
567

Integrating an Entry Consistency Memory
Model and Concurrent Object-Oriented

Programming *

Antonio J. Nebro, Ernesto Pimentel and Josfi M. Troya

Depto. de Lenguajes y Ciencias de la Computaci6n, Universidad de M£1aga
E.T.S.I en Inform£tica. Campus de Teatinos.

E29071- M£laga (SPAIN)
e-mail: {antonio, ernesto, troya}@lcc.uma.es

Phone: +34 5 2133310
Fax: +34 5 2131397

Abs t r ac t . Entry consistency is a weak memory consistency model that
makes possible the efficient implementation of distributed shared mem-
ory (DSM) languages and systems. In this paper we study a way an
entry consistency based memory model can be integrated into concur-
rent object-oriented languages. One problem to be solved is how to satisfy
the entry consistency requirements when objects include synchronization
constraints. We propose a solution based on the definition of a program-
ming model with the following characteristics: (1) the establishment of
ownership relations among objects, (2) a distinction between command
and query operations, and (3) a lazy wait synchronization mechanism.
Preliminary results show that significant speed-ups can be obtained.

1 I n t r o d u c t i o n

Object orientation provides a high modeling power and a set of techniques for
the development and maintenance of software that benefit its reusability. On
the other hand, concurrency allows the exploitation of parallel architectures to
obtain speedups when solving a given problem, or to solve larger problems.
Concurrent object-oriented languages are at tract ive because they combine the
advantages of both paradigms. A number of concurrent object-oriented program-
ming models have been proposed, but none of them have been widely accepted.
Several reasons have been argued to explain this lack of agreement [5]. A general
opinion is that implementat ion of these languages is inefficient [3] [4] because
object communication is based on some kind of message passing, making com-
munications among local objects more expensive in comparison to the invocation
costs in sequential languages. A related problem is the high cost of remote invo-
cations in distributed systems.

* This work was funded in part by the "Comisi6n Interministerial de Ciencia y Tec-
nologfa" (CICYT) under grant TIC94-0930-C02-01.

568

The problem of obtaining good parallel performance requires cost reductions
in both local and remote invocations. We focus mainly on the latter issue. The
purpose of our work is to study the applicability of distributed shared memory
(DSM) schemes [6] to concurrent object-oriented languages to reduce the costs
of remote invocations when they are implemented in distributed systems. In
particular, we want to study what requirements the object model has to fulfill
to allow object replication and its consequences for the programming model.
Distributed shared memory schemes are popular because, by using replication
and migration techniques, they allow the performance of language and system
implementations to be increased. The choice of a memory consistency model is
a trade-off between increasing concurrency and programming model complexity.
We choose the entry consistency memory model [2], a weak memory model that
associates a synchronization variable to each shared data unit. We also propose
a programming model that fits into the non-orthogonal, uniform and integrated
category of Papathomas's classification of concurrent object-oriented languages
[7]. Examples of languages of this category are those based on actors [1]. The
main advantage of these languages is that they contribute to reducing the com-
plexity problem, because concurrent programs only have one kind of component,
the object, which has a well defined structure and behavionr.

The rest of this paper is organized as follows. In Section 2, the programming
model we propose is described. Preliminary results are presented in Section 3.
Finally, some conclusions and future research are outlined.

2 A P r o g r a m m i n g M o d e l b a s e d o n E n t r y C o n s i s t e n c y

We propose a programming model characterized by an object and a concurrency
model. An object is an entity having three basic components: a state, an interface
and a set of synchronization constraints. The state can only be accessed through
the operations defined in the interface. Synchronization constraints prevent the
acceptance of operations when these are not allowed. Objects may invoke op-
erations on other objects, create more objects and modify their internal state
because of an operation is performed. A parallel program is composed of a col-
lection of objects (some of which can be replicated) that communicate among
themselves invoking the operations defined in their interfaces. Objects cannot
simultaneously execute more than one operation that can modify its state.

Objects establish among themselves owner-owned relations. An object can
only invoke the operations of another object if the latter is owned or acquired
by the former. The ownership can be exclusive or non-exclusive. An exclusive
ownership permits the owner to access the acquired object in mutual exclusion,
while non-exclusive ownership allows the same acquired object to be accessed
by several owners. If an owned object is replicated, the owners can access it in
parallel. When an owner object is not going to access an owned object again, it
releases the object. The rules that govern on object's ownership follow a protocol
satisfying the entry consistency requirements, with the following exception: the
owned object must be temporarily released when an invocation cannot be solved

569

because of a synchronization constraint. Therefore, a different object can access
it to change the state variables and allow the original owner to resume its activity.

We distinguish two kinds of operations: queries and commands. A query is an
operation which returns some information about the object, without modifying
its state. A command is an operation that modifies the state of the object,
without returning information about it. Thus, queries imply pure read accesses
and commands imply pure write accesses. If an object is replicated or resides in
a multiprocessor system, several queries can be performed in parallel, without
altering the basic object model, because this fact is transparent.

The concurrency model is based on the different behaviour of query and
command operations. Command invocations are asynchronous, so the owner
object can continue its execution in parallel with the owned object. If the owner
object invokes several commands sequentially, these must be accepted by the
owned object in the same order. Query invocations are synchronous, so the owner
must wait for the response of the owned object. If the owner object has issued
one or more command invocations before a query, this query will be accepted
when all the commands have been performed. Query invocation leads the owner
and the owned objects to synchronize, following a lazy wait mechanism [5].

The query-command distinction has the problem of eliminating hi-directional
communication between objects. Let us consider the specification of a typical
bounded buffer class, using a C + + like notation:

C 0 n c u r r e n t 0 b j e c t I n t B u f f e r
{ i n t b u f f e r [D I H] ;

int in, out, count ;
public:

IntBuffer() ;
iut head(); bool is_full(); bool is_empty(); int free_slots(); // queries
void put(int); void delete(); // Commands

constraints:
disable put when (count == DIM);
disable delete, head when (count == 0); } ;

This class has an interface composed of four query operations and two com-
mand operations. In order to ensure a correct manipulation of objects it is neces-
sary to own them before being used, and release them after. Thus, we can define
a h o l d construct to allow the ownership of objects. For example, the effects of
a ge t operation could be obtained as in Figure 1 (left).

I n t B u f f e r b u r ;
h o l d b u r {

i t em = b u r . h e a d () ;
b u r . d e l e t e () ;

} 1 . hold */

IntBuffer but ;
hold buf {

if (bur.free_slots > n)
for (int i = 1; i++; i<n)

bur.put(i) ;
}]* h o l d *]

IntBuffer bur ;
hold bur {

if (!bur.is_empty)
sun += buf.headO

} /* hold */

Fig. 1. The hold Construct

570

When an object a l invokes a h o l d over another object a~, it must be guar-
anteed that a l can access the most current state of a2, and this state cannot be
changed by another object while a l is executing the instructions inside the hold .
An exception to this rule is given by the non-acceptance by a2 of an operation
issued by a l that is disabled by a synchronization constraint.

The ho ld construct does not need to specify the kind of ownership. A com-
piler could examine the instructions inside it and decide if the ownership is exclu-
sive or non-exclusive depending whether all the invoked operations are queries
or not. For example, the code in Figure 1 (center) establishes an exclusive own-
ership, while the code in Figure 1 (right) establishes a non-exclusive ownership.

3 I m p l e m e n t a t i o n a n d P e r f o r m a n c e

The current implementation has been coded in C + + and consists of a runtime
system and a set of base classes that must be inherited by the classes of the
distributed programs. It runs on SUN UltraSPARC workstations on top of two
networks: a 10 Mb/sec ethernet and a 155 Mb/sec ATM network. We have used
the Solaris 2 thread package, assigning a thread to each object. The protocol
used for object replication is based on that of the Midway system [2].

In this section we present the performance of two parallel programs: matr ix
multiply, which allows us to measure the impact of replicating large size objects,
and a branch and bound algorithm for the resolution of the Traveling Salesman
Problem (TSP), which replicates an integer object.

MM is a simple matr ix multiply program which multiplies two square matri-
ces of integers. The parallel algorithm is based on dividing the result matr ix in
4 N square submatrices, and computing them in parallel. ~¥e present the results
of multiplying matrices with a size ranging from 400 to 1000.

E T t t 2 N o d e s 4 N o d e s S N o d e s A T M 2 N o d e s 4 N o d e s 8 N o d e s
4 0 0 1,59 2.57 2.90 4 0 0 f:63 3.09 4.57
600 1.72 3.05 4.03 600 1,77 3.44 6.10
800 1,85 3.34 4.71 800 1,88' 3':68 6.68

1000 1,91 3.52 5.27 1 0 0 0 1.94 " 3,79 7.12

Table 1. Speed-ups of parallel matrix multiply

BB is a parallel program that solves the TSP using a branch and bound algo-
rithm. The performance of the BB program is given in Figure 2. The experiments
have been carried out with a 100-city problem instance.

4 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented a concurrent object-oriented programming model based on
object replication. It is based on entry consistency, a weak consistency memory

571

8

' j j

s~ _,~eo_ _-up 4

2 J ~
1
o

2 4 6 $
Hottm

Fig. 2. Speed-up for a 100-city TSP Instance

model which allows an increase in performance but requires explicit annotations
of programs. We conclude that the requirements of entry consistency can be
held by a concurrent object-oriented programming model in an elegant way, by
the establishment of ownership relations among objects, the distinction between
commands and queries, and a lazy wait synchronization mechanism. Preliminary
results, using matr ix multiply and branch and bound algorithms, have been
presented.

There are several lines of future work. The first one is to add an exception
handling mechanism to the object model, to make it more usable. Another inter-
esting aspect to be considered is enhancing the expressive power of the model by
including the possibility of conditional acquirements, and to allow the ownership
of several objects at one time.

References

1. Agha, G: "Actors: A Model of Concurrent Computation in Distributed Systems".
The MIT Press. 1987.

2. Bershard, B. N., Zekauskas, M. 3. "Midway: Shared Memory Parallel Program-
ming with Entry Consistency for Distributed Memory Multiprocessors". Tech. Re-
port CMU-CS-91-170. 1991.

3. Karamcheti, V., Chien, A.: "Concert-Efficient Runtime Support for Concurrent
Object-Oriented Programming Languages on Stock Hardware". In Proceedings of
Supercomputing'93, Portland, Oregon. November 1993.

4. Matsuoka, S., Taura, K., Yonezawa, A.: "Highly Efficient and Encapsulated Re-use
of Synchronization Code in Concurrent Object-Oriented Languages". OOPSLA'93.

5. Meyer, B: "Systematic Concurrent Object-Oriented Programming". Communica-
tions of the ACM, vol. 36, no. 9. September 1993.

6. Nitzberg, B., Lo, V.: "Distributed Shared Memory: A Survey of Issues and Algo-
rithms". IEEE Computer, vol 24. August 1991.

7. Papathomas, M.: "Concurrency Issues in Object-Oriented Languages". Tech. Rep.
Centre Universitaire Informatique. University of Geneva, D. Tsichritzis, Ed., 1989.
1992.

