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Abs t r ac t .  We show how to approximate in NC the problem of Schedul- 
ing Unrelated Parallel Machines, for a fixed number of machines. We 
develop a (2 + e)-approximate parallel algorithm for the problem. Our 
approach shows how to relate the linear program obtained by relaxing 
the integer programming formulation of the problem with a linear pro- 
gram formulation that is positive and in the packing/covering form. The 
relationship established enables us to transfer approximate fractional so- 
lutions from the later formulation that is known to be approximable in 
NC. Then, we show how to obtain an integer approximate solution, i.e. a 
schedule, from the fl'actional one, using the randomized rounding tech- 
nique. Finally, we show that the same technique can be applied to the 
General Assignment Problem of fixed number of machines and a given 
makespan T, thus yielding a schedule whose cost is at most (2 ÷e)  times 
the minimum cost and has makespan at most 2T. 

1 I n t r o d u c t i o n  

Linear Programming  plays an important  role in designing sequential approxi- 
mat ion  algori thms for many  NP-hard optimization problems. All of them star t  
f rom (or make use of) a fractional solution of the relaxed linear p rogram for the 
problem in hand. In some cases, the feasible fractional solution is directly trans- 
formed into an integer feasible solution to the problem, whose measure is within 
some bound (constant) of the op t imum value. For example,  Pot ts  [14] shows 
how to t ransform the (basic) opt imal  fractional solution of a linear program for 
Scheduling Unrelated Parallel Machines into an integer feasible solution whose 
measure is within 2 of the op t imum schedule, where the number  of machines is 
supposed a fixed constant. For the same problem, but without the restriction 
on the number  of machines to be fixed, Lenstra et al. [9] show how to t ransform 
a vertex of the fractional polyhedron into a vertex of the integer polyhedron 
which is a schedule with completion t ime at most  twice the op t imum one. Simi- 
lar ideas are employed also in [17, 4]. (For other sequential results on this type of 
scheduling see also [6].) In some other cases, t ransforming the fractional feasible 
solution into an integer one uses a rounding procedure, e.g., the 2-approximation 
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for Vertex Cover [5], and more generally by means of Randomized Rounding 
technique [15] or the same technique with more refined probability choices [3]. 

If we would like to employ similar ideas to obtain paralM approximation al- 
gorithms, a tot of difficulties are encountered. Indeed, to begin with, we cannot 
solve in NC a given LP, unless P=NC [8, 2]. Even we cannot find a~l approximate 
solution of a given LP in NC [16, 12]. The only known kind of parallel algorithm 
for LP is the Luby and Nisan's approximation scheme [11] for a subclass of LP, 
namely an LP with non-negative coefficients and in packing/covering form, re- 
ferred to as Positive Linear Programming (PLP). Even if the LP program that  
models a given problem is in PLP form we cannot optimally solve it in NC, 
unless P=NC [19]. Thus, for example, the technique of [14] fails in this case. 
Maybe, from this viewpoint can be explained somehow why the NC approxima- 
tion algorithms based on LP technique are scarce. Very recently, Trevisan [18], 
used LP technique to obtain (improved) parallel approximation algorithms for 
various optimization problems, including MAX SAT, MAX DICUT, etc. This is 
the first case where parallel approximation results were obtained for problems 
whose original LP model was not in PLP form. 

In this paper, following the work of [18], we develop a (2 + e)-approximate 
parallel algorithm for the problem of scheduling a fixed number of unrelated 
parallel machines. This problem is known to be NP-hard. Karp [7] proved that  
even for the case of two identical machines the problem is NP-hard. 

Here is a brief description of the proof. The linear program for Scheduling 
Unrelated Parallel Machines obtained by relaxing its integer programming for- 
mulation is not d Positive Linear Program in packing/covering form so it is not 
appropriate for Luby and Nisan's algorithm. Our strategy, is then, to transform 
the linear program into a positive lineal" program in packing/covering form. In 
the sequential case, transforming a linear program with linear restrictions that  
are equalities into a packing/covering program is easily done (see, e.g., [20, pages 
141-143]) since we only need to assure that both linear programs - the origi- 
nal and the transformed one - have the same optimal solution. It is, however, 
more complicated in the parallel case. Because Luby and Nisan's algorithm only 
approximately solves a PLP, we have to assure that  not only the optimal so- 
lutions of both lineal" programs coincide but also we can recover near optimal 
fractional solutions of the original program from those of the transformed one. 
The final step in our proof is to randomly round the near optimal fractional 
solution into an integer feasible solution whose measure is within (2 + e) of the 
minimum schedule. As another application of our technique, we show that  given 
an instance of the General Assignment Problem of fixed number of machines 
and makespan T, there is an NC algorithm that  finds a schedule whose cost is 
at most (2 + e) times the minimum cost and has makespan at most 2T. In both 
cases, solving in parallel a linear program is the caveat of our scheme. 
Prel iminaries  

Pos i t i ve  L P  in packing form is maxx  { c T x  : A x  <_ b; x >_ 0}, and in covering 
form min y {by : A T y  >__ c; y > 0}, where A, b and c have non-negative entries. 
We will refer to the following theorem by Luby and Nisan, which gives an NC 
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approximation scheme for Positive LP in packing/covering form. Let N be the 
number of non-zero coeffÉcients associated to an instance of PLP. 

T h e o r e m  1. [11] Given an instance of PLP in packing form (resp. in covering 
form), and a rational e > 0, there is an NC algorithm that finds an (1 - e)- 
approximate solution (resp. an (1 + e)-approximate solution) to that instance 
and has running time polynomial in l ogN/e  and uses O(N) processors. 

2 S c h e d u l i n g  U n r e l a t e d  P a r a l l e l  M a c h i n e s  

This problem is stated as follows (see, e.g., [14]). Each of n jobs is to be processed 
without interruption on one of m machines. At any time, each machine can 
process at most one job. Job j (j  = 1, . . . ,  n) requires a positive processing t ime 
Plj on machine i (i = 1, . . . ,  m). The objective is to schedule the jobs on machines 
so that  the maximum completion time is minimized. Here after the number of 
machines m is supposed a fixed constant, independent of the instance. 

The problem can be casted by an integer program by letting variables xij, 
x~j = 1, if job j is assigned to machine i, and xij = 0 otherwise, and the variable 
z which stands for the maximum completion time of machines. By relaxing the 
integrality conditions i.e., 0 _< xij < 1, we obtain the following linear program, 

minimize z 
subject to 

pi x 5 < z (i = 1 , . . . ,  m) 
m 

El=-1 Xij ~- 1 ( j  = 1 , . . . ,  n) 
O<z,O<_xij ( i = l , . . . , m ;  j = l , . . . , n )  

(1) 
(2) 

(LP1) 
The (LP1) program is not a Positive Linear Program since some of its coefficients 
are negative (see constraints (1)) and also it is not in the packing form (see 
constraints (2)). Our first objective is then to transform it into a PLP without 

n changing the optimal solution. To this aim, we let p = maxl<i_<,~ }-'~j=l P~J and 
we introduce the variable y _> 0 such that  z + y = p, and we obtain a linear 
program (LP2) equivalent to (LP1), but with all the coefficients non-negative: 

maximize y 
subject to 

r~  ~ j = l  p~jxij + y < p (i = 1 , . . . ,m)  
ri2. Ei=I x~j = 1 (j = 1 , . . . , n )  

0 < y,O <_ xij (i = 1 , . . . , r n ;  j = 1 , . . . , n )  

(3) 
(4) 

(LP2) 
Notice that  the relation z + y = p is not actually needed as a constraint as far 
as we keep the relationship between y and z as an external change of variables. 
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Next, we transform (LP2) into a packing form by adding adequately some terms 
in the objective function which allow us to relax the equality constraints into 
inequalities. We choose the coefficients of those terms in such a way- that not only 
the optimal solution remains unchanged but also we can recover approximate 
solutions of 2 (LP1). We let, for any j = 1 , . . . ,  n, pj = ~in=l Pij and consider, 

Tt ~q~ maximize y + ~ j = l  ~m ~i=1 xij 
subject to 

n + v < p (i = i , . . . ,  (5) 

Ei~I  xij <_ 1 (j = 1 , . . . ,  n) (6) 

(LP3) 

3 F i n d i n g  a n  (1 + e ) - A p p r o x i m a t e  F r a c t i o n a l  S o l u t i o n  f o r  
( L P 1 )  f r o m  a n  (1 - e ) - A p p r o x i m a t e  O n e  f o r  ( L P 3 )  

The following proposition relates the solutions (and their respective measures) 
of (LP1) with those of (LP2). Its proof is clear from the definition of (LP2). 

P r o p o s i t i o n 2 .  For any feasible solution (y, x) of (LP2) of measure k, (p -y ,  x) 
is feasible to (LP1) of measure p - k. For any feasible solution (z, x) for (LP1) 
of measure p - k, (p - z, x) is feasible of (LP2) and has measure k. 

The relation between solutions of (LP2) and (LP3) is given as follows: 

P r o p o s i t i o n  3. The fotlowin 9 hold: 

a) Any feasible solution for (LP2) of measure k is also a feasible solution for 
the (LP3) and has measure k + ~ = 1  pj/rn. 

b) Given any feasible solution for the (LP3) of measure k+E~.=l  pj /m,  we can 
compute in NC a feasible solution for (LP2) of measure at least k. 

Pro@ The part a) is immediate from the definitions of (LP2) and (LP3) pro- 
grams. For the part b), given a feasible solution (y, x) for (LP3) whose measure 
is k + Y~j=I pj /m,  we define a solution (y', x') for (LP2) as follows: 

x' ' + (1 - x~j)/m, Vi, j . y' :=minlY, min i{p-  E p i j  ij}}, xij :=xi j  
j = t  r = l  

Notice that (y', x') is feasible for (LP2). This is the desired solution. Indeed, we 
f~ have that, for any i, y <_ p -  Ej=lpgjxij ,  and on the other hand, a) y~ = y 

n or b) y~ = p -  }--~j=l " 'x~ for some i0. I f y '  P~o~ ioj, = y then we are done since 
y > k. In the second case, let us denote aj  = ( 1 -  ~r~_l xrj) /m. We have 

2 This construction is, in some sense, similar to Lagrangean multipliers 
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Y~ P E j = I  piojXioj n n = _ n -- ~ j = i  PiojCtJ, or equivalently, y' + ~ j = l  PiojctJ - P - 
n 

~ j = l  P i o j X i o j  >-- Y f rom which we deduce 

Y <_ P - C j = l P i o j X i o j  = y' + ~ j = ,  Piojaj 

<- Y' + ES=l '~-~ (1 - E~=~ ~ )  
j n ~ 

-- E i = I  Xi j  = -k E j = I  P-£ p~£ rn m j = l  rn 

(7) 

t l  ft~ where in (7) we have bounded Pi0j by pj, and thns, y + ~-~j=l (pj/m) ~ = 1  xij < 
Y' + ~'=1 pj /m.  From the hypothesis and the last inequality it is easily derived 
y' >_ k. Finally the solution (y', x') can be constructed in NC. [] 

From Propositions 2 and 3, we will prove that, from any fractional (1 - e)- 
approximate solution to (LP3), we can construct a fractional (1 + e)-approximate 
solution to (LP1). As a first step, we will state and prove the result with an 
additional condition, that  we call Bounded Scheduling Condition. Then, we prove 

~t it for the general case. Let us define q = ( l /m)Ej=lminl<i<_mPiJ  and p = 
n maxl_<i_<ra E j = I  P i j ,  aS before. 

B o u n d e d  S c h e d u l i n g  C o n d i t i o n :  There is a constant B such that p <_ Bq. 
Let us consider an instance of the scheduling that satisfies the above condition 
with constant B, and let also (LP1), (LP2) and (LP3) be the corresponding 
linear programs to this problem. We prove the following theorem. 

T h e o r e m  4. Assume that there is a constant B such that p < Bq. Suppose that 
(y, x) is a (1 - I / (2B) .  e)-approximate solution for (LP3), and let (z', x') be the 
feasible solution of (LP1) obtained from Proposition 3, part b) and Proposition 
2. Then (z', x') is a (1 + e)-approximate solution for (LP1). 

Proof. Let us denote by C~, C~ and C~ the optimal values of the (LP1), (LP2) 
and (LP3), respectively. We have the following relations: (1) C~ > q, (2) C~ = 
p-C~ ,  and (a) C~ <_ 2.p. The relation (1) comes from the definition of q, relation 
(2) is obvious (see Prop. 2), and relation (3) results from upper bounding any 
term in the objective function of (LP3). Notice that, for relation (a) we use 

Yt f t  ~ m 

Ep,/  = E E p , ,  = -< = p .  
j = l  j = l  i=1 i=l j= l  

From the above relations we deduce C; > q >_ p /B  >_ 1/ (2B)-  C~. From the 
supposition, (y, x) is feasible to (LPa) of c o s t a  such that (C~ - cost3)/C~ <_ 
(1/2B)e.  Further, we apply Prop. 3, part b) to obtain a feasible solution (y', x') 
for (LP2) and then the corresponding feasible solution (z', x') to (LP1) of c o s t l .  
Now we show that. (z', x') is (1 + e)-approximate ~br (LP1). Indeed, 

< 1 + 2 B .  (c~ - ¢ o , t 3 ) / c ~  < 1 + 2 B .  ( 1 / 2 B ) ~  = 1 + e . 



445 

The inequality ( ,)  holds because of: 

costl -- C; = (p - cost2) - C~ : C~ - cost2 _< (C~ - cost3) (8) 

where in (8) we have used Proposition 3, and thus the theorem follows. [] 

We can apply Luby and Nisan's algorithm [11] to find a feasible solution (y, x) 
to (LP3) of cos t3  such that  (C~ - cos t3) /C~ < (1/2B)¢. Therefore we have 

T h e o r e m 5 .  A s s u m e  that there is a constant B such that p < Bq.  Given any 
rational s > O, we can construct  in N C  a feasible solution of  (LP1)  (z ' ,  x') that 
is a (1 + e)-approzimate  solution for  (LP1).  

Following we prove that an instance of (general) scheduling problem can be 
reduced to an instance satisfying the Bounded Scheduling Condition. Therefore, 
from Theorem 5, for any instance of Unrelated Parallel Machines we can find in 
NC a near optimal fractional solution to (LP1) from (LP3) . 
G e n e r a l  Case:  Sea l ing  o f  t h e  P r o c e s s i n g  T i m e s  
Given a positive constant K > 1, we can transform the instance of scheduling 
{p~j, i  = 1 , . . . , m ; j  = 1 , . . . , n }  into an instance {p~j,i  = 1 , . . . , m ; j  = 1 , . . . , n }  
such that  1 _< p}j < K,  Vi, Vj. Indeed, this can be done by a linear transformation 
az + b, such that  {api,.jr -F b = 1,api~j~ + b : K} where Pi~j,. = minl , jp i j  and 
pisjs "= maxl , jPi j .  Also, the variable y becomes ~ = ay + b. Further, we see that  
for the new instance, 

f~ 

p' = maxl<i<m ~ n  , E ' for some i I , - _ j=l  P i j  = Pilj ' 
j=l  

• , @ "  . < E K • mlnl<i<mPij  -- K .  ~ mlnl<i<mPij  = [£mq ~ 
- -  j = l  _ _ ' 

j = l  

that  is p~ < Bq ~, with B = K i n .  Notice that  once we have the solution ~ of the 
new instance, we can recover the value of y by taking y = (~ - b)/a  from the 
known linear transformation az + b. Therefore, concluding, we have, 

T h e o r e m  6. Assuming  that m is a constant, for  any e > 0, we can construct  in 
N C  a solution (y, x) for  (LP3)  that is a (1 - 1 / (2B) .  e)-approximation,  where 
B = K m,  for  some constant K > 1. A n d  therefore, we can construct  in N C  a 
feasible solution of  (LP1)  (z' ,  x') that is a (1 + e)-approximate  for  (LP1) .  

4 R o u n d i n g  o f  t h e  F r a c t i o n a l  S o l u t i o n  

We use the Randomized Rounding technique of [15] to obtain a (2+e)-approximate 
integer solution to (LP1). Let ~ij, (i = 1 , . . . , m ; j  = 1 , . . . n )  be the fractional 
solution of (LP1) that  is (1 +c)-approximate (see Sect. 3). Let C1 be the comple- 
tion time corresponding to this solution and C~ be the optimal fractional value 
and finally C~nax the minimum completion time• We have that  

(1 - z)(J'l < C~' < C~nax • (9) 
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We proceed as follows. For any (fixed) constraint j of (2), set x;j = 1 according 
to the probability distribution {xlj} for the fixed j ,  and the choices are done 
independently, for all j .  Next, we apply Theorem 2.1 of [15] that  estimates the 
expected value of the objective function in the integer solution defined above. 

T h e o r e m  7. [15] Let ¢ be a positive real such that 0 < e < 1. Provided that 

C{ _> 3 l n ( 2 n ( n -  1)/e) , (10) 

the corresponding value of the solution constructed above does not exceed 

C~ + (3- C~ ln(2n(n - 1)/g)) 1/2 (11) 

with probability at least 1 - ~. 

Based on this theorem we obtain the following result. 

T h e o r e m  8. Given an instance of Scheduling Unrelated Parallel Machines with 
a fixed number of machines where we want to minimize the maximum completion 
time, there exist an N C  algorithm that finds a (2 + s)-approximate solution to 
that instance. 

Proof. We find a fractional solution Xij according to Theorem 6 and then, in 
NC, we generate randomly an integer solution xij  as described above. From 
(9), (10) and (11) it is easy to see that  the integer solution is a 2-approximate 
solution (schedule). But, since we apply this theorem with the near optimal 
value C1 corresponding to the (1 + ¢)-approximate solution of (LP1), it implies 
a (2 + e)-approximate solution for (LP1). The integer solution found randomly 
in the above process can also be found deterministically in NC. Notice that  
the variables of constraint j do not appear in the rest of constraints (2), and 
furthermore any probability constraint (event) on the random variables involves 
at most m of them (the number of variables of any constraint (2)). Therefore, 
m-wise independence of random variables would suffice for the analysis. The 
derandomized technique of Luby [10] is then applicable. [] 

5 E x t e n s i o n  

Following we show that  the technique described above can be used to obtain 
parallel approximation algorithms also for other scheduling models. 

5.1 T h e  G e n e r a l i z e d  A s s i g n m e n t  P r o b l e m  

The Generalized Assignment Problem is viewed as a problem of scheduling un- 
related parallel machines with costs. (We are referred to [17] for the definition 
of the problem and its LP formulation.) Each of n jobs is to be processed by 
exactly one of m unrelated parallel machines. Job j takes Plj times units when 
processed in machine i and acquires a cost c~j. Also there is supposed that  the 
load of any machine is at most T. This problem can be modeled by an integer 
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program by letting variables xij be 1 if job j is processed in machine i and 0 
otherwise. Here is the relaxed linear program (0 _ xij), referred to as (GA): 

minimize ~i~1 ~ j = l  cqxq  
subject to 

m ~ i = l  xij = l ( j = l , . . . , n )  
n ~ j = l p i j x i J  <_ T (i = 1 , . . . , m )  

We show that the Generalized Assignment Problem fits in the schema we de- 
scribed for Scheduling Unrelated Parallel Machines. To this aim we will give the 
linear programs (GA1), (GA2) and (GA3) (analogs to (LP1), (LP2) and (LP3)) 
and also we will mention some points that are more relevants. 

The program (GA) can be written equivalently as follows, denoted (GA1) 

minimize z 
subject to ~m__ 1 Ej----1 CijXij ~-- Z 

~ n  Ei= l  xij = 1 (j = 1 , . . . , n )  
E~=i pqxi j  <_ T (i = 1 , . . . ,  m) (12) 

73~ n Let us denote by C = ~i=1 ~ j = l  cij, the total cost of the instance and for any 
m j = 1 , . . . , n ,  cj = ~i=1 cij. Also we let the variable y such that z + y = C. 

Then, transforming (GA1) into a positive linear program in packing form goes 
through the following two programs (GA2) and (GA3): 

maximize y 
r t  subject to Ei'~l Ej=I  CijXij 27 Y ~ C 

m Ei=l  xij = 1 (j = 1 , . . . , n )  
n ~j=i  pqxq + u <_ T (i=l,...,m) 

0 <_ u,O < xij (i = 1 , . . . ,m;  j = 1 , . . . , n )  

maximize 
subject to 

n r f t  Y q- E j= I  Cj Ei.=-I ij 

T~ Eim--1 E j = I  cqxq  + y < C 
~i=~ zq <_ 1 

~ j = t  PijXij "4- U ~_ T 
0 < "a,O <__ Xij 

(j = 1 , . . . , n )  
(i = 1 , . . . ,  m) 
( i = l , . . . , r n ;  j = l , . . . , n )  

where u is a "dummy" variable that we add for the sake of the analysis. Having 
the linear programs (GA1), (GA2) and (GA3) we can follow the schema of the 
Sect(s). 2, 3 and 4 quite similarly. Here we give the analog of Proposition 3. 

P r o p o s i t i o n 9 .  The following hold: 
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a) If  (y, u, x) is a feasible solution for (GA2) of measure k, then it is also a 
n feasible solution for the (GA3) and has measure k + ~-~d=l ej. 

b) Given any feasible solution (y, u, x) for the (GA3) of measure k + ~ '=1 cj, 
we can compute in NC a feasible solution for (GA2) of measure at least k. 

Proof. We give a sketched idea of part b). Given a feasible solution (y, u, x) for 
(GA3) of measure k + ~ ' = 1  cj, we define (y', u ' ,  x ' )  as follows: 

- ~ = l X r j  y' min{y ,C  E E c i j x ~ j }  , x~ 5 : =  xi5 + , : =  - 
m 

i = 1  j = l  
n 

X s u' := m i n { u , m i n i { T -  E p i j  {j}} . (13) 
j----1 

From the above definition it is easy to prove that  (y~, u', x') is feasible for (GA2) 
and whose measure y~ is y~ _> k. Notice that  in (13) is where we use the "dummy" 
variable u so that  {x~j} satisfy also (12). [] 

We give (proof omitted) the following theorem which shows that  it is possible to 
recover in NC near optimal fractional solutions of (GA1) from those of (GA3). 

T h e o r e m  10. Assuming that m is a constant, for any e > O, we can find in N C  
a feasible solution of (GA1) (z', x') that is (1 + c)-approximate solution. 

Another point to be mentioned is that regarding the Randomized Rounding 
applied to the fractional solution. Because of (12), the schedule obtained by 
randomly rounding the fractional solution will have cost at most (2 + s) times 
the minimum cost and makespan at most 2T. 

T h e o r e m  11. Given an instance of Generalized Assignment, where m is a fixed 
constant, and we want to find a schedule that minimize the maximum completion 
time, and of makespan at most T, then there exist an RNC algorithm that finds 
a schedule whose cost is at most (2 + e) times the minimum cost and makespan 
at most 2T. The schedule can be found also deterministically in NC. 

6 C o n c l u s i o n s  

We have shown how to obtain a parallel approximation for Scheduling Unrelated 
Parallel Machines, when the number of machines is fixed. The condition for the 
number of machines to be fixed comes from the Luby & Nisan's schema. In fact, 
this condition can be relaxed up to m = O(logn) since in this case the running 
time of the the Luby & Nisan's algorithm is still polylogarithmic in n and we 
can still perform in NC the randomized rounding as well as the derandomization 
[13, 1]. Finally, we have shown how to apply the same technique to the General 
Assignment Problem of fixed number of machines and a given makespan T, to 
obtain a schedule whose cost is at most (2 + e) times the minimum cost and has 
makespan at most 2T. 
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