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Abs t r ac t .  Entry consistency is a weak memory consistency model that 
makes possible the efficient implementation of distributed shared mem- 
ory (DSM) languages and systems. In this paper we study a way an 
entry consistency based memory model can be integrated into concur- 
rent object-oriented languages. One problem to be solved is how to satisfy 
the entry consistency requirements when objects include synchronization 
constraints. We propose a solution based on the definition of a program- 
ming model with the following characteristics: (1) the establishment of 
ownership relations among objects, (2) a distinction between command 
and query operations, and (3) a lazy wait synchronization mechanism. 
Preliminary results show that significant speed-ups can be obtained. 

1 I n t r o d u c t i o n  

Object orientation provides a high modeling power and a set of techniques for 
the development and maintenance of software that  benefit its reusability. On 
the other hand, concurrency allows the exploitation of parallel architectures to 
obtain speedups when solving a given problem, or to solve larger problems. 
Concurrent object-oriented languages are at tract ive because they combine the 
advantages of both paradigms. A number  of concurrent object-oriented program- 
ming models have been proposed, but none of them have been widely accepted. 
Several reasons have been argued to explain this lack of agreement [5]. A general 
opinion is that  implementat ion of these languages is inefficient [3] [4] because 
object communication is based on some kind of message passing, making com- 
munications among local objects more expensive in comparison to the invocation 
costs in sequential languages. A related problem is the high cost of remote  invo- 
cations in distributed systems. 

* This work was funded in part by the "Comisi6n Interministerial de Ciencia y Tec- 
nologfa" (CICYT) under grant TIC94-0930-C02-01. 



568 

The problem of obtaining good parallel performance requires cost reductions 
in both local and remote invocations. We focus mainly on the latter issue. The 
purpose of our work is to study the applicability of distributed shared memory 
(DSM) schemes [6] to concurrent object-oriented languages to reduce the costs 
of remote invocations when they are implemented in distributed systems. In 
particular, we want to study what requirements the object model has to fulfill 
to allow object replication and its consequences for the programming model. 
Distributed shared memory schemes are popular because, by using replication 
and migration techniques, they allow the performance of language and system 
implementations to be increased. The choice of a memory consistency model is 
a trade-off between increasing concurrency and programming model complexity. 
We choose the entry consistency memory model [2], a weak memory model that 
associates a synchronization variable to each shared data unit. We also propose 
a programming model that fits into the non-orthogonal, uniform and integrated 
category of Papathomas's classification of concurrent object-oriented languages 
[7]. Examples of languages of this category are those based on actors [1]. The 
main advantage of these languages is that they contribute to reducing the com- 
plexity problem, because concurrent programs only have one kind of component, 
the object, which has a well defined structure and behavionr. 

The rest of this paper is organized as follows. In Section 2, the programming 
model we propose is described. Preliminary results are presented in Section 3. 
Finally, some conclusions and future research are outlined. 

2 A P r o g r a m m i n g  M o d e l  b a s e d  o n  E n t r y  C o n s i s t e n c y  

We propose a programming model characterized by an object and a concurrency 
model. An object is an entity having three basic components: a state, an interface 
and a set of synchronization constraints. The state can only be accessed through 
the operations defined in the interface. Synchronization constraints prevent the 
acceptance of operations when these are not allowed. Objects may invoke op- 
erations on other objects, create more objects and modify their internal state 
because of an operation is performed. A parallel program is composed of a col- 
lection of objects (some of which can be replicated) that communicate among 
themselves invoking the operations defined in their interfaces. Objects cannot 
simultaneously execute more than one operation that can modify its state. 

Objects establish among themselves owner-owned relations. An object can 
only invoke the operations of another object if the latter is owned or acquired 
by the former. The ownership can be exclusive or non-exclusive. An exclusive 
ownership permits the owner to access the acquired object in mutual exclusion, 
while non-exclusive ownership allows the same acquired object to be accessed 
by several owners. If an owned object is replicated, the owners can access it in 
parallel. When an owner object is not going to access an owned object again, it 
releases the object. The rules that govern on object's ownership follow a protocol 
satisfying the entry consistency requirements, with the following exception: the 
owned object must be temporarily released when an invocation cannot be solved 
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because of a synchronization constraint. Therefore, a different object can access 
it to change the state variables and allow the original owner to resume its activity. 

We distinguish two kinds of operations: queries and commands. A query is an 
operation which returns some information about the object, without modifying 
its state. A command is an operation that  modifies the state of the object, 
without returning information about it. Thus, queries imply pure read accesses 
and commands imply pure write accesses. If an object is replicated or resides in 
a multiprocessor system, several queries can be performed in parallel, without 
altering the basic object model, because this fact is transparent.  

The concurrency model is based on the different behaviour of query and 
command operations. Command invocations are asynchronous, so the owner 
object can continue its execution in parallel with the owned object. If the owner 
object invokes several commands sequentially, these must be accepted by the 
owned object in the same order. Query invocations are synchronous, so the owner 
must wait for the response of the owned object. If the owner object has issued 
one or more command invocations before a query, this query will be accepted 
when all the commands have been performed. Query invocation leads the owner 
and the owned objects to synchronize, following a lazy wait mechanism [5]. 

The query-command distinction has the problem of eliminating hi-directional 
communication between objects. Let us consider the specification of a typical 
bounded buffer class, using a C + +  like notation: 

C 0 n c u r r e n t 0 b j e c t  I n t B u f f e r  
{ i n t  b u f f e r [ D I H ]  ; 

int in, out, count ; 
public: 

IntBuffer() ; 
iut head(); bool is_full(); bool is_empty(); int free_slots(); // queries 
void put(int); void delete(); // Commands 

constraints: 
disable put when (count == DIM); 
disable delete, head when (count == 0); } ; 

This class has an interface composed of four query operations and two com- 
mand operations. In order to ensure a correct manipulation of objects it is neces- 
sary to own them before being used, and release them after. Thus, we can define 
a h o l d  construct to allow the ownership of objects. For example, the effects of 
a ge t  operation could be obtained as in Figure 1 (left). 

I n t B u f f e r  b u r  ; 
h o l d  b u r  { 

i t em = b u r . h e a d ( )  ; 
b u r . d e l e t e ( )  ; 

} 1 .  hold */ 

IntBuffer but ; 
hold buf { 

if (bur.free_slots > n) 
for (int i = 1; i++; i<n) 

bur.put(i) ; 
} ]*  h o l d  *]  

IntBuffer bur ; 
hold bur { 

if (!bur.is_empty) 
sun += buf.headO 

} /*  hold */  

Fig. 1. The hold Construct 



570  

When an object a l  invokes a h o l d  over another object a~, it must be guar- 
anteed that  a l  can access the most current state of a2, and this state cannot be 
changed by another object while a l  is executing the instructions inside the hold .  
An exception to this rule is given by the non-acceptance by a2 of an operation 
issued by a l  that  is disabled by a synchronization constraint. 

The ho ld  construct does not need to specify the kind of ownership. A com- 
piler could examine the instructions inside it and decide if the ownership is exclu- 
sive or non-exclusive depending whether all the invoked operations are queries 
or not. For example, the code in Figure 1 (center) establishes an exclusive own- 
ership, while the code in Figure 1 (right) establishes a non-exclusive ownership. 

3 I m p l e m e n t a t i o n  a n d  P e r f o r m a n c e  

The current implementation has been coded in C + +  and consists of a runtime 
system and a set of base classes that  must be inherited by the classes of the 
distributed programs. It runs on SUN UltraSPARC workstations on top of two 
networks: a 10 Mb/sec ethernet and a 155 Mb/sec ATM network. We have used 
the Solaris 2 thread package, assigning a thread to each object. The protocol 
used for object replication is based on that  of the Midway system [2]. 

In this section we present the performance of two parallel programs: matr ix  
multiply, which allows us to measure the impact of replicating large size objects, 
and a branch and bound algorithm for the resolution of the Traveling Salesman 
Problem (TSP),  which replicates an integer object. 

MM is a simple matr ix  multiply program which multiplies two square matri- 
ces of integers. The parallel algorithm is based on dividing the result matr ix in 
4 N square submatrices, and computing them in parallel. ~¥e present the results 
of multiplying matrices with a size ranging from 400 to 1000. 

E T t t  2 N o d e s  4 N o d e s  S N o d e s  A T M  2 N o d e s  4 N o d e s  8 N o d e s  
4 0 0  1,59 2.57 2.90 4 0 0  f:63 3.09 4.57 
600  1.72 3.05 4.03 600  1,77 3.44 6.10 
800  1,85 3.34 4.71 800  1,88' 3':68 6.68 

1000  1,91 3.52 5.27 1 0 0 0  1.94 " 3,79 7.12 

Table 1. Speed-ups of parallel matrix multiply 

BB is a parallel program that  solves the TSP  using a branch and bound algo- 
rithm. The performance of the BB program is given in Figure 2. The experiments 
have been carried out with a 100-city problem instance. 

4 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have presented a concurrent object-oriented programming model based on 
object replication. It is based on entry consistency, a weak consistency memory 
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Fig. 2. Speed-up for a 100-city TSP Instance 

model which allows an increase in performance but requires explicit annotations 
of programs. We conclude that  the requirements of entry consistency can be 
held by a concurrent object-oriented programming model in an elegant way, by 
the establishment of ownership relations among objects, the distinction between 
commands and queries, and a lazy wait synchronization mechanism. Preliminary 
results, using matr ix  multiply and branch and bound algorithms, have been 
presented. 

There are several lines of future work. The first one is to add an exception 
handling mechanism to the object model, to make it more usable. Another inter- 
esting aspect to be considered is enhancing the expressive power of the model by 
including the possibility of conditional acquirements, and to allow the ownership 
of several objects at one time. 

References  

1. Agha, G: "Actors: A Model of Concurrent Computation in Distributed Systems". 
The MIT Press. 1987. 

2. Bershard, B. N., Zekauskas, M. 3. "Midway: Shared Memory Parallel Program- 
ming with Entry Consistency for Distributed Memory Multiprocessors". Tech. Re- 
port CMU-CS-91-170. 1991. 

3. Karamcheti, V., Chien, A.: "Concert-Efficient Runtime Support for Concurrent 
Object-Oriented Programming Languages on Stock Hardware". In Proceedings of 
Supercomputing'93, Portland, Oregon. November 1993. 

4. Matsuoka, S., Taura, K., Yonezawa, A.: "Highly Efficient and Encapsulated Re-use 
of Synchronization Code in Concurrent Object-Oriented Languages". OOPSLA'93. 

5. Meyer, B: "Systematic Concurrent Object-Oriented Programming". Communica- 
tions of the ACM, vol. 36, no. 9. September 1993. 

6. Nitzberg, B., Lo, V.: "Distributed Shared Memory: A Survey of Issues and Algo- 
rithms". IEEE Computer, vol 24. August 1991. 

7. Papathomas, M.: "Concurrency Issues in Object-Oriented Languages". Tech. Rep. 
Centre Universitaire Informatique. University of Geneva, D. Tsichritzis, Ed., 1989. 
1992. 


