.

398

References
[I] Blelloch, G. E.. C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, M. Zagha, 'A Comparison

of Sorting Algorithms for the Connection Machine CM-2,' Proc.3rd SPAA, pp. 3-16. ACM, 1991.

[2] Berthom6, P., A. Ferreira, B.M. Maggs, S. Perennes, C.G. Plaxton, 'Sorting-Based Selection Algo-
rithms lbr Hypercubic Networks,' Proc. 7th IPPS, pp. 89-95, IEEE, 1993.

[3] Chaudhuri, S., T. Hagerup, R. Raman, 'Approximate and Exact Deterministic Parallel Selection,'
Proc. 18th MFCS, LNCS 71 I, pp. 352-361, Springer-Verlag, 1993.

[4] Cole, C., C.K. Yap, "A Parallel Median Algorithm," IPL, 20, pp. 137-139, 1985.

[5] Diekmann, R., J. Gehring, R. Ltiling, B. Monien M. NObel, R. Wanka, 'Sorting La~e Data Sets on
a Massively Parallel System,' Proc. 6th SPDP, pp. 2-9, IEEE, 1994.

[6] Hagerup, T., C. Riib, 'A Guided Tour of Chernoff Bounds,' Inf. Proc. Lett. 33,305-308, 1990.

[7] Hightower, W.L., J.E Prins, LH. Reif, 'Implementations of Randomized Sorting on La~e Parallel
Machines,' Ptvc. 4th Syrup. on Parallel AIgorithms and Architectures, pp. 158-167, ACM, 1992.

[8] Kaklamanis, C., D. Krizanc, L. Narayanan, Th. Tsantilas, 'Randomized Sorting and Selection on
Mesh Connected Processor Arrays,' Proc. 3rd SPAA, pp. 17-28, ACM, 1991.

[9] Kaufmann, M., S. Rajasekaran, J.E Sibeyn, "Matching the Bisection Bound for Routing and Sorting
on the Mesh," Proc. 4th Symp. on ParallelAlgorithms andArehitectures, pp. 31-40, ACM, 1992.

[10] Kaufmann, M., J.E Sibeyn, 'Randomized Multipacket Routing and Sorting on Meshes,' Algorith-
mica, 17, pp. 224-244, 1997.

[l lJ Kaufmann, M., J.F. Sibeyn, T. Suel, 'Derandomizing Algorithms for Routing and Sorting on
Meshes,' Proc. 5th Syrup. on Discrete AIgorithms, pp. 669-679 ACM-SIAM, 1994.

[12] Kunde, M., 'Block Gossiping on Gilds and Toil: Deterministic Sorting and Routing Match the
Bisection Bound,' Proc. Ist ESA, LNCS 726, pp. 272-283, Springer-Verlag, 1993.

[13] Leighton, ET., 'Tight Bounds on the Complexity of Parallel Sorting,' IEEE Transactions on Com-
puters, C-34(4), pp. 344-354, 1985.

[14] Leighton, T., 'Average Case Analysis of Greedy Routing Algorithms on Arrays,' Proc. 2nd Syrup. on
Parallel Algorithms and Architectures, pp. 2-10, ACM, 1990.

[15] Leighton, ET., Introduction to ParalleIAIgorithms andArchitecmres: Arrays, Trees and lCypercubes,
Morgan Kaufmann, 1991.

[16] Reif, J.H., L.G. Valiant, 'A logarithmic time sort for linear size networks,' Journalofthe A CM, 34(1),
pp. 68-76, 1987.

[17] Reischuk, R., 'Probabilistic Parallel Algorithms for Sorting and Selection,' SIAM Journal of Com-
puting, 14, pp. 396--411, 1985.

[18] Schnorr, C.E, A. Shamir, "An Optimal Sorting Algorithm for Mesh Connected Computers," Proe.
18th Syrup. on Theoo' of Computing, pp. 255-263, ACM, 1986.

[19] Sibeyn, J.E, 'Desnakification of Mesh Sorting Algorithms,' accepted 9-1996 for SIAM Joulwal on
Computb~g. Preliminary version in Proc. 2nd European Syrup. on Algorithms, LNCS 855, pp. 377-
390, Springer-Verlag, 1994. Full version in Techn. Rep. MPLL94-102, Max-Planck-lnstitut for ln-
formatik, Saarbracken, Germany, 1994.

[20] Sibeyn, J.E, 'Sample Sort on Meshes,' Techn. Rep. MPI-1-95-1012, Max-Planck Institut f~r lnfor-
matik, Saarbracken, Germany, 1995.

[21] Valiant, L. G.. "A Scheme for Fast Parallel Communication," SIAM Journal on Computing, 11, pp.
350-361, 1982.

