
Time in Message Sequence Charts:
A Formal Approach

(Extended Abstract)
Piotr Kosiuczenko

Institut ftir Informatik, Ludwig-Maximilians-Universit~it, Oettingenstr. 67, D-80538 Munich,
Germany.
E-mail: kosiucze@ informatik.uni-muenchen.de

Abstract
Message Sequence Charts (MSC) is a graphical trace language for description and specification of
communication behaviour of system components and their environment by means of message
interchange. The goal of this paper is to provide a formal semantics for time aspects of MSC. Pro-
posed semantics is based on Timed Maude which is an object-oriented real-time language. It
extends a Maude semantics designed for the "untimed" part of basic MSC. We show how Timed
Maude can be used to specify timers, and how they can be used to specify timing of an action, and
timing imposed on message deliverance.

1. Introduction

Message Sequence Charts (MSC) have been introduced to provide a trace language for de-
scription and specification of communication behaviour of system components and their en-
vironment by means of message interchange [ITU 93, 96]. They are used as a support for
object-oriented languages, in particular to formalize interaction diagrams (c. f. [AnBe 95],
and ['WiK 96] for an algebraic approach to interaction diagrams). MSC may be independent-
ly used for requirement specification, interface specification, validation and simulation, test
case specification and documentation of real-time systems. The goal of this paper is to pro-
vide a formal semantics for time aspects of MSC (the reader is referred to [Kos 97b] for the
full version of the paper). There are already some formal semantics for MSC (cf. eg. [MaRe
94]). In general proposed semantics do not allow to define time aspects either. In general,
semantics mentioned above do not allow to formalize notions like decomposition, environ-
ment, local actions, and timers (c. f. [LaLe 95]). The only semantics which allows to specify
timers was defined in [AHP 96], but it covers only time aspects.

The semantics introduced in [Kos 97a] is based on object-oriented language Maude [Mes
92]. It provided a complete semantics for all constructs of basic MSC except of timers. The
semantics has several advantages. There is a direct correspondence between a textual MSC
specification and the corresponding formal specification. The formal specification introduc-
es explicitly objects and messages, and allows to talk about actions, message sending and
receiving, objects creation and deletion. It provides a clear concept of condition, as well as
flexible and natural concepts of vertical and horizontal compositions. Moreover, the seman-
tics is compositional, because thanks to the composition operators, semantics of a composed
MSC can be defined in terms its of components. Another advantage is, that a part of (Timed)
Maude gains a graphical representation.

In this paper, we will extended this semantics to allow for specifying behaviour in time.
As the underlying formalism, we use Timed Maude which is build on Timed Rewriting Log-

563

ic (TRL) as Maude on Rewriting Logic [KoWi 97]. In our semantics, an object gets its tim-
ing from its attributes. Timing of an object (and consequently of a system) is described using
timers only. Timers can be attached to states and to messages. An object can spawn multiple
timers running in parallel. States of an object are multisets consisting of timers and atomic
states. There are two types of atomic states: static states which can last arbitrary long or until
a specified event happens, and intermediate states which last only for 0 time.

2. Formal background

In this section, we describe shortly the underlying formalisms, but the reader is referred to
[Kos 97b, Kos 97a, KoWi 97, MeWi 92] for details. Timed Maude is a variant of Maude
where rewriting is replaced by timed rewriting. This means also that in Timed Maude inher-
itance is treated in the same way as in Maude by means of subsorting. An (object) class is
declared by an identifier, a list of attributes and their types. A message is a term that consists
of the message's address (the identifiers of the objects the message is addressed to) and,
possibly, parameters (in mixfix notation). An object is represented by a tupte - more pre-
cisely, by a term - comprising a unique object identifier, an identifier for the class the object
belongs to, and a multiset of attributes with their values constituting its state, e.g. term of
the form <G : Gate [up : state> represents an object with name G belonging to the class
Gate. The attribute "state" has value up. The sorts Message and Object are considered as
subsorts of the sort Configuration.

A Timed Maude program makes computational progress by rewriting its global state
(called "configuration"). A config'uration is a multiset, or a bag, of objects and messages. It
is represented by a term of the form: o 1 ® . . ® ok ® ml ® • • ® mi where ® is the function
symbol for multiset union (will usually write ol..ok ml..m3. The empty configuration is de-
noted by e. A timed step transforms a configuration into a subsequent configuration. It is of
the form t I - g r-->t2, where g is a label and tl, t2 are terms of sort configuration. An object
gets its timing from its attributes. We assume, that time progress in a synchronous way in all
components (cf. [KoWi 97]).

3. Model of Time

The semantics of MSC is based on following assumptions. If time constraints on an object
behaviour or a message deliverance are considered, then corresponding timer is attached to
object state or the message, respectively. An object can spawn multiple timers running in
parallel at a given time. Therefore we treat states of an object as multisets. Each element of
such a multiset can be a timer or an atomic state. An atomic state can be declared either static
or dynamic. A static state can last arbitrary long, whereas a dynamic state is supposed to
change in time. The duration of a dynamic state is assumed here to be 0 time units. Therefore
a dynamic state can be treated as an intermediate state.

Maude is in general much more expressive than MSC and only a part of it can be illustrated
with the graphical MSC notation. There are only three kinds of atomic steps a MSC instant
can execute: sending or receiving a message, creating or deleting of another object, and a
special action which changes object's state only. Consequently, the set L of atomic steps is

564

of the form {?, !, start, stop, ac 1 aCn}, and the corresponding rewrite formulas are of the
form:

rl
r l
r l
r l
r l

<O t state : sl> -- ! m 0 - -><O I state : $2> m .
m <O I state : st> - - ? m 0 - -><O I state : s2> •
start(o, o~) - -s tar t O1 0 --><O1 I state : s> .
stop(o, o 1) <O11 state : s> - - s top O 1 0-->Co

<O I state : st> - -ac i0- -> <O I state : s2>.
where message start and stop are predefined message types corresponding to object creation
and deletion: start, stop : Oid x Oid --> Msg .

If one of the conditions above holds, then we say, that object O preforms the corresponding
step.

We extend here Timed Maude by some specific rules to handle time elapse (Time elapse
is denoted by ~.) A term is assumed to be dynamic, if it is not declared to be static. The first
rule specifies, that static terms do not change in time:
Stat ic t e rm rule: For every term t : s static and for every r ~ Time holds:

t - - z r - > t .

Observe, that term T (defined below) is not static. We assume that all messages without
timers are static: (i. e. m : Mes static). To be able to deal with composed states and configu-
rations, we use a polymorphic multi-sum operation f . The following rule assures uniform
time elapse in all components of a state or a system (this is due to the fact, that all variables
are flexible). It is specially important, when an instance starts multiple timers which then run
in parallel with the same rate.
Composi t ion rule: For variables x and y holds:

x ® y - - z r - - > x ® y .

The following rule specifies, that objects get their timing from their states (let us remind,
that all variables are flexible and that states are multisets which may consist timers.):

Objec t t iming rule: For variable x : State holds:
<O : Oidl x : State> - -x r - - > < O : Oidl x : State>.

To be able to interleave steps which happen at the same time we add the following rule:

0- t ime reflexivity rule: For all terms t holds:
t - ~ 0 - > t .

It is worth of noticing, that in general we do not require reflexivity neither for objects nor
for messages which can have timers attached, because otherwise, we would not be able to
express hard real-time constraints.

3.1 Example: t imers
Let us consider two simple examples: a timer attached to a state, and a timer attached to a
message (see the figure). The MSC is to be read from top to bottom. To each object corre-
sponds a vertical line defining total ordering of events. Initial (final) states of objects are in-
dicated by empty (black) boxes. Timers are used to control time elapse in a system.

565

T(200)

m

Figure. Timer

A timer can be set with a certain time value and from this moment on it counts down de-
creasing the value. When it reached value zero it can not be further rewritten and blocks an
object until a specified event happens. We define a timer by a unary function symbol from
sort Time to a new sort "Timer". This leads to the following specification:

op dynamic T : Time - - > T i m e r ,
r l T(r I + r2) - - z rl ->T(r2) .

Observe, that the time value ofT(0) can not be decreased by any positive value r > 0. Timer
can be reset by a specified event, like arrival of a message, sending of a message, timeout
event of another timer and so on. For example one can define a rule specifying that t imer T
will be reset when message m arrives:

m <Ot l T(r) ® st> - - ? m 0 --><Ol I s t>.

The figure shows timer T which was set with value 200. Before 200 seconds elapsed, mes-
sage m arrived and T was reset. The double triangle indicates when the timer was set and the
cross indicates when the timer was reset.

Delay caused by message transmission can be modeled using another kind of timer. Let m
be a message, we can attach a timer to m. It is convenient to specify such a timer as a binary
function del(m, r) which is to guarantee that message m will be delivered with delay r. The
specification is as follows:

op dynamic del: M s g x T i m e m > T M s g
rl del(m, r I + r2) --~ rl --> del(m, r2).

where TMsg is the sort of messages with attached timers. Observe, that for a message of the
form del(m, 0) there is no rule allowing time to pass, therefore such a message must be read
instantaneously (in 0 time) (c.f. [O1KW 96]).

4. Concluding remarks and future research

In this paper, timing of a system was model led using timers only. Atomic states are not ca-
pable of controlling time elapse. Timers can be attached to states and to messages to control
object 's and message timing, respectively. In the paper [AHP 96], there have been proposed
two possibilities to control time elapse: using timers and using direct time constraints im-
posed on transitions and message deliverance. It is interesting to observe, that the second
possibility is superfluous, because timers are sufficient both for defining timing of an object

566

behaviour as well as time constraints for message deliverance. State duration can be defined
using timers only. One can use two timers to define, for example, that a given state lasts for
4 to 5 seconds. The first timer would be set with value 4 the second with value 5. Here, we
have decided to define instantaneous steps triggered by timeouts. Such steps can be also
specified using two timers set with the same time value. Another possibility is to allow non-
determinism in the choice of timer value. Namely, a timer can be nondeterministically set
with a value from a given interval (in the previous case, it can be any value from interval [4,
5]). This allows to avoid spawning to many timers, which would result in hardly readable
specifications and figures.

Proposed semantics is still not complete. There are constructs like inline expressions and
high level MSC [ITU 96] which do not posses formal semantics. Therefore, we will extend
presented semantics also to this case.

References
[AnBe 95] M. Anderson, J. Bergstrand. Formalizing Use Cases with Message Sequence

Charts. Master Thesis, Telelo~c AB and Dep. of Communication Systems,
Lund Institute of Technolog% May 1995.

[AHP 96] R. Alur, G. Holzmann, D. Peled. An Analyzer for Message Sequence Charts.
Proc. TACAS'96, Passau, Germany, LNCS 1055, 1996, pp 35-48.

[ITU 93] ITU-TS Recommendation Z.120. Message Sequence Charts (MSC). ITU-TS,
Geneva, 1993.

[ITU 96] ITU-TS Recommendation "Z.120. ITU-TS Recommendation Z.120. Message
Sequence Charts (MSC). ITU-TS, Geneva, 1996.

[KoWi 97] P. Kosiuczenko, M. Wirsing. Timed Rewriting Logic with an Application to
Object-Based Specification. Science of Computer Programming. 28(2-3),
1997.

[Kos 97a] P. Kosiuczenko. Formal Semantics of Basic Message Sequence Charts. Proc. of
GUITG Fachgruppe "Kommunikation und Verteilte Systeme", Berlin, 1997.

[Kos 97b] P. Kosiuczenko. Time in Message Sequence Charts: a Formal Approach.
Technical Report Nr. 9703. Ins. for Informatik, Ludwig-Maximilians-
Universitiit, Miinchen, 1997. http://www.pst.informatik.uni-muenchen.de/.

[LaLe 95] P. Ladkin, S. Leue. Comments on a Proposed Semantics for Basic Message Se-
quence Charts. The Computer Journal, 37(9), January 1995.

[MaRe 94] S. Mauw, M. Reniers. An Algebraic Semantics of Basic Message Sequence
Charts. The Computer Journal, 37(4), 1994.

[Mes 92] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96, 1992, 73-155.

[O1KW 96] P. Olveczki, P. Kosiuczenko, M. Wirsing. Steamboiler specification problem:
an algebraic object-oriented solution. In J. Abrial, E. Boerger, H. Langmaack
(eds.): Formal Methods for Industrial Applications. LNCS 1165, 1996.

[WiK 96] M. Wirsing, A. Knapp. A Formal Approach to Object-Oriented Software Engi-
neering. In J. Meseguer (ed.): Rewriting Logic and its Application, Proc. of the
First. Intern. Workshop, Electronic Notes in TCS, Vol. 4, 1996.

