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Abstract� We address the concurrent rebalancing of almost balanced
binary search trees �AVL trees�� Such a rebalancing may for instance be
necessary after successive insertions and deletions of keys� We show that
this problem can be studied through the self�reorganization of distributed
systems of nodes controlled by local evolution rules in the line of the
approach of Dijkstra and Scholten� This yields a much simpler algorithm
that the ones previously known� As a by�product� this solves in a very
general setting an old question raised by H�T� Kung and P�L� Lehman�
where should rotations take place to rebalance arbitrary search trees�
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� Introduction

Search trees are the key in implementing large data structures where keys are
searched� inserted and deleted� The scheme introduced by Adel�son�Velsk���� and
Landis 	AL
��Knu�
�� nowadays known as the AVL scheme� consists in keeping
all internal nodes balanced� that is� the height of their subtrees di�ering at most
by one� Sequential algorithms to insert one key at a time are well�known� once
the key is inserted� the nodes along the access path are recursively updated by
rotating their subtrees� But inserting and�or deleting many keys concurrently is
much more di�cult� the transient shapes of the tree may become very unbalanced
in general� and no instantaneous update of the local registers maintained at each
node can be assumed�
Many solutions have been proposed to this problem� Earlier coarse�grain

solutions� e�g�� by Ellis 	Ell���� lock the access path to the inserted key to guar�
antee that two concurrent upwards update waves do not interfere� The degree
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of concurrency is obviously quite low� Later medium�grain solutions� e�g�� by
Kessels 	Kes�
�� split the upwards rebalancing wave into local atomic steps�
Each insertion launches a new wave� so that several concurrent waves can be
interleaved� The local rebalancing steps are described through a set of guarded
rules� This idea has been later reworked and improved by by Nurmi� Soisalon�
Soininen and Wood 	NSSW���NSSW���NSS�
�� Larsen 	Lar��� shows that the
reorganization process converges in O�k� log�n���k�� steps in a tree with n nodes
updated with k insertions�
The contribution of this paper is to go one step further in this direction

by completely uncoupling the insertions �and�or deletions� and the rebalancing
waves� The key idea for this �ne�grained approach is taken from the work of Di�
jkstra� Lamport et al� 	DLM���� on concurrent �on the �y� garbage�collection�
We see insertions�deletions as unpredictable perturbations on the tree data�
structure� whilst rebalancing is independently performed by a number ofmutator
daemons based on local shape information only� The daemons �ow information
upwards through the tree �Propagation� or rotate the subtrees of a �apparently�
unbalanced node �Rotation��
Our approach leads to fewer and simpler rules than previous ones� and it

clari�es the essential nature of AVL rebalancing� As the shape of the tree may
now be arbitrary� this amounts to solve an old question raised by H�T� Kung
and P�L� Lehman 	KL���� where should rotations take place for to rebalance
arbitrary trees� The answer is� anywhere�
The price to pay for this ��ne�grained approach� is that ��n�� steps are

needed to rebalance an arbitrary binary tree in the worst case� instead of Larsen�s
O�n� log�n�� for an empty tree �lled by n successive insertions� Note however that
a single atomic step of Larsen corresponds to several steps here which makes the
comparison slightlymore balanced� Also� we provide the user with a better degree
of concurrency� Finally� there is good experimental evidence that the convergence
is obtained in O�n� steps in the average�

� A Concurrent AVL Rebalancing Scheme

The challenge is to design a set of local guarded rules such that� if no external
perturbation occurs� than any sequence of local rule applications eventually leads
to a globally balanced tree�

��� General Description

Let u be a node of the search tree� We denote respectively by u�p� u�ls� u�rs

the parent� the left son and the right son of u in the tree� The empty tree is
denoted �nil� and the root of the tree �root�� The real height realh�u� is de�ned as
usual� �

realh�nil�  �
realh�u � nil�  ! � max�realh�u�ls�� realh�u�rs��

As concurrent modi�cations in the tree prevent from maintaining realh on each
node� each node u � nil encodes its local knowledge of the state of the structure
in two private registers in addition to the key register�
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� lefth�u� and righth�u� are respectively the apparent heights of the left and
right sons of u� at the best of the knowledge of u�

De�nition � We call height�relaxed search tree �HRS�tree� a search tree whose
nodes are equipped with the two private registers lefth and righth satisfying the
following consistency condition� lefth�u�  � �resp� righth�u�  �� for any node
u with an empty left �resp� right� son�

The following auxiliary functions on the nodes of HRS�trees will be useful�

� localh�u� is the apparent local height of u� as computed from the two previous
registers� localh�u�  ! � max�lefth�u�� righth�u��

� car�u�� the carry of u� is the gap of knowledge between u and its parent�

car�u�  

�
lefth�u�p� � localh�u� if u is the left son of its parent
righth�u�p�� localh�u� otherwise

The car function measures the inconsistency of local information on the
structure of the tree� A node u is said reliable if car�u�  ��

� bal�u� of u is the apparent balance of u� de�ned as follow�

bal�u�  lefth�u� � righth�u�

A node u is said apparently balanced if jbal�u�j � ! �
The following fact holds� If each node of an HRS�tree T is reliable and ap�

parently balanced� then T is an AVL�

��� Description of the Daemons

Propagation Rule� It propagates information upwards from a son to its parent�
As a convention the �nal state of a node u after application of a rule is denoted
u��

lefth�v� �� localh�u�

car�u�

lefth�v�� � localh�u��

B B

Left Propagation

bal�v�

u

bal�v��

v

u�

v�

A

A

Fig� �� Propagation rules� Rule �LP� left propagation if car�u� �� 	

Rule �LP� � Left Propagation �Figure ��
Guard� Node u is the left son of node v and u is not reliable� car�u� � �
Action� the apparent left height of v is updated� lefth�v��  localh�u�
Spatial scope� u and its parent v  u�p�

The right propagation rule �RP � where u is the right son of v� can be deduced
symmetrically from �LP �� It is easy to see that applying these rules repeatedly
will eventually set the apparent local height of each node to its real height�






Rotation Rules� These rules are inspired from the original AVL rules 	AL
�� but
extended to the case where the balances of the nodes may exceed �� These relaxed
preconditions allow to rebalance any tree with any initial local knowledge� The
rotation rules tend to reduce the apparent balance� but of course� can worsen not
only the consistency of the local heights but also the real balance if the apparent
balance was wrong�

Rule �RR�� � Right Rotation� Unbalanced case �Figure ��a��
Guard� Node u is the left son of node v� u is reliable� bal�u� � � and bal�v� � �
Action� u and v execute a right rotation 	Fig� ��a�� with the obvious updating�

lefth�u��  lefth�u� righth�u��  localh�v��
lefth�v��  righth�u� righth�v��  righth�v�

Spatial scope� u and its parent v  u�p�

The rule �LR��� where u is the left son of v� and u and v execute a left rotation
when bal�u� � � and bal�v� � ��� is obtained symmetrically from �RR���

Rule �RR
�
� � Right Rotation� Balanced case �Figure ��b��

Guard� Node u is the left son of node v� u is reliable� bal�u�  � et bal�v� � �
Action� u and v execute a right rotation 	Fig� ��b�� with the obvious updating�

lefth�u��  lefth�u� righth�u��  localh�v��
lefth�v��  righth�u� righth�v��  righth�v�

Spatial scope� u and its parent v  u�p�

The rule �LR��� where u is the left son of v and� u and v execute a left
rotation when bal�u�  � and bal�v� � ��� is obtained as before symmetrically
from �RR���

Rule �LRR� � Left	Right double Rotation �Figure ��c��
Guard� Node w is the right son of the left son u of node v� w and u are reliable�
bal�u� � � et bal�v� � �
Action� u� v and w execute a left�right double rotation 	Fig� ��c�� with the
obvious updating�

lefth�u��  lefth�u� righth�u��  lefth�w�
lefth�v��  righth�w� righth�v��  righth�v�
lefth�w��  localh�u�� righth�w��  localh�v��

Spatial scope� u� its parent v  u�p and its right son w  u�rs�

The symmetrical rule �RLR� where w is the left son of the right son u of v
and u� v and w execute a right�left double rotation� applies when u and w are
reliable� bal�u� � � and bal�v� � ���
��� Invariant Properties

The following lemma ensures the safety of the algorithm� �nothing bad can
happen� if the algorithm blocks� then we hold the right result��

Lemma � �Safety property� Let T be an HRS�tree� If T � is obtained by applying

on T any one of the rules described above� then T � is an HRS�tree holding the

same keys than T � Moreover if no rule applies on T � T is an AVL�
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Fig� �� The rotation rules
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A closer look at the rules reveals the following stable property which is ac�
tually the key to the proof of convergence below�

Lemma � Let T be an HRS�tree� so that �u � T car�u� � �� If T � is obtained by

applying on T any one of the rules described above� then �u� � T � car�u�� � ��

� Convergence

��� Proof of liveness

As long as perturbations occur in the tree �insertion or deletion of keys�� the dae�
mons just compete with the mutators� The resulting behavior essentially depends
on their relative speeds� For the convergence analysis� we hence assume that no
insertion or deletion occurs any longer and prove then that at most��n��� where
n is the number of nodes of the tree� rules may be applied� By Lemma !� the
resulting tree is an AVL� the algorithm rebalances thus any arbitrary tree using
at most ��n�� rules�
The convergence proof is based on a number of global quantities express�

ing the progress towards a �nal state� The complete description can be found
in 	BGM�"�BGMS��� and we only sketch here an intuitive description�
The �rst observation is that on each rule application� negative carries van�

ish or �ow upwards the root� The tree progressively converges towards a state
described by Lemma �� Let us de�ne NEG  

P
car�u���Out�u� � jcar�u�j� where

Out�u� denotes the number of nodes of the tree which are not in the subtree
rooted in u� as introduced by Kessels 	Kes�
�� It can be shown that NEG cannot
increase�
When it does not decrease� there is a subtle interaction between car and bal�

rebalancing a node may increase its carry as its apparent local height may de�
crease# conversely� propagating a carry may increase the imbalance of its father�
Let us de�ne POS  

P
car�u��� car�u� and BAL  

P
u
jbal�u�j� It can be shown

that the trade�o� ��POS� BAL� cannot increase�
In the only case where NEG and ��POS�BAL� does not decrease �Rule LR ��

the quantity RBAL  
P

jbal�u�j�� jbal�u�j � ! necessarily decreases�

Property � �Liveness property� hNEG� �POS � BAL�RBALi is a valid variant�
it strictly decreases for the lexicographic order on any rule application and it

is greater than h�� �� �i� Therefore� no in�nite sequence of rule applications is

possible�

This proposition implies moreover that the algorithm converges on any tree
after at most 
n	 rule applications�
A tedious exhaustive case analysis �summed up by a table in the complete

paper 	BGMS���� reveals a more subtle interaction between those four quantities
and leads to a simpler variant�

Theorem � 
�NEG� POS� � �BAL� RBAL is a valid variant for the algorithm�






Therefore if cmax and bmax respectively denote the maximumabsolute values
of car and bal initially� our scheme applies at most 
cmaxn�n�!��
bmaxn rules
to rebalance any arbitrary HRS�tree with any initial state�
Two examples of worst cases applying ��n�� rules are shown Figure 
� An

�� � prop�

�� n � � prop�

�� � prop�
� � �

�a� Initially each node has its lo�
cal height set to �� cmax � � and
bmax � 	

�st rotation

n

� th rotation

n� � propagations

n� 	 propagations
� � �

� propagations

�nd rotation

�n
� � ��th rotation

�b� Initially the local heights
are the real heights� cmax � 	
and bmax � n� �

Fig� �� Two examples of ��n�� rules executions highlighting the importance of the two
terms �cmaxn�n� �� and �bmaxn�

amazing fact is that we could not �nd any execution scheme involving more
than O�n� rotations� It is tempting to relate this to the two parts of the variant�

cmaxn�n � !�  O�n�� may be related to the number of propagations� and

bmaxn  O�n� to the number of rotations� We therefore conjecture that at most

O�n� rotations may be applied� It is likely that such a bound would certainly
shed a new light on the intimate structure of AVL trees�

��� Experimental studies

We have essentially proceeded to two kinds of experimental behavior studies�
practical worst case and average convergence time studies�

Experimental Worst Convergence Time Analysis� First� we concentrate on small
trees and record for each tree the worst convergence time measured on a large
number of simulations� The results are displayed on 	Fig� 
���� The diagrams are
based on the following tree enumeration� we enumerate the binary trees of �xed
size n simply by enumerating recursively all the possible right subtrees for all
the possible left subtrees and we index each tree by its rank in this enumeration�
The advantage of this method is that it respects the recursive structure of binary
trees# in particular trees which have close indexes have close shapes�
It appears that these diagrams Figure 
�� have fractal structures� this means

that our rebalancing algorithm is somehow continuous with respect to the shape
of the tree�
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Fig� �� Experimental Analysis

The worst worst cases are always obtained on linear trees and more precisely�
on the second pair of the regular zigzag tree� i�e� the linear trees where each son
of a right son �resp� left son� is a left son �resp� right son� �cf� 	BGMS�����

Experimental Average Convergence Time Analysis� A more precise analysis of
the convergence time distribution con�rms the above assumption� The result of
the simulations is shown 	Fig� 
����
The behavior of our algorithm appears to be very smooth� the convergence

time seems to follow a �Gaussian�like� distribution as well as the number of
rotation rule applications� The average convergence time appears to be ��n with
� � 
�" with a standard deviation of �pn with � � ��!�
Unfortunately we do not have any theoretical estimation concerning the con�

vergence time distribution�

� Conclusion

This paper presents a �ne�grained� distributed approach to the problem of man�
aging concurrent request in AVL search trees� Our contribution is to show that
completely uncoupling the insertion�deletion of keys from the rebalancing pro�
cess yields fewer� simpler and clearer local rules� In fact� our scheme allows to
rebalance any tree with n nodes in O�n�� local steps with a very high degree of
parallelism� each steps only locks at most 
 nodes� However� extensive simulation
results indicate that quadratic behaviors are extremely unlikely�
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In fact� this �ne�grained scheme yields a useful basis to design more com�
plex algorithms by restricting the scheduling of the rules to �e�cient� ones� It
turns out that many existing algorithms previously proposed in the literature
can be seen as such specializations �up to a suitable renaming of the registers��
The extended version of this paper shows that this is the case for the algo�
rithms of Ellis 	Ell���� Kessels 	Kes�
�� Nurmi and al� 	NSSW���NSSW���� and
Larsen 	Lar���� The initial sequential AVL algorithm even appears as a limit
case� As our scheme has been proved correct �safety and liveness�� any non�
deadlocking specialization of it yields a correct algorithm� too�
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