
Exploit ing Atomic Broadcast in Replicated
Databases (Extended Abstract)

Divyakant Agrawal 1, Gustavo Alonso 2, Amr E1 Abbadi 1, and Ioana Stanoi 1

1 Department of Computer Science, University of California, Santa Barbara, CA
93106, USA

2 Institute for Information Systems, Database Group, ETH Zentrum, CH-8092
Zurich, Switzerland

1 I n t r o d u c t i o n

In spite of the fact that many applications require replicated databases either for
performance or fault-tolerance, replication has remained a research issue until
recently. Today, the demand for practical replication schemes has greatly in-
creased and some simple protocols are being implemented in databases (Oracle
and Sybase, for instance) or in application development tools (Lotus Notes).
These, however, are ad hoc implementations and the issue of replicated data
management is still a source of controversy among database practitioners and
researchers. On one hand, traditional synchronous protocols are too expensive
in terms of message cost and communication latency, and they are susceptible
to deadlocks when compared to non-replicated databases. An alternative ap-
proach based on asynchronous updates may result in inconsistencies and an ever
increasing number of reconciliation rules are needed [5].

The distributed systems and computing communities have in general been
interested in the broader problem of fault-tolerance in distributed applications.
In particular, several systems such as ISIS [4], Amoeba [8], Trans/Total [10], and
Transis [2] provide broadcast communication to support fault-tolerant applica-
tions. Broadcast communication primitives typically provide reliability, atomic-
ity, and ordering properties at a single operation (or equivalently message) level.
Transactions, on the other hand, require reliability, atomicity, and ordering guar-
antees not for a single operation but for a group of operations. In order to use
broadcast for transaction management in replicated data, this mismatch needs
to be addressed [12].

In this paper, we propose a series of protocols that bridge the gap between
database transactions and broadcast communication in the context of replicated
databases. Our goal is twofold. From a database perspective, by using a pow-
erful broadcast communication primitive, we hope to simplify the management
of replicated databases and obtain some benefits. In particular, broadcasts can
be used to guarantee the consistency of multiple copies of data and at the same
time reduce the probability of deadlocks. In fact, in this paper we show that
broadcast primitives hold the promise of eliminating single object deadlocks,
and either of localizing deadlock resolution or even completely eliminating dead-
locks. Our second goal is to provide an application platform for evaluating some

497

of the broadcast primitives. We show that if broadcasts are powerful enough
to provide certain "atomicity" guarantees, the database application can execute
transactions very efficiently while almost completely eliminating deadlocks. How-
ever, if such atomic properties are weakened due to various system assumptions,
a database application that requires strict database consistency must perform
its own atomic commitment operations in spite of the properties of broadcast
primitives.

2 S y s t e m a n d C o m m u n i c a t i o n M o d e l

A distributed database [3] consists of a set of objects stored at different sites
connected by a communication network. Users interact with the database by
invoking transactions. A transaction is a sequence of read and write operations
that are executed atomically, i.e., a transaction either commits or aborts the re-
sults of all its operations. A commonly accepted correctness criteria in databases
is the serializable execution of transactions, which is enforced locally by strict
two phase locking. We assume a fully replicated database in which the multiple
copies of an object must appear as a single logical object. This is termed as one-
copy equivalence and is enforced by a replica control protocol. The correctness
criterion for replicated databases is one-copy serializability, which ensures both
one-copy equivalence and the serializable execution of transactions. The atomic
broadcast used in this paper is assumed to have the following properties [7]:

1. If a correct (non-failed) site broadcasts a message rn, the primitive ensures
that the message will be delivered to all operational sites. Furthermore, if a
site delivers a message rn, then all operational sites deliver m.

2. A message is delivered at most once, and only if it was actually broadcast.
3. If sites p and q deliver broadcast messages m and m r, then m and m ~ are

delivered in the same order at all sites.

In the Section 3, we assume no site failures, however, in the rest of the
paper we consider sites that are fail-stop [13]. In [1] issues involving failures and
recovery are presented in more detail.

3 A N a i v e B r o a d c a s t B a s e d R e p l i c a C o n t r o l P r o t o c o l

We first develop a simple protocol for maintaining a replicated database in an
idealized environment when there are no failures.

Given that the underlying communication system supports totally ordered
atomic broadcasts, the state machine approach [14] can be used to maintain
replicated data. In the state machine approach operations are processed one at
a time at every site in the same order. We can adopt this approach by requiring
that a transaction initiated at a site broadcasts all its operations to all other
sites using the atomic broadcast and conflicting operations are executed in the
order they are received. More formally, a transaction Ti executes as follows:

498

1. Every read or write operation on an object is executed by broadcasting the
operation to all sites. For operation execution, the transaction waits until
the operation has been delivered and executes locally before broadcasting
the next operation.

2. Operation execution at every site follows the strict two-phase locking rule.
Read locks are obtained at all sites but the read operation is performed only
at the initiator. Write locks are obtained and writes are performed at all
sites.

3. After executing all its operations Tg issues a commit or an abort, which is
broadcast to all sites. As a result Ti is committed or aborted at consistently
at every site.

The protocol is fairly simple and use of the state machine approach makes the
correctness argument a straightforward extension of the serializability argument
in a non-replicated databases[3].

Since this protocol uses atomic broadcast and the state machine approach,
it is desirable to localize the deadlock resolution at every site. However, it is
important for the correctness of the protocol that every site makes the same
decisions. An immediate consequence of this requirement is that every site must
use the same approach for resolving deadlocks, i.e., all of them use either dead-
lock detection using wait-for-graphs or deadlock prevention using wound-wait
or wound-die [9]. The manner in which commit operations (and hence lock re-
leases) are processed by the lock managers has direct ramifications on the choice
of the deadlock resolution mechanism. If the lock manager does not process new
operations before the completion of a prior commit operation, either strategy
can be used. However, this is not required by the protocol. Hence, different sites
may potentially execute o in different states. At site SA, the commit may have
completed (and associated locks are released) and therefore o can be granted a
lock whereas at site SB, the commit may still be in progress and hence o cannot
be granted a lock. If deadlock prevention is used, this may result in inconsistent
lock decisions at SA and SB for operation o; hence, deadlock prevention can-
not be used in this case. On the other hand, if cycle-based deadlock detection
is used, no such inconsistency would arise. Another restriction on the deadlock
prevention strategy is that it cannot be based on timers and time-outs since this
may result in lock managers making different decisions for the same operation.
Finally, the state machine approach precludes the use of multiple threads in the
lock manager, at least in their conventional form. Multiple threads can be used
only if the order of execution of operations does not differ from the order in
which they are delivered.

Next we list and analyze the advantages of using atomic broadcast over
replica management protocols based on point-to-point communication:

1. E l i m i n a t i o n o f a c k n o w l e d g e m e n t s . Elimination of explicit acknowledge-
ments at the application level becomes possible due to broadcast communica-
tion which in turn reduces the communication latencies incurred to execute
transactions.

499

2. Elimination of global synchronization. Since all sites make the schedul-
ing decisions locally, they do not require any global synchronization for han-
dling deadlocks.

3. Elimination of deadlocks involving a s ingle r e p l i c a t e d o b j e c t . Since
concurrent and competing requests for the same object will be delivered to
and processed by every lock manager in the same order, transactions could
not be involved in single object deadlocks.

4. Elimination of two-phase commitment. Since there are no failures and
all sites make the same scheduling decisions, the two-phase commit protocol
is not needed.

4 Loca l i z ing R e a d O p e r a t i o n s

An obvious drawback of the previous protocol is that read operations are per-
formed globally (i.e., broadcasting read lock requests to all database sites), which
is an overkill. In general, read operations are significantly more frequent than
write operations. Hence, localizing the execution of read operations is desirable
and can result in significant performance improvements. The state machine ap-
proach ensures that conflict between read and write operations is detected at
every site. Clearly to ensure serializability, detection of such a conflict at any
one of these sites would have been sufficient.

A simple extension of the state machine approach is to execute read opera-
tions locally and write operations globally. This could, however, result in incon-
sistent decisions at different sites. Since read operations obtain locks at a single
site, a write operation may be executed at one site and be blocked on a read lock
on another site resulting in different states at different sites. A straightforward
way of resolving this is by requiring that the completion of write operations at
every site be explicitly acknowledged to the initiator. This approach requires ex-
plicit acknowledgements and hence, the advantages of using broadcast primitives
are not clear. Furthermore, deadlocked transactions may involve multiple sites.
The only advantage that remains is the elimination of single object deadlocks.

We now explore a variation of this protocol, referred to as the broadcast-writes
protocol, that eliminates the need for acknowledgements while maintaining the
local execution of read operations. A transaction Ti at site SA executes as follows:

1. A read operation is executed locally after obtaining the corresponding read
lock.

2. A write operation is broadcast to all database sites and executed only after
delivery.

3. When the lock manager at site S receives write operation w~[x], it checks if
the lock can be granted. If granting is successful, the operation is forwarded
to the data manager at S. If the lock cannot be granted, x is either locked
by readers (3a.) or a writer (3b.).
(a) For every transaction Tj that holds a read lock on x, the lock manager

checks whether Tj had already broadcast a commit. If so, the lock manw
ager blocks wi[x] until it receives Tj's commit. If S had not sent Tj's

500

.

commit, Tj is aborted and Ti is granted the write lock (note that all
aborted transactions were initiated at site S). Tj's abort is broadcast to
release all locks held by Tj at other sites.

(b) If x is locked by a writer, wi[x] is resolved at S using the appropriate
deadlock resolution mechanism (which will be the same at all database
sites).

Ti terminates either by broadcasting a commit operation if atomic broadcast
ensures the "all-or-nothing" property (a broadcast message is either delivered
to all sites or to none of them regardless of site failures), or Ti terminates
by employing an atomic commitment protocol.

The correctness of the proposed protocol is argued in [1]. In this protocol,
deadlocks only involve write operations. This is because a write operation is never
blocked indefinitely on account of a read operation. Since write operations are
performed globally, a cycle involving write operations will be detected at every
site in the system. Hence, deadlocks can be detected and resolved consistently at
all sites locally. Thus, localizing read operations allows us to realize the benefits
of using atomic broadcasts as mentioned before.

5 Localizing Transaction Execution

The broadcast-writes protocol has several advantages over traditional protocols.
However, it is not radically different from protocols based on point-to-point
communication. In this section, we explore the possibility of completely localiz-
ing transaction execution. This is achieved by deferring update operations until
commit time, when a single message with all updates is sent to all other sites (a
similar technique, field-calls, has been suggested to minimize the time interval
during which a data item must be locked to be updated [6]). The advantage
of this approach will be that either only two broadcast messages are needed
per transaction or the cost of atomic commitment depending upon whether the
"all-or-nothing" property is supported by the communication subsystem. Since
there are only two broadcast operations involved, the communication overhead
is significantly reduced. A transaction Ti executes as follows:

1. A read operation ri[x] is executed locally by obtaining a read lock on x.
2. A write operation wi[y] is deferred until Ti is ready to commit.
3. To terminate, Ti broadcasts its deferred writes w i [x l , . . . , xn] to all sites. On

receiving wi[xl,. . . , xn], the lock manager on site S grants all write locks to
Ti atomically as in the broadcast-writes protocol, and then the writes are
executed at S.

4. After all the writes of Ti are executed locally, Ti broadcasts its commit
operation to all sites. Ti terminates after the delivery and execution of its
commit locally.
If the broadcast communication does not support the "all-or-nothing" prop-
erty then step 4 can be incorporated into an atomic commitment protocol.

501

This protocol is also based o n reading one copy and writing all copies of
replicated objects. Its correctness is a direct consequence of the correctness of the
broadcast-writes protocol. However, the similarity ends here. The above protocol
exploits the benefits of atomic broadcasts significantly. Unlike before, where
deadlocks could involve write operations of different transactions, here deadlocks
are not possible. This is because all the write locks for a transaction are obtained
in a single atomic step at the local lock manager. Conflicts with read locks are
dealt with by aborting read operations. Eliminating deadlocks is a significant
benefit for replicated databases as has been argued recently by Gray et al. [5].

Since all write operations are known to all sites and they will be eventually
executed, the question arises if the extra broadcast at step 4 is superfluous. We
illustrate the necessity of step 4 with the help of the following example. Consider
a site $1, where transaction T1 executes r l Ix] and broadcasts its commit by send-
ing wl [y]. Before wl [y] is delivered a commitment of transaction T2 containing
w2[x,y] is delivered at $1. $1 can commit both transactions only if it reorders
the delivery order of the write operations of the two transactions. Since all other
sites are unaware of r l Ix] they will execute the write operations of T1 and T2 in
the order they are delivered. The addition of step 4 to the protocol avoids this
inconsistency.

We now develop a protocol that overcomes the problem described above, and
requires a single broadcast per transaction. A version number is maintained with
each item in the database. A transaction Ti executes according to the following
rules:

1. A read operation rim is executed locally by obtaining a read lock on x.
2. A write operation w~ Ix] is deferred until Ti is ready to commit.
3. When the site that initiated T/ is ready to commit, if T~ is a read-only trans-

action, the decision to commit is done locally and no message is broadcast.
Otherwise the site broadcasts the set of reads with their version numbers
and the set of writes.
(a) On receiving the set of reads and writes of Ti, the lock manager on S first

checks if the version of the items read by Ti are obsolete (that is if any
of the versions on S are greater than the versions read by Ti). If so, Ti
is aborted. Otherwise, S proceeds with the a t tempt to grant atomically
all the write locks.

(b) If a write lock cannot be granted due to a conflict with a read operation,
the reading transaction is aborted and T~ receives the lock. This step is
the same as (3a.) of the secondprotocol .

(c) Once all write locks are obtained, S executes the write operations and
increments the version numbers of each data item.

4. Ti terminates at S as soon as it atomically obtains the write locks and
successfully executes its write operations.

Due to the fact that the commit decision is not being broadcast by the site
initiating Ti, the proof of correctness is different than the preceding protocol
[1]. It is based on the fact that the order of conflicting operations is the same

502

at all sites. This last protocol has the advantage over the previous one that
it involves at most one broadcast operation. The decision to commit a writing
transaction is taken independently at all sites and a second broadcast is not
needed. The issue of maintaining the delivery order of write operations at a lock
manager is still pertinent. In particular, if an operation wi[xl , . . . , x,~] is delayed
by the lock manager at site S on account of conflicting writes, the question
arises as to whether the lock manager can serve the next request in the input
queue. A conservative but safe approach would be to delay all processing until
wi[xl , . . . , x~] can be served at S. In other words, this corresponds to processing
write operations serially at every site. This can be relaxed by processing write
operations that are disjoint with pending write operations in the queue. In other
words, the delivery order of conflicting write operations has to be preserved but
it is not necessary to do the same for non-conflicting write operations.

6 D i s c u s s i o n

In this paper, we have developed a series of replica management protocols that
exploit the properties of atomic broadcasts. Our first protocol uses the state
machine approach with atomic broadcast resulting in several advantages. Al-
though the state machine approach simplifies the protocol design, it suffers from
excessive broadcast overhead since every read operation is broadcast to every
site. We therefore developed a protocol with localized reads to retain the ad-
vantages of using broadcasts. In the final refinement, we presented a protocol
in which transactions are executed locally and atomic broadcasts are used to
terminate the transactions. Depending upon the properties available from the
broadcast system, this resulted in transactions incurring a cost of either one
or two broadcasts or atomic commitment. In either case, the resulting protocol
has a significant advantage since transactions do not incur any communication
delays during their execution except at termination.

Our work points out several interesting directions for future research. From
a systems point of view, a reevaluation of the broadcast primitives is needed
to figure out what properties can be realistically achieved in failure-prone dis-
tr ibuted systems, while being powerful enough to provide useful services to the
application. From the database point of view, a study of relaxed consistency
conditions, e.g., causal serializability [11] may be beneficial within the context
of weaker broadcast properties, e.g., based on causal [15] rather than atomic
broadcasts.

R e f e r e n c e s

1. D. Agrawal, G. Alonso, A. E1 Abbadi, and I. Stanoi. Exploiting Atomic Broad-
cast in Replicated Databases. Technical report, Department of Computer Science,
University of California at Santa Barbara, 1996.

2. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: a communication sub-system
for high availability. In Proceedings of the Twenty-Second International Symposium
on Fault-Tolerant Computing, pages 76-84, 1992.

503

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison Wesley, Reading, Massachusetts, 1987.

4. K. P. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS
Toolkit. IEEE Press, 1994.

5. J. Gray, P. Helland, P. O'Neil, and D. Shasha. The Dangers of Replication. In
Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data, pages 173-182, June 1996.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

7. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcast and Related Problems.
In S. Mullender, editor, Distributed Systems, chapter 5, pages 97-147. Addison-
Wesley, 1993.

8. M. Frans Kaashoek and A. S. Tanenbaum. Group Communication in the Amoeba
Distributed Operating Systems. In Proceedings of the 11th International Confer-
ence on Distributed Computing Systems, pages 222-230, May 1991.

9. E. Knapp. Deadlock Detection in Distributed Databases. ACM Computing Sur-
veys, 19(4):303-328, December 1987.

10. L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual
synchrony. In Proceedings of the l~th International Conference on Distributed
Computing Systems, pages 56-65, 1994.

11. M. Raynal, G. Thia-Kime, and M Ahamad. From Serializable to causal Transac-
tions for Collaborative Applications. Technical report, IRISA, 1996. Publication
Interne No. 983.

12. A. Schiper and M. Raynal. From Group Communication to Transactions in Dis-
tributed Systems. Communications of the ACM, 39(4):84-87, April 1996.

13. R. Schlichting and F. B. Schneider. Fail-Stop Processors: An Approach to Design-
ing Fault-Tolerant Computing Systems. A CM Transactions on Computer Systems,
1(3):222-238, August 1982.

14. F. B. Schneider. Synchronization in Distributed Programs. ACM Transactions on
Programming Languages and Systems, 4(2):125-148, April 1982.

15. I. Stanoi, D. Agrawal, and A. E1 Abbadi. Using Broadcast Primitives in Replicated
Databases. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, 1997.

Acknowledgements

This research was partially supported by LANL under grant number 6863V0016-
3A, by CalTrans under grant number 65V250A, and by the NSF under grant
numbers IRI94-11330, CDA94-21978 and CCR95-05807.

