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1 I n t r o d u c t i o n  

In spite of the fact that many applications require replicated databases either for 
performance or fault-tolerance, replication has remained a research issue until 
recently. Today, the demand for practical replication schemes has greatly in- 
creased and some simple protocols are being implemented in databases (Oracle 
and Sybase, for instance) or in application development tools (Lotus Notes). 
These, however, are ad hoc implementations and the issue of replicated data 
management is still a source of controversy among database practitioners and 
researchers. On one hand, traditional synchronous protocols are too expensive 
in terms of message cost and communication latency, and they are susceptible 
to deadlocks when compared to non-replicated databases. An alternative ap- 
proach based on asynchronous updates may result in inconsistencies and an ever 
increasing number of reconciliation rules are needed [5]. 

The distributed systems and computing communities have in general been 
interested in the broader problem of fault-tolerance in distributed applications. 
In particular, several systems such as ISIS [4], Amoeba [8], Trans/Total [10], and 
Transis [2] provide broadcast communication to support fault-tolerant applica- 
tions. Broadcast communication primitives typically provide reliability, atomic- 
ity, and ordering properties at a single operation (or equivalently message) level. 
Transactions, on the other hand, require reliability, atomicity, and ordering guar- 
antees not for a single operation but for a group of operations. In order to use 
broadcast for transaction management in replicated data, this mismatch needs 
to be addressed [12]. 

In this paper, we propose a series of protocols that bridge the gap between 
database transactions and broadcast communication in the context of replicated 
databases. Our goal is twofold. From a database perspective, by using a pow- 
erful broadcast communication primitive, we hope to simplify the management 
of replicated databases and obtain some benefits. In particular, broadcasts can 
be used to guarantee the consistency of multiple copies of data and at the same 
time reduce the probability of deadlocks. In fact, in this paper we show that 
broadcast primitives hold the promise of eliminating single object deadlocks, 
and either of localizing deadlock resolution or even completely eliminating dead- 
locks. Our second goal is to provide an application platform for evaluating some 
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of the broadcast primitives. We show that  if broadcasts are powerful enough 
to provide certain "atomicity" guarantees, the database application can execute 
transactions very efficiently while almost completely eliminating deadlocks. How- 
ever, if such atomic properties are weakened due to various system assumptions, 
a database application that  requires strict database consistency must perform 
its own atomic commitment operations in spite of the properties of broadcast 
primitives. 

2 S y s t e m  a n d  C o m m u n i c a t i o n  M o d e l  

A distributed database [3] consists of a set of objects stored at different sites 
connected by a communication network. Users interact with the database by 
invoking transactions. A transaction is a sequence of read and write operations 
that  are executed atomically, i.e., a transaction either commits or aborts the re- 
sults of all its operations. A commonly accepted correctness criteria in databases 
is the serializable execution of transactions, which is enforced locally by strict 
two phase locking. We assume a fully replicated database in which the multiple 
copies of an object must appear as a single logical object. This is termed as one- 
copy equivalence and is enforced by a replica control protocol. The correctness 
criterion for replicated databases is one-copy serializability, which ensures both 
one-copy equivalence and the serializable execution of transactions. The atomic 
broadcast used in this paper is assumed to have the following properties [7]: 

1. If a correct (non-failed) site broadcasts a message rn, the primitive ensures 
that  the message will be delivered to all operational sites. Furthermore, if a 
site delivers a message rn, then all operational sites deliver m. 

2. A message is delivered at most once, and only if it was actually broadcast. 
3. If sites p and q deliver broadcast messages m and m r, then m and m ~ are 

delivered in the same order at all sites. 

In the Section 3, we assume no site failures, however, in the rest of the 
paper we consider sites that  are fail-stop [13]. In [1] issues involving failures and 
recovery are presented in more detail. 

3 A N a i v e  B r o a d c a s t  B a s e d  R e p l i c a  C o n t r o l  P r o t o c o l  

We first develop a simple protocol for maintaining a replicated database in an 
idealized environment when there are no failures. 

Given that  the underlying communication system supports totally ordered 
atomic broadcasts, the state machine approach [14] can be used to maintain 
replicated data. In the state machine approach operations are processed one at 
a time at every site in the same order. We can adopt this approach by requiring 
that  a transaction initiated at a site broadcasts all its operations to all other 
sites using the atomic broadcast and conflicting operations are executed in the 
order they are received. More formally, a transaction Ti executes as follows: 
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1. Every read or write operation on an object is executed by broadcasting the 
operation to all sites. For operation execution, the transaction waits until 
the operation has been delivered and executes locally before broadcasting 
the next operation. 

2. Operation execution at every site follows the strict two-phase locking rule. 
Read locks are obtained at all sites but the read operation is performed only 
at the initiator. Write locks are obtained and writes are performed at all 
sites. 

3. After executing all its operations Tg issues a commit or an abort,  which is 
broadcast to all sites. As a result Ti is committed or aborted at consistently 
at every site. 

The protocol is fairly simple and use of the state machine approach makes the 
correctness argument a straightforward extension of the serializability argument 
in a non-replicated databases[3]. 

Since this protocol uses atomic broadcast and the state machine approach, 
it is desirable to localize the deadlock resolution at every site. However, it is 
important  for the correctness of the protocol that  every site makes the same 
decisions. An immediate consequence of this requirement is that  every site must 
use the same approach for resolving deadlocks, i.e., all of them use either dead- 
lock detection using wait-for-graphs or deadlock prevention using wound-wait 
or wound-die [9]. The manner in which commit operations (and hence lock re- 
leases) are processed by the lock managers has direct ramifications on the choice 
of the deadlock resolution mechanism. If the lock manager does not process new 
operations before the completion of a prior commit operation, either strategy 
can be used. However, this is not required by the protocol. Hence, different sites 
may potentially execute o in different states. At site SA, the commit may have 
completed (and associated locks are released) and therefore o can be granted a 
lock whereas at site SB, the commit may still be in progress and hence o cannot 
be granted a lock. If deadlock prevention is used, this may result in inconsistent 
lock decisions at SA and SB for operation o; hence, deadlock prevention can- 
not be used in this case. On the other hand, if cycle-based deadlock detection 
is used, no such inconsistency would arise. Another restriction on the deadlock 
prevention strategy is that  it cannot be based on timers and time-outs since this 
may result in lock managers making different decisions for the same operation. 
Finally, the state machine approach precludes the use of multiple threads in the 
lock manager, at least in their conventional form. Multiple threads can be used 
only if the order of execution of operations does not differ from the order in 
which they are delivered. 

Next we list and analyze the advantages of using atomic broadcast over 
replica management protocols based on point-to-point communication: 

1. E l i m i n a t i o n  o f  a c k n o w l e d g e m e n t s .  Elimination of explicit acknowledge- 
ments at the application level becomes possible due to broadcast communica- 
tion which in turn reduces the communication latencies incurred to execute 
transactions. 
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2. Elimination of global synchronization. Since all sites make the schedul- 
ing decisions locally, they do not require any global synchronization for han- 
dling deadlocks. 

3. Elimination of deadlocks involving a s ingle  r e p l i c a t e d  o b j e c t .  Since 
concurrent and competing requests for the same object will be delivered to 
and processed by every lock manager in the same order, transactions could 
not be involved in single object deadlocks. 

4. Elimination of two-phase commitment. Since there are no failures and 
all sites make the same scheduling decisions, the two-phase commit protocol 
is not needed. 

4 Loca l i z ing  R e a d  O p e r a t i o n s  

An obvious drawback of the previous protocol is that  read operations are per- 
formed globally (i.e., broadcasting read lock requests to all database sites), which 
is an overkill. In general, read operations are significantly more frequent than 
write operations. Hence, localizing the execution of read operations is desirable 
and can result in significant performance improvements. The state machine ap- 
proach ensures that  conflict between read and write operations is detected at 
every site. Clearly to ensure serializability, detection of such a conflict at any 
one of these sites would have been sufficient. 

A simple extension of the state machine approach is to execute read opera- 
tions locally and write operations globally. This could, however, result in incon- 
sistent decisions at different sites. Since read operations obtain locks at a single 
site, a write operation may be executed at one site and be blocked on a read lock 
on another site resulting in different states at different sites. A straightforward 
way of resolving this is by requiring that  the completion of write operations at 
every site be explicitly acknowledged to the initiator. This approach requires ex- 
plicit acknowledgements and hence, the advantages of using broadcast primitives 
are not clear. Furthermore, deadlocked transactions may involve multiple sites. 
The only advantage that  remains is the elimination of single object deadlocks. 

We now explore a variation of this protocol, referred to as the broadcast-writes 
protocol, that  eliminates the need for acknowledgements while maintaining the 
local execution of read operations. A transaction Ti at site SA executes as follows: 

1. A read operation is executed locally after obtaining the corresponding read 
lock. 

2. A write operation is broadcast to all database sites and executed only after 
delivery. 

3. When the lock manager at site S receives write operation w~[x], it checks if 
the lock can be granted. If granting is successful, the operation is forwarded 
to the data  manager at S. If the lock cannot be granted, x is either locked 
by readers (3a.) or a writer (3b.). 
(a) For every transaction Tj that  holds a read lock on x, the lock manager 

checks whether Tj had already broadcast a commit. If so, the lock manw 
ager blocks wi[x] until it receives Tj's commit. If S had not sent Tj's 
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commit, Tj is aborted and Ti is granted the write lock (note that  all 
aborted transactions were initiated at site S). Tj's abort  is broadcast to 
release all locks held by Tj at other sites. 

(b) If x is locked by a writer, wi[x] is resolved at S using the appropriate 
deadlock resolution mechanism (which will be the same at all database 
sites). 

Ti terminates either by broadcasting a commit operation if atomic broadcast 
ensures the "all-or-nothing" property (a broadcast message is either delivered 
to all sites or to none of them regardless of site failures), or Ti terminates 
by employing an atomic commitment protocol. 

The correctness of the proposed protocol is argued in [1]. In this protocol, 
deadlocks only involve write operations. This is because a write operation is never 
blocked indefinitely on account of a read operation. Since write operations are 
performed globally, a cycle involving write operations will be detected at every 
site in the system. Hence, deadlocks can be detected and resolved consistently at 
all sites locally. Thus, localizing read operations allows us to realize the benefits 
of using atomic broadcasts as mentioned before. 

5 Localizing Transaction Execution 

The broadcast-writes protocol has several advantages over traditional protocols. 
However, it is not radically different from protocols based on point-to-point 
communication. In this section, we explore the possibility of completely localiz- 
ing transaction execution. This is achieved by deferring update operations until 
commit time, when a single message with all updates is sent to all other sites (a 
similar technique, field-calls, has been suggested to minimize the time interval 
during which a data item must be locked to be updated [6]). The advantage 
of this approach will be that  either only two broadcast messages are needed 
per transaction or the cost of atomic commitment depending upon whether the 
"all-or-nothing" property is supported by the communication subsystem. Since 
there are only two broadcast operations involved, the communication overhead 
is significantly reduced. A transaction Ti executes as follows: 

1. A read operation ri[x] is executed locally by obtaining a read lock on x. 
2. A write operation wi[y] is deferred until Ti is ready to commit. 
3. To terminate, Ti broadcasts its deferred writes w i [ x l , . . . ,  xn] to all sites. On 

receiving wi[xl,. . . ,  xn], the lock manager on site S grants all write locks to 
Ti atomically as in the broadcast-writes protocol, and then the writes are 
executed at S. 

4. After all the writes of Ti are executed locally, Ti broadcasts its commit 
operation to all sites. Ti terminates after the delivery and execution of its 
commit locally. 
If the broadcast communication does not support the "all-or-nothing" prop- 
erty then step 4 can be incorporated into an atomic commitment protocol. 
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This protocol is also based o n  reading one copy and writing all copies of 
replicated objects. Its correctness is a direct consequence of the correctness of the 
broadcast-writes protocol. However, the similarity ends here. The above protocol 
exploits the benefits of atomic broadcasts significantly. Unlike before, where 
deadlocks could involve write operations of different transactions, here deadlocks 
are not possible. This is because all the write locks for a transaction are obtained 
in a single atomic step at the local lock manager. Conflicts with read locks are 
dealt with by aborting read operations. Eliminating deadlocks is a significant 
benefit for replicated databases as has been argued recently by Gray et al. [5]. 

Since all write operations are known to all sites and they will be eventually 
executed, the question arises if the extra broadcast at step 4 is superfluous. We 
illustrate the necessity of step 4 with the help of the following example. Consider 
a site $1, where transaction T1 executes r l  Ix] and broadcasts its commit by send- 
ing wl [y]. Before wl [y] is delivered a commitment of transaction T2 containing 
w2[x,y] is delivered at $1. $1 can commit both transactions only if it reorders 
the delivery order of the write operations of the two transactions. Since all other 
sites are unaware of r l  Ix] they will execute the write operations of T1 and T2 in 
the order they are delivered. The addition of step 4 to the protocol avoids this 
inconsistency. 

We now develop a protocol that  overcomes the problem described above, and 
requires a single broadcast per transaction. A version number is maintained with 
each item in the database. A transaction Ti executes according to the following 
rules: 

1. A read operation rim is executed locally by obtaining a read lock on x. 
2. A write operation w~ Ix] is deferred until Ti is ready to commit. 
3. When the site that  initiated T/ is  ready to commit, if T~ is a read-only trans- 

action, the decision to commit is done locally and no message is broadcast. 
Otherwise the site broadcasts the set of reads with their version numbers 
and the set of writes. 
(a) On receiving the set of reads and writes of Ti, the lock manager on S first 

checks if the version of the items read by Ti are obsolete (that is if any 
of the versions on S are greater than the versions read by Ti). If so, Ti 
is aborted. Otherwise, S proceeds with the a t tempt  to grant atomically 
all the write locks. 

(b) If a write lock cannot be granted due to a conflict with a read operation, 
the reading transaction is aborted and T~ receives the lock. This step is 
the same as (3a.) of the secondprotocol .  

(c) Once all write locks are obtained, S executes the write operations and 
increments the version numbers of each data  item. 

4. Ti terminates at S as soon as it atomically obtains the write locks and 
successfully executes its write operations. 

Due to the fact that  the commit decision is not being broadcast by the site 
initiating Ti, the proof of correctness is different than the preceding protocol 
[1]. It is based on the fact that  the order of conflicting operations is the same 
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at all sites. This last protocol has the advantage over the previous one that  
it involves at most one broadcast operation. The decision to commit a writing 
transaction is taken independently at all sites and a second broadcast is not 
needed. The issue of maintaining the delivery order of write operations at a lock 
manager is still pertinent. In particular, if an operation wi[xl , . . . ,  x,~] is delayed 
by the lock manager at site S on account of conflicting writes, the question 
arises as to whether the lock manager can serve the next request in the input 
queue. A conservative but safe approach would be to delay all processing until 
wi[xl , . . . ,  x~] can be served at S. In other words, this corresponds to processing 
write operations serially at every site. This can be relaxed by processing write 
operations that  are disjoint with pending write operations in the queue. In other 
words, the delivery order of conflicting write operations has to be preserved but 
it is not necessary to do the same for non-conflicting write operations. 

6 D i s c u s s i o n  

In this paper, we have developed a series of replica management protocols that  
exploit the properties of atomic broadcasts. Our first protocol uses the state 
machine approach with atomic broadcast resulting in several advantages. Al- 
though the state machine approach simplifies the protocol design, it suffers from 
excessive broadcast overhead since every read operation is broadcast to every 
site. We therefore developed a protocol with localized reads to retain the ad- 
vantages of using broadcasts. In the final refinement, we presented a protocol 
in which transactions are executed locally and atomic broadcasts are used to 
terminate the transactions. Depending upon the properties available from the 
broadcast system, this resulted in transactions incurring a cost of either one 
or two broadcasts or atomic commitment. In either case, the resulting protocol 
has a significant advantage since transactions do not incur any communication 
delays during their execution except at termination. 

Our work points out several interesting directions for future research. From 
a systems point of view, a reevaluation of the broadcast primitives is needed 
to figure out what properties can be realistically achieved in failure-prone dis- 
tr ibuted systems, while being powerful enough to provide useful services to the 
application. From the database point of view, a study of relaxed consistency 
conditions, e.g., causal serializability [11] may be beneficial within the context 
of weaker broadcast properties, e.g., based on causal [15] rather than atomic 
broadcasts. 

R e f e r e n c e s  

1. D. Agrawal, G. Alonso, A. E1 Abbadi, and I. Stanoi. Exploiting Atomic Broad- 
cast in Replicated Databases. Technical report, Department of Computer Science, 
University of California at Santa Barbara, 1996. 

2. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: a communication sub-system 
for high availability. In Proceedings of the Twenty-Second International Symposium 
on Fault-Tolerant Computing, pages 76-84, 1992. 



503 

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re- 
covery in Database Systems. Addison Wesley, Reading, Massachusetts, 1987. 

4. K. P. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS 
Toolkit. IEEE Press, 1994. 

5. J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replication. In 
Proceedings of the 1996 ACM SIGMOD International Conference on Management 
of Data, pages 173-182, June 1996. 

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan 
Kaufman, 1993. 

7. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcast and Related Problems. 
In S. Mullender, editor, Distributed Systems, chapter 5, pages 97-147. Addison- 
Wesley, 1993. 

8. M. Frans Kaashoek and A. S. Tanenbaum. Group Communication in the Amoeba 
Distributed Operating Systems. In Proceedings of the 11th International Confer- 
ence on Distributed Computing Systems, pages 222-230, May 1991. 

9. E. Knapp. Deadlock Detection in Distributed Databases. ACM Computing Sur- 
veys, 19(4):303-328, December 1987. 

10. L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual 
synchrony. In Proceedings of the l~th International Conference on Distributed 
Computing Systems, pages 56-65, 1994. 

11. M. Raynal, G. Thia-Kime, and M Ahamad. From Serializable to causal Transac- 
tions for Collaborative Applications. Technical report, IRISA, 1996. Publication 
Interne No. 983. 

12. A. Schiper and M. Raynal. From Group Communication to Transactions in Dis- 
tributed Systems. Communications of the ACM, 39(4):84-87, April 1996. 

13. R. Schlichting and F. B. Schneider. Fail-Stop Processors: An Approach to Design- 
ing Fault-Tolerant Computing Systems. A CM Transactions on Computer Systems, 
1(3):222-238, August 1982. 

14. F. B. Schneider. Synchronization in Distributed Programs. ACM Transactions on 
Programming Languages and Systems, 4(2):125-148, April 1982. 

15. I. Stanoi, D. Agrawal, and A. E1 Abbadi. Using Broadcast Primitives in Replicated 
Databases. In Proceedings of the ACM Symposium on Principles of Distributed 
Computing, 1997. 

Acknowledgements 

This research was partially supported by LANL under grant number 6863V0016- 
3A, by CalTrans under grant number 65V250A, and by the NSF under grant  
numbers IRI94-11330, CDA94-21978 and CCR95-05807. 


