
Parallel Priority Queue and List Contraction: 
The BSP Approach* 

Alexandros V. Gerbessiotis, Constantinos J. Siniolakis and Alexandre Tiskin 

Computing Laboratory, Oxford University, Oxford OX1 3QD, U.K. 

Abstract .  In this paper we present efficient and practical extensions of 
the randomized Parallel Priority Queue (PPQ) algorithms of Ranade et al., 
and efficient randomized and deterministic algorithms for the problem of 
list contraction on the Bulk-Synchronous Parallel (BSP) model. We also 
present an experimental study of their performance. We show that our 
algorithms are communication efficient and achieve small multipticative 
constant factors for a wide range of parallel machines. 

1 In troduct ion  

We present an architecture independent study of the computation and communi- 
cation requirements of an efficient Parallel Priority Queue (PPQ) implementation 
and list contraction algorithms along with an experimental study. The computa- 
tional model adopted is the Bulk-Synchronous Parallel (BSP) model, proposed by 
L. G. Valiant [20], which deals explicitly with the notion of communication and 
synchronization among computational threads. A detailed discussion of the BSP 
model appears in [20]. 

The first approach on parallel priority queues is implied in the work of [9], 
where a parallel randomized algorithm to approximate a priority queue is pre- 
sented. The algorithm is extended to handle exact priority queues in [18]. Deter- 
ministic algorithms for maintaining parallel priority queues are derived in [17]. 
These approaches fail, however, to deliver optimal performance when directly im- 
plemented on the BSP model of computation. The only previously known results 
on BSP PPQ algorithms appear in [2,5,6]. In this work, which first appeared in [5], 
we improve upon the communication requirements of previous results on parallel 
priority queues [2,9,17,18], and e.xtend the BSP algorithms of [6] by presenting 
efficient and simple (non-pipelined) algorithms. We also show that small multi- 
plicative constant factors can be achieved for a wide range of the BSP parameters. 
The randomized algorithms we present are based on the ideas of [9] as extended 
in [18]. In the following discussion several proofs are omitted; a detailed account 
can be found in [6] and the full version of the paper. For the sake of simplic- 
ity, throughout the paper we ignore small irregularities that arise from imperfect 
matching of integer parameters,  e.g., we use the term n/p for In~p]. The term 

* The first author was supported in part by EPSP~C(UK) under grant GR/K16999, the 
second author was supported in par~ by a Bodossaki Foundation Graduate Scholarship 
and the third author was supported in part by ESPRIT Basic l~esearch Project 9072 
(GEPPCOM). 



410 

slackness refers to the ratio of the problem size n over the number of processors 
p. 

We state results on BSP algorithms for the fundamental operations of parallel- 
prefix and selection. The proofs of these results can be found in [5,7]. These op- 
erations are auxiliary routines for the algorithms to be presented in this work. 
Sometimes, we shall write Tppf (t9) for T~p! (p). 
Lemma 1. There exists a p-processor BSP algorithm for realizing n disjoint 
parallel-prefix operations, each of size p, over an associative operator, that for 
any integer 2 < t < p, requir~es time at most (the bracketed notation [S] evaluates 
to 1 if  statement S is true and 0 otherwise) T ~ l ( p  ) = O(n + g n + L) • [n > 
1] + log, (p/n) o ( t  + g t + L)- In < p]. 

Lemma 2. For any constant p > 1, there exists a randomized p-processor BSP 
selection algorithm that, with probability 1-O(nl-P),  determines the c-th smallest, 
c _< [n/2], of n keys that /or  any integers n and p < n, requires time 

T~t(n,c,p)= P " ~ ' p'' +L+Tp,I(p)) p<ni+¢ 
~+e + O( V / ~ + P l g '  + g + L + Tppl(p)) otherwise, p p 

where ~ and ~ are any arbitrarily small constants such that 0 < ~ < 5 < 1/3. 

Definition 3. Let ~} be the value of g in lemma 2 such that ~ = o(nl/3-~/lgl/3n) 
if p _< n 2/3+¢, and ~ = o(n/(plgp))  otherwise, for any arbitrarily small constants 

and ~ such that 0 < ~ < 5 < 1/3. 

2 B S P  P r i o r i t y  Q u e u e s  

We study the Parallel Priority Queue (PPQ) [17] data structure, and formulate 
an implementation on the BSP model. A PPQ is a data structure for maintaining 
a collection of (possibly duplicate) items and selecting the n items associated 
with the smallest values. We simplify the exposition by assuming that all items 
are unique, e.g., by appending a unique identifier to each item. The following 
operations are defined on a PPQ Q: INSERT({yl,y2,... ,Yn}, Q) for inserting 
{yl, y2,--., yn} into Q; FINDMIN(n, Q) for finding the n smallest items of Q; and 
DELETEMIN(n, Q) for deleting the n smallest items of Q. The implicit assumption 
is that there exists a MAKEQUEUE(Q) operation for the construction of an empty 
queue Q. In contrast to [6,17], our implementation has the advantage of supporting 
PPQ operations on data sets of varying size, i.e., in [6,17], such operations have 
to be performed on data sets of predetermined size. 

The randomized algorithms we present for supporting the prementioned PPQ 
operations are based on a straightforward processor-mapping of sequential or- 
dinary (and leftist) heaps, even though other sequentLul data structures might 
be supported as well, e.g., relaxed heaps, Fibonacci heaps, search trees. To this 
end, in the forthcoming analysis of the PPQ algorithms we do not make any 
assumptions about the underlying local (sequential) priority queues. In order to 
simplify the exposition, the following notational conventions axe employed. Let 



411 

vr(n,m) denote the time required to sequentially insert n items into a local pri- 
ority queue of size m, TF(•, 7n) the time required to sequentially determine the n 
smallest items of a local priority queue of size m, TD(n,m) the time required to 
sequentially delete the n smallest items of a local priority queue of size m, TC(m ) 
the time required to sequentially construct a local priority queue of size m (we 
note that in general re(m)  < ~-~4 r i (1 , i ) ) ,  and TM(ml ,m2)  the time required to 
sequentially meld two local priority queues of size mt and m2 into one of size 
ml + m2. The randomized algorithms we present are based on the ideas of [9] as 
extended in [18]. Let us outline the BSP variant of these algorithms. The PPQ 
is maintained as a collection of disjoint local (sequential) priority queues. For the 
insertion of n new items (n/p  per processor), each processor sends its n/p items 
to uniformly at random chosen processors, where they are inserted into their lo- 
cal priority queues. The procedure to manage the insert operation on a PPQ Q 
is INSEI~T({yt,y2,... , y ,} ,  Q) and is outlined in figure 1. The following lemma 
bounds the number of items received by each processor as a result of the random 
distribution to processors (line 2) of procedure INSERT. 
INSPRT ({y~,y%..., y,}, q) 
1. denote by Y set {yl, y2 , . . . ,  y,} ; 
2. distribute randomly the items of Y among the p processors ; 
3. for each processor k, 0 _< k _< p - 1, in parallel 
4. do INSERT_SEQ(Y ~, Qk) ; 

F igure  1. Procedure INSERT. 

L e m m a  4. Let in procedure INSERT Y = Uk y k  and Q = Uk Qk, 0 < k <_ p - 1. 
Then, for all k, with probability I - n -~( t ) ,  the following holds (m denotes the 
total number of items in the queue prior to the insertion). 

= m n l n n " --'--1-~- 1 (i) If-~ O(lgn) then [Yk I = m { O ( p l g l g n ) , O ( g n ) }  , else [Yk I = (1 + 

o(V~))~-  p" 
m m ' n  rn l n 5i) If -f = O(lgn) then IQ'~I = 1 { O ( - f ~ ) , O ( l g n ) } ,  else I&l = (1 + 

o ( v ~ ) ) 7 .  
Proof. (Omitted). It follows by way of Chernoff bounds [12]. [] 

The random distribution of items to processors (line 2) takes time glYk[+ L, 
with probability 1 - n -~(1). The insertion of the IYkl items in the local pri- 
ority queues (line 4) requires time ~'t([Yk[, [Q~I) + L. Thus, insertion can be 
implemented efficiently by employing this simple randomized scheme in time 
.ri([ykl, ]Qk]) + glyk] + 2L. For the deletion of the n smallest items, the fol- 
lowing (rather more complicated) procedure is employed (see also [18]). The 2n/p 
smallest items in each processor are duplicated. Let X denote the set of these 2n 
items. By employing selection, the n-th smallest item e of X is determined and 
broadcast. Let R k denote the set of items in processor pk, 0 ~_ k < p -- 1, that  are 
not larger than e. By employing selection, the n-th smallest item e* from Uk Rk 
is determined and broadcast to all processors. Finally, the set S of the n smallest 
items (the items smaller than  e*) is removed from the local priority queues and 
returned as the result of the delete-min operation. The procedure to manage the 
deletion operation on a P P Q  Q is DELETEMIN(n, Q) and is outlined in figure 2. 
A find-rain operation is implemented similarly. The following lemma bounds the 
total number of items and the number of items per processor that are smaller 
than e (lines 6-10) of procedure DELETEMIN. 



412 

DELETEMIN (n, Q) 
1. if [QI = n then 
2. return S k = DELETE~vIIN..SEQ([Qk[, Qk) ; 
3. else 
4. for each processor k, 0 < k < p - 1, in parallel 
5. do X ~ = {FINDMIN_.SEQ(2n/p, Qk)} ; 
6. let R k = {} ; 
7. le$ e ---- SELECT(U k X k, n) ; 
8. while FINDMIN_SEQ(I~ Qk) _< e 
9. let z -- DELETEMIN_SEQ(I, Qk) ; 
10. let R k = R  ku{x}  ; 
11. let S ~={}  ; 
12. le t  e* ---- SELECT(U k R k, n) ; 
13. whi le  FIND1V~IN..SEQ(1, Qk) < e* 
14. le t  x = DELETEI~IIN.SEQ(1, Qk) ; 
15. let S ~ = S  k u { x }  ; 
16. re turn S ~ ; 

Figure 2. Procedure DELETEMIN 

L e m m a  5. Let in procedure DELETEMIN R = [-Jk Ra, 0 ~ k < p -  1. Then, 
1/~1 < 1.15n with probability at least 1 - 2 -~(n). Moreover, for all 0 < k < p - 1, 
with probability 1 - n -n(1), the following holds. 

'O(1.15,, lg;n ~ (Drlrr~h/ t ~ c_e__Lglg~J ,~ '6°°JJ  /f ~ = O(Ign) 
- -  1 n 1 . 1 5 n  

Proof. (Omitted). It follows from Chernoff bounds and Azuma inequality [12]. [] 
The determination of the 2niP smallest items per local priority queue (line 5) 

in procedure DELETEMIN requires time r f (2n /p ,  [Qk]) + L. The median selection 
process (line 7) takes time Ts~l(2n, n,p) .  The sequential find-min and delete-rain 
operations per local priority queue (lines 8-10) involve [/~k[ items, with prob- 
ability 1 - n -~(1), and therefore require time bounded above by TF(1 , [Qk[) + 
(~'F(1, IQk[) + rD(1, ]Qk[))[Rk[ + L. Accordingly, the selection process (line 12) 
takes time T~l (IRk I, n, p). By employing probabilistic arguments similar to those 
of lemma 4 we can establish that  the sequential find-min and delete-min oper- 
ations per local priority queue (lines 13-15) involve [Yk I items, with probability 
1 - n  -n(1), and therefore require time 7F(1, [Qkl)+(~'F(1, [Qk[)+rD(1, [Qk[))[yk[+ 
L. Finally, the local operations (lines 6,11,19) take time O(1) + 3L. Thus, dele- 
tion can be implemented by this simple randomized scheme in approximate time 
(wE(I, [Q~[) + rD(1, [Qk[)) (IRk[ + [Ykl) + O(L) + T ~ ( 2 n ,  n,p) + T~t(lRkI, n,p). 

T h e o r e m  6. For any constant p > O, there exists a BSP algorithm for sup- 
porting the PPQ operations INSERT, FINDMIN, and DELETEMIN, that for all 
n, p, L, and g such that n / p  = /?(lgn),  L = O((n lg(m/p) ) / (p lgp) ) ,  and g = 
O(Ig (re~p) min {8, 1}), with probability 1 - O ( n - P ) ,  requires time, O(n lg (m/p) /p) 
per INSERT, O(n lg (rn/p)/p) per FINDer[IN, and O(n lg (m/p)/p)  per DELETE1V[IN 
operation, where rn refers to the total number of items in the underlying PPQ and 

is as in definition 3. 



413 

Proof. For any constant p > 0 and n/p  = (2(lg n), it follows by lemmas 4 and 5 
that ]Yk I = O(n/p) and IRk[ = O(n/p),  with probability 1 -  O(n-P). Similarly, 
IQkl = O(m/p), with the same probability. For t = 2 in lemma 1 and lemma 2 
we get Tset(2n, n, p) + Tsar(JR k I, n, p) = O (n/p). By substituting in the analysis 
of procedures INSERT and DELETEMIN, O(n lg (m/p)/p) for ~'l(O(n/p), O(m/p)), 
rF(O(n/p), O(m/p)) and rD(O(n/p),  O(m/p)) [19] we get the desired result. F1 

We note that we can improve the performance of the INSERT and DELETEMIN 
operations in several ways. For example, if we substitute in the above result leftist 
heaps for ordinary ones the following theorem is derived. 

Theorem 7. For any constant p > O, there exists a BSP algorithm for supporting 
the PPQ operations INSERT, FINDMIN, and DELETEMIN, that ]or all n, p, L, 
and g such that n/p = g2(lgn), L = O(n/(plgp)) ,  and g = O([l), with probability 
1 -  O(n-P ), requires time, O(n/p  + ig (m/p))  per INSERT, O(n/p) per FINDMIN, 
and O(n/plg(m/p)/p)  per DELETEMIN operation, where m refers to the total 
number of items in the underlying PPQ and ~ is as in definition 3. 

The presented PPQ algorithms have been implemented on top of a BSP library. 
Ordinary and leftist heaps are bo th  implemented as the underlying sequential data 
structure. Details of the implementation, such as compiler used, compiler options, 
version of BSP library, and additional experimental results appear in the full 
version of the paper. In the experiments indicated here we performed a number 
of INSERT and DELETEMIN operations on heaps of size 256K on a Cray T3D. 
Data are integers drawn from a uniform distribution. The generic nature of our 
implementations allows for any da ta  type. To this end, a comparison function 
compare is used. The timing results (obtained through a library-supplied timing 
function) mentioned in the following table are averages over four experiments. 
I Deletior*'(HeapSize:256K) I Insertion(HeapSize:256K) l 

11 'Ordinary Heap II Leftist Heap'" II Ordinary Heap II Leftist Heap 
It ~ lip =ttp = slip = 3211p = lip = slip = 3211 II " lip = tip = stlp = 3211p = tip = slip = 32tl 

8 K  0.306 0.059 0.048 0,428 0 . 0 6 4 1 0 . 0 4 6  4 K  t0.019 0.006210.0019}10.039 0.007 o.oo2 
l116Kllt.x6010.18410.084 1.633 0 .214  0 .078 1 6 K  0.093 0:025S 0.0071 0.158 0.026 0.008 

Table 1. Execution time for DELETEMIN and INSERT on a Cray T3D. 
As the trace of the operations differs for varying machine configurations (value 

of p) one can't derive reliable speedup conclusions from the timing results; this is 
due to the randomly distributed nature of the PPQ and its operations. Another 
reason speedup conclusions cannot be easily drawn is the effect of caching. Table 1 
indicates that the INSERT operat ion on 32 processors is approximately 5-18 times 
faster than on one processor, with typical values 10-15. For the DELETEMIN 
operation comparable performance is achieved. We note that the size of the heaps 
and the number of elements inserted/deleted per operation has been kept small 
to emphasize the efficiency and practicality of our methods. For large problem 
instances, higher and more consistent performance is achieved. The main reason 
for the adequate performance of our implementations on small problem instances 
derives from the efficiency of the underlying parallel selection operation. Although 
it might have been expected, following the theoretical conclusions, that the leftist 
heap implementation would yield higher performance, particularly for INSERT 



414 

operations, this has not been the case in general as ordinary heap operations 
involve array indexing whereas leftist heap operations involve more complex (and 
expensive) pointer manipulations. 

3 List con t r ac t ion  

This section considers BSP computation on linked lists. The most common prob- 
lem of this kind is list ranking: for each node determine its distance from the head 
(or tail) of the list (see e.g. [8]). List ranking allows one to solve more general list 
problems, such as all-prefix sums on a list. Following [10], we consider this class of 
problems as an abstract list contraction: contract the list to a single node, using 
the operation of merging two adjacent nodes as a primitive. In more concrete 
settings, this merging operation is implemented by pointer jumping. 

On a sequential model of computation the problem can be solved by a trivial 
algorithm that traverses the list of n nodes in ~(n)  time. The problem is rather 
more complicated on parallel models. The easiest way to obtain an efficient parallel 
list contraction algorithm is by using randomization. A simple randomized list 
contraction algorithm from [13] is based on the technique of random mating. The 
algorithm proceeds in parallel steps. In each step a node chooses its left or right 
neighbor by flipping an independent unbiased coin. Then the pairs of nodes that 
have chosen each other merge. The procedure is repeated until only one node is 
left. One step of the algorithm reduces the length of the list by about one quarter, 
thus the expected number of parallel steps is G(log n). 

The amount of work performed by the algorithm in [13] is 9ptimal; however, in 
the PRAM model the time-processor product is still suboptimal. Many attempts 
to improve the processor efficiency of randomized list contraction have been made. 
An algorithm in [14] is time-processor optimal. Although it is slightly suboptimal 
in time, it performs better in practice than the more sophisticated algorithm in 
[1], optimal both in time and in the time-processor product. 

The problem of optimal efficiency for randomized list contraction is much eas- 
ier to solve in the BSP model, given sufficient slackness. We assume that the input 
list is distributed across the processors evenly (n/p elements per processor), but 
otherwise arbitrarily. The following straightforward implementation of random 
mating in BSP was suggested in [11]. 

I:~ANDOMIZED LIST CONTRACTION 
We assume n = f2(p 2 • logp). The algorithm proceeds in two stages. 
First stage. The list is reduced from n to nip nodes by repeated rounds of 

random mating. Each round is implemented by a superstep which merges the 
mating pairs. An easy analysis along the lines of [10] shows that O(logp) rounds 
will suffice with high probability. Since the length of the list is expected to decrease 
exponentially, the communication cost of the first round, equal to O(n/p. g), 
dominates all subsequent communication with high probability. 

Second stage. The remaining n/p nodes are collected in a single processor. This 
processor completes the contraction, reducing the list to one node by local com- 
putation. The expected communication cost of the whole algorithm is O(n/p. g), 
and the expected synchronization cost is O(logp- l). The amount of parallel slack 



415 

required can be reduced to n = f2(plogp) by employing more tight probability 
bounds and a new balancing scheme during the final phases of the algorithm. The 
algorithm terminates by employing Wyllie's algorithm [8] on a list of size n/lg n. 

Another direction of research has been aimed to provide an optimal determin- 
istic algorithm for list contraction. Known efficient deterministic algorithms for 
PRAM (see e.g. [8,15]) typically involve symmetry breaking by deterministic coin 
tossing (see [3]). Such algorithms are complicated and often assume non-standard 
arithmetic capabilities of the computat ional  model, such as bitwise operations on 
integers. As in the case of randomized algorithms, it is much easier to design an 
optimal deterministic algorithm for list contraction in the BSP model, provided 
that the slackness is sufficient. 

DETERMINISTIC LIST CONTRACTION 
We assume n > p3. logp. The  algorithm proceeds in two stages. 
First stage. The list is reduced from n to n/p nodes by repeated rounds of 

deterministic mating. 
Each round starts with reducing all chains of adjacent elements that are local 

to any particular processor. All nodes that  remain after this reduction have both 
neighbors outside their own processors. 

After that, a complete weighted digraph with p vertices is constructed. Each 
vertex of the graph represents a processor. The weight of the edge from vl to v2 is 
defined as the number of nodes in the processor represented by vl with their right 
neighbors in the processor represented by v2. The graph is used to mark each 
processor either "right-looking" or "left-looking". Each node inherits the mark 
from its processor. Let m be the number of nodes before the current round. The 
marks are assigned in such a way tha t  the number of adjacent pairs of nodes 
looking at each other is at least rn/4. Such a marking always exists and can be 
easily computed from the graph by a greedy algorithm in sequential time 0(:o2). 

Each round is implemented by three supersteps. In the first superstep each 
processor computes its local par t  of the graph, namely the weights of its own 
outcoming edges. After that,  the whole graph is collected in a single processor. 
This processor computes the marks and tells each processor its mark. In the 
second superstep each node chooses its left or right neighbor, according to the 
mark received by its own processor. Then the pairs of nodes that have chosen each 
other merge together. The processor to hold the merged pair is chosen arbitrarily 
between the two processors holding the original nodes. After the second superstep, 
the total number of nodes becomes at most 3m/4, but the distribution of these 
nodes across the processors may not be even. Therefore, it is necessary to perform 
the third superstep, which redistributes the nodes so that each processor receives 
at most 3m/4p nodes. This completes the round. 

The total number of rounds necessary to reduce the list to n/p nodes is 
O(logp). Since the length of the list decreases exponentially, the communication 
cost of the first round, equal to O(n/p-g), dominates all subsequent communica- 
tion with high probability. 

Second stage. The remaining n/p nodes are collected in a single processor. 
This processor completes the contraction, reducing the list to one node by local 



416 

computation. The communication cost of the whole algorithm is O(n/p .  g), and 
the synchronization cost is O( logp-  l). 

Both the randomized and the deterministic list contraction algorithms can 
be used to solve the problem of tree contraction in the BSP model. The tree is 
partitioned across the processors by an algorithm from [4], using list contraction 
on the Euler tour of the tree. Each processor contracts its part of the tree locally, 
then the remaining nodes are collected in a single processor, and the contraction 
is completed by a local computation. The asymptotic BSP cost of this method of 
tree contraction is the same as of the list contraction algorithms above. 

References 

1. R. J. Anderson and G. L. Miller. A simple randomized parallel algorithm for list 
ranking. Information Processing Let2ers, 33(5):269-273, 1990. 

2. A. Baumker, W. Dittrich, F. Meyer auf der Heide, and L Rieping. Realistic par- 
allel algorithms: Priority queue operations and selection for the BSP* model. In 
Proceedings of Euro-Par'g6, LNCS 1124, Springer Verlag, August 1996. 

3. R. Cole and U. Vishkin. Deterministic coin tossing with application to optimal list 
ranking. Information and Control, 70(1):32-53, 1986. 

4. H. Gazit, G. L. Miller, and Shang-Hua Teng. Optimal tree contraction in an EREW 
model. In S. K. Tewksbury, B. W. Dickinson, and S. C. Schwartz, eds., Concurrent 
Computations: Algorithms, Architecture and Technology, pp. 139-156, 198& 

5. A. V. Gerbessiotis and C. J. Siniolakis. Concurrent heaps on the BSP model. Tech. 
Report PRG-Tt~-14-96, Comp. Laboratory, Oxford University, June 1996. 

6. A. V. Gerbessiotis and C. J. Siniolakis. Selection on the bulk-synchronous parallel 
model with applications to priority queues. In Proc. of the 1996 Int'l Conf. on 
Parallel and Distrib. Proc. Techniques and Applications, USA, August 9-11, 1996. 

7. A. V. Gerbessiotis and C. J. Siniolakis. Primitive operations on the BSP model. 
Tech. Report PRG-TR-23-96, Comp. Laboratory, Oxford University, October 1996. 

8. J. J~J£. An Introduction to Parallel Algorithms. Addison-Wesley, 1992. 
9. R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and-branch and 

bound. Journal of the ACM, 40(3):765-789, 1993. 
t0. C. E. Leiserson and B. M. Maggs. Communication-efficient parallel algorithms for 

distributed random-access mazhines. Algorithmica, 3:53-77, 1988. 
11. W. F. McColl, 1996. Private communication. 
12. C. J. H. McDiarmid. On the method of bounded differences. Surveys in Gombina- 

torics, (J. Siemons, ed.), Volume 141,pp. 148-188, CUP 1989. 
13. G. L. Miller and J. F. Reif. Parallel tree contraction and its applications. In 26th 

IEEE FOCS, pages 478-489, October 1985. 
14. M. Reid-Miller. List ranking and list scan on the Cray C-90. In Sixth Annual 

Symposium on Parallel Algorithms and Architectures, pages 104-113, 1994. 
15. M. Reid-Miller, G. L. Miller, and F. Modugno. List ranking and parallel tree contrac- 

tion. In J. H. Reif, ed., Synthesis of Parallel Algorithms, chapter 3, pages 115-194. 
Morgan Kaufmann, 1993. 

16. R. Motwani and P. Raghavan. Randomized Algorithms. CUP, 1996. 
17. M. C. Pinotti and G. Pucci. Parallel priority queues. IPL, 40:33-40, 1990. 
18. A. Ranade, S. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism and locality in 

priority queues. In Proceedings of the 6-th IEEE SPDP, pp. 97-103, 1994. 
19. R. E. Tarjan. Data structures and network algorithms. SIAM, 1983. 
20. L. G. Valiant. A bridging model for parallel computation. CACM, 33:103-111,1990. 


