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Abst rac t .  Over the last decade, processor speed has become signifi- 
cantly higher than memory and disk speeds. Therefore, exploiting the 
memory hierarchy has emerged as a key problem in parallel computing. 
An out-of-core computation is one which operates on disk-resident data. 
This paper uses the concept of chain vectors for tiling out-of-core codes. 
The theory of chain vectors is discussed and extended, and their relation 
to reuse vectors is established. Then, chain vectors are used to optimize 
the tile size, shape, allocation and scheduling for out-of-core codes. 

1 I n t r o d u c t i o n  

A computation which operates on disk-resident arrays is called out-of-core, and 
an optimizing compiler for out-of-core computations is termed as out-of-core 
compiler. In contrast a computation which operates on data  sets in memory 
is called in-core. Chain vectors [7] are used in this paper primarily to guide 
to handling out-of-core programs; they can also be employed in a variety of 
compiler-based techniques such as automatic data  distribution. We emphasize 
the necessity of a data  space based approach for out-of-core computations in 
contrast to the iteration space based approaches employed by contemporary in- 
core parailelizing compilers. 

Tiling [1, 3, 8, 10], which has received considerable attention lately, is a com- 
piler technique which groups a number of iterations together in order to minimize 
communication costs and/or  maximize locality. Irigoin and Triolet [3] introduced 
tiles which are atomic, identical and bounded. In [8, 1], tiling has been used to 
combine (vectorize) the communication associated with each group of iteration 
points in order to amortize the high communication startup cost. The other ap- 
proaches [10] have generally concentrated on enhancing the cache performance 
by improving degree of data  reuse. In out-of-core computations, however, pri- 
mary data  structures, such as arrays, reside on disks, and the programs explicitly 
read from and write into disks. We call the unit of transfer between disk and 
memory a data tile and the technique to schedule disk reads and writes, data 
space tiling. In this paper, we (1) use the concept of chain vectors to guide the 
compilation of out-of-core codes, (2) discuss how the loop and data  transforma- 
tions interact with the chain vectors, (3) show how to determine important  tile 
parameters.  
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2 M a t h e m a t i c a l  P r e l i m i n a r i e s  

R e u s e  V e c t o r s  

We assume that  the loop bounds and the array subscripts are affine functions 
of the enclosing loop indices, and all the statements are inside the deepest loop. 
Such a loop nest define a polyhedron in Z g where K is the number of the loops 
in the nest. Each point of this polyhedron corresponds to an iteration of the loop 
nest, and can be denoted by a column vector i = [~1, L2, . . . ,  LK] T where Lj is the 
jth outermost loop index. If 11 and i2 are two iterations that  access the same 
data  element, the data reuse vector for this access can be defined as r = i2 - il. 
Consider the following assignment statement inside such a loop nest. 

Z ( A i  + a) . . . .  X ( B i  + b ) . . .  (1) 

We call A and B reference matrices, and al and 52 offset vectors. Data  reuse 
between these two references can be found by solving the system 

{ All + al = Bi2 + b2 lb < il, i2 _< u b  r = i2 - il } 

for r where lb and ub  denote the loop bounds. Each value of r = i2 - il gives a 
data  reuse vector, and all reuse vectors together constitute a data reuse matrix T~. 
We denote by ~D to a matrix, each column of which is a flow dependence vector; 
and by A to a matrix, each column of which is an anti-dependence vector. It is 
convenient to represent the reuse matrix as T¢ = [:D; A]. 

C h a i n  V e c t o r s  

Although the reuse vectors capture the data reuse between iterations and the 
matrix l )  C_ 7~ contains all the necessary information to tile the iteration space in 
a deadlock-free manner; since we are interested in tiling the data  (file) space, we 
need another abstraction which captures the precise relations between individual 
data  points (array elements). 

We begin by observing that  an r-dimensional array defines an r-dimensional 
polyhedron. The vectors that  define the relations between data  points are called 
chain vectors [7]. Let us consider again the assignment statement given by (1). A 
chain vector c for this reference pair can be defined as c = (Ai + a) - (Bi + b) = 
( A -  B)i  + ( a - b )  [7]. It should be emphasized that  the chain vectors, in general, 
can span different arrays, i.e. if B[i] is needed in computing A[i, j] then there is 
a chain vector from B[i] to A[i, j] for all i and j .  

R e l a t i o n  B e t w e e n  R e u s e  V e c t o r s  a n d  C h a i n  V e c t o r s  

In statement (1), suppose that  there is a reuse between two iterations it and 
i2. Let dj  denote a data  point (an array element) in the data  space (array X).  
Without loss of generality, we assume a flow dependence from il to i2 caused by 
the data  point dl .  

d l  = A i l + a = B i 2 + b  d 2 = B i l + b  d 3 = A i 2 + a  



603 

We can define the reuse vector r = i2 - il. On the other hand, there are two 
different chain vectors involved in this computat ion:  

cl -- d l  - d 2  = (All + a )  - (Bil  + b )  c2 = d3 - d l  = (Ai2 + a) - (Bi2 + b) 

Taking the difference between c2 and c 1 ~ we get the following relation among r,  
cl  and c2. 

c2 - cl = (A - B)(i2 - il) ~ c2 - el = (A - B ) r  (2) 

The rest of the paper  concentrates on a special case where A = B. In this case 
All + a  = Ai2 + b ,  and Ar = a - b .  On the other hand, c = (Ail + a ) -  (Ail + b )  = 
(Ai2 + a) - (Ai2 + b) = a - b. We now have the following important  relation: 

e = ( 3 )  

If  r E 7), we call c an effective chain vector, and denote it by u. In other words, 
an effective chain vector is a chain vector implied by a flow dependence. The  
chain matrix C is a matr ix,  each column of which is a chain vector. On the other 
hand, the effective chain matrix l~ C C is a chain matrix,  each column of which 
is an effective chain vector. It  is easy to see tha t  

/4 = AT) (4) 

3 T r a n s f o r m a t i o n s  

In this section, we present some results in order to demonstrate  the effect of loop 
and da ta  t ransformations on chain vectors. The proofs of the theorems can be 
found in [4]. 

T h e o r e m  1. Any unimodular transformation [11] T o] iteration space does not 
change U. 

Some recent research [5] has concentrated on da ta  space transformations.  
The  work on this area  can be divided into two categories as described below. 

The approaches with fixed storage layout for all arrays In this approach,  the 
da ta  space is t ransformed using linear non-singular t ransformation matrices; 
but the t ransformed space of each array is stored on disk in a fixed storage 
order. [5] has applied this technique to in-core programs. Let y be a linear non- 
singular da ta  t ransformation matrix.  Omit t ing the shift-type transformations,  
the da ta  t ransformation denoted by Y is applied in two steps (1) The original 
reference mat r ix  A is t ransformed to YA, and (2) The  da ta  layout on the disk is 
also t ransformed by using y ,  and the array declaration s ta tements  are changed 
accordingly. 

T h e o r e m  2. If  C is the original chain matrix, after the data transformation y 
(as defined above), :PC is the new chain matrix; but 7) remains unaffected by y .  
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The approaches with different storage layouts for different arrays This tech- 
nique assigns different disk layouts for different out-of-core arrays, if doing so 
promotes the spatial locality on disks. In this scheme, linear non-singular data 
transformation matrix ]3 is applied only to the data  space. 

Theorem 3. The linear non-singular data transformation matrix • (as defined 
above) does not change the chain matrix g. 

4 An Application: Data Space Tiling for Out-of-Core 
Computations 
Let N be the dimensionality of the data  space, K be the dimensionality of the 
iteration space, and M be the number of columns of the effective chain matrix U. 
A data  tile can be succinctly described by one of two ways. Let Pd be an N × N 
matrix, each column of which corresponds to tile boundary in that  dimension. 
It can be shown that  the columns of Pd constitute an extreme vector set for 
the effective chain matrix U. The other way to define a tile is an N × N matrix 
Hd, each column of which is a vector perpendicular to the tile boundary along 
that  dimension. The relation between Pd and ~ d  is ~Pd : ~-~d 1 [3, 8]. In the rest 
of the paper, Pd and ~'~d are  called tiling matrices. The factors that  determine 
shape and size of a data  tile are as follows: 

Computation Constraint In order to reduce the extra overhead, the compu- 
tation of data  tiles should be atomic; that  is, there should not be an effective 
chain vector cycle between any two neighboring data tiles. Tile shapes that  cause 
effective chain vector cycles are called illegal tiles. As an example, for the data  
space shown in Figure I:(A), the tiles (1) and (2) are legal, whereas the tile (3) 
is illegal. The grid intersections on the figure represent the data  points (array 
elements), and the arrows represent the effective chain vectors. Two example 
effective chain vectors that  lead to illegality for the tile (3) are shown as dashed 
lines. 

For the mathematical interpretation, let hl,h2,.. . . ,hN be the rows of the ~'~d 
matrix and Ul,U2,....,u M be the columns of the effective chain matrix U. The 
computation constraint can be stated as follows: 

hi .u j  _> 0 (5) 

for i = 1,2,... ,N and j = 1,2, . . . ,M. This inequality has also been used by [3], 
[8] and [1] for iteration space tiling. 

I / O  Constraint The I /O cost of a tile is determined by the number of disk 
accesses (I/O calls) required to read it from disk. Without loss of generality, we 
assume column-major layout of out-of-core data  on disk. Under this assumption, 
in order to minimize the I /O cost of a data  tile, the number of (sub)-column 
accesses should be minimized. In Figure I:(A), tile (1) and tile (2) have the same 
computation volume (6 data  points); however I /O cost (number of sub-columns) 
of tile (1) is 3 while that  of tile (2) is 2. 
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C o m m u n i c a t i o n  C o n s t r a i n t  The communication volume of a tile is the num- 
ber of chain vectors (effective or not) going from one tile to the others. This vol- 
ume may be reduced if the set of extreme vectors for chain vectors (i.e. columns 
of Pd) is a subset of the chain vectors. Consider Figure I:(B) for two legal tiles. 
The tile (1) leads to 5 communications whereas the tile (2) leads to 4 commu- 
nications. However, the tile (1) needs only 2 I /O calls while the tile (2) needs 3 
I /O calls. 

(A) (B) 

Fig. 1. Two different data spaces with different data tile shapes. 

Minimal Neighborhood Constraint For any data tile, the tile size along each 
dimension must be larger than the magnitude of the maximum of the correspond- 
ing components of chain vectors. This will ensure that  all the communicating 
tiles will be neighbors. This constraint prevents us to choose column tiles which 
otherwise would be optimal from the I /O perspective. 

M e m o r y  C o n s t r a i n t  The computation volume of a data  tile is the number of 
data  points (array elements) it contains and is equal to Idet(Pd)l. The computa- 
tion volume can not be larger than the size of the memory of a compute node. 
We can state this constraint as M > V~, where M is the size of the memory of 
a single processor (compute node) and V~ is the computation volume. 

4.1 Determining Tile Parameters 

Table 1 presents some notation used in the rest of this paper. The overall cost 
of a data  tile considering send communication and disk read costs only can be 
defined as follows: 

%o,t = 7) +Tm + % (6) 

~Cf vm 

7": ~ " % 
"T~ 
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Table 1. Notation. 

[ Symbol[Definition 
overall cost of a da ta  tile 
I /O cost of a da ta  tile 
communicat ion cost of a da ta  tile 
computat ion cost of a da ta  tile 
computat ion volume of a da ta  tile 
communicat ion volume of a da ta  tile 
I /O s ta r tup  cost 
communicat ion s tar tup cost 
cost of accessing an element from disk 
cost of communicat ing an element 
cost of computing an element 
number  of I /O calls to read a da ta  tile 
max imum message length of machine 
number  of processors (machine size) 

Notice that we have assumed each data tile needs communication. The op- 
timization problem is to find a ~)d ( ~ / d )  such that the Tcost will be minimized 
under the constraints Vw < M and Pd-lbt >_ O. Since this optimization problem 
is difficult to solve; we make a simple assumption in order to find a fast heuristic: 
We assume that Vu E U is lexicographically positive. 

T h e o r e m 4 .  In an N-dimensional data space, if Vu C Ll is lexicographicaUy 
positive, it is always possible to find a tiling matrix Pd of the form 

r 1 0 0 . . .  ° i ]  0 | - e l  1 0 . . -  0 0 
" ~ d :  ] ..0. --e.2...1. : : : 01 (s) 

L 0 0 . . . . . . .  e N -  1 

where ei >_ 0 so that Pd-lLt >_ O. 

Proof: Trivial. For sufficiently large ei values, Pd-lU _> 0 can always be satisfied.El 
This form of Pd defines specific data tile shapes on the data space with a 

computation volume (Vw) of 1. In order to increase the computation volume, 
these tiles should be re-scaled. Let Pl and P2 denote the columns of Pd for the 
two-dimensional case. Re-scaling Pl by ¢ and P2 by q0 results in the following 
Pd: 

Let us now impose our constraints on this specific type of re-scaled Pa. 

- C o m p u t a t i o n  Const ra in t :  e _> max(max(-u2Juli) ,  1), (ul~ ¢ O) where 
f \ 

( U l i ~  is  t h e  i th effective chain vector. u i  
\ U 2 i  / 
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- I / O  Cons tra in t :  ¢ should be minimized. 
2 C o m m u n i c a t i o n  Co ns t r a in t :  ~-~4=1 c~v/----1 2 - ~k=l (7-ld)i,kgkj should be min- 

imized as this expression is a measure of communication volume of a data 
tile in two-dimensional data space [8]. 

- Minima l  Ne ighborhood  Cons t ra in t :  ¢ > max([ct/D and ~ k max([c2j[) 

where cj = (clJ ~ is the jth chain vector° 
\ c2~ / 

- M e m o r y  Cons t r a in t :  ¢~ < M where M is the memory size of a compute 
node° 

Our proposed heuristic is as follows: 

Step 1: Using I / O  Cons t ra in t  and Min ima l  Ne ighborhood  C o n s t r a i n t  
determine ¢. 

Step 2: Using M e m o r y  Cons t ra in t  and Min imal  Ne ighborhood  Con- 
s t ra in t  determine ~. 

Step 3: Using C o m p u t a t i o n  C o n s t r a i n t  and C o m m u n i c a t i o n  C o n s t r a i n t  
determine e. 

4.2 Schedul ing of  D a t a  Ti les  for D i s t r i b u t e d - M e m o r y  M a c h i n e s  

The data tile shape determined in the previous section by using the chain vec- 
tors is I/O oriented. Since I/O cost (7)) is the dominating term in the overall 
cost expression given by equation (7); this tile is optimal from the I/O point 
of view and can be used effectively for uniprocessors. A large number of loop 
nests compiled by parallelizing compilers for massively parallel processors have 
data dependences requiring inter-processor communication within the loop nest. 
Since the data tiles defined by parameters (¢, T) found in the previous sec- 
tion do not consider the issues like load balance and distribution of out-of-core 
data across processors, they are not necessarily optimal for distributed-memory 
multicomputers. In order to balance the I/O, communication and parallelism 
requirements, the tile parameters (¢, T) should be chosen such that the total 
execution time of the nest will be minimized. The previous research on iteration 
space tiling considered the different types of dependence vectors, and for each 
type, the appropriate tile parameters were determined for rectangular tiles [6]. 
Instead, we take a different approach: We first fix the generic tile shape as in 
the previous section considering all possible chain vectors in the computation, 
and then tile the rectangular data (file) space on disk with parallelepiped data 
tiles. The desired scheduling scheme should minimize the inter-node communi- 
cation and processor idle time. In two-dimensional case, the tiles along Pl or P2 
direction can be allocated to a single processor. If the tiles are scheduled along 
the Pl direction, then the optimal tiling parameters are ~ = ~ and ¢ = py~. 
On the other hand, if the tiles are scheduled along the P2 direction, the optimal 

values are ~ ~ ~ and ¢ ~ y ~  We refer the interested reader to 

[4] for details. 



608 

5 Conc lus ions  

The difficulty of efficiently handling out-of-core data  limits the performance of 
supercomputers as well as the enormous potential of parallel machines. Unfortu- 
nately, most of the compiler techniques for optimizing locality are iteration space 
oriented and do not consider the efficient handling of out-of-core data  on disks. 
In this paper, we discussed the necessity of a data  space oriented approach for 
disk optimization, and used an extended version of the concept of chain vectors 
introduced in [7]. 
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