
Optimization of Out-of-Core Computations
Using Chain Vectors

M. Kandemir 1 J. Ramanujam 2 A. Choudhary 3

1 EECS Dept., Syracuse University, Syracuse, NY 13244
2 ECE Dept., Louisiana State University, Baton Rouge, LA 70803-5901

3 ECE Dept., Northwestern University, Evanston, IL 60208-3118

Abst rac t . Over the last decade, processor speed has become signifi-
cantly higher than memory and disk speeds. Therefore, exploiting the
memory hierarchy has emerged as a key problem in parallel computing.
An out-of-core computation is one which operates on disk-resident data.
This paper uses the concept of chain vectors for tiling out-of-core codes.
The theory of chain vectors is discussed and extended, and their relation
to reuse vectors is established. Then, chain vectors are used to optimize
the tile size, shape, allocation and scheduling for out-of-core codes.

1 I n t r o d u c t i o n

A computation which operates on disk-resident arrays is called out-of-core, and
an optimizing compiler for out-of-core computations is termed as out-of-core
compiler. In contrast a computation which operates on data sets in memory
is called in-core. Chain vectors [7] are used in this paper primarily to guide
to handling out-of-core programs; they can also be employed in a variety of
compiler-based techniques such as automatic data distribution. We emphasize
the necessity of a data space based approach for out-of-core computations in
contrast to the iteration space based approaches employed by contemporary in-
core parailelizing compilers.

Tiling [1, 3, 8, 10], which has received considerable attention lately, is a com-
piler technique which groups a number of iterations together in order to minimize
communication costs and/or maximize locality. Irigoin and Triolet [3] introduced
tiles which are atomic, identical and bounded. In [8, 1], tiling has been used to
combine (vectorize) the communication associated with each group of iteration
points in order to amortize the high communication startup cost. The other ap-
proaches [10] have generally concentrated on enhancing the cache performance
by improving degree of data reuse. In out-of-core computations, however, pri-
mary data structures, such as arrays, reside on disks, and the programs explicitly
read from and write into disks. We call the unit of transfer between disk and
memory a data tile and the technique to schedule disk reads and writes, data
space tiling. In this paper, we (1) use the concept of chain vectors to guide the
compilation of out-of-core codes, (2) discuss how the loop and data transforma-
tions interact with the chain vectors, (3) show how to determine important tile
parameters.

602

2 M a t h e m a t i c a l P r e l i m i n a r i e s

R e u s e V e c t o r s

We assume that the loop bounds and the array subscripts are affine functions
of the enclosing loop indices, and all the statements are inside the deepest loop.
Such a loop nest define a polyhedron in Z g where K is the number of the loops
in the nest. Each point of this polyhedron corresponds to an iteration of the loop
nest, and can be denoted by a column vector i = [~1, L2, . . . , LK] T where Lj is the
jth outermost loop index. If 11 and i2 are two iterations that access the same
data element, the data reuse vector for this access can be defined as r = i2 - il.
Consider the following assignment statement inside such a loop nest.

Z (A i + a) X (B i + b) . . . (1)

We call A and B reference matrices, and al and 52 offset vectors. Data reuse
between these two references can be found by solving the system

{ All + al = Bi2 + b2 lb < il, i2 _< u b r = i2 - il }

for r where lb and ub denote the loop bounds. Each value of r = i2 - il gives a
data reuse vector, and all reuse vectors together constitute a data reuse matrix T~.
We denote by ~D to a matrix, each column of which is a flow dependence vector;
and by A to a matrix, each column of which is an anti-dependence vector. It is
convenient to represent the reuse matrix as T¢ = [:D; A].

C h a i n V e c t o r s

Although the reuse vectors capture the data reuse between iterations and the
matrix l) C_ 7~ contains all the necessary information to tile the iteration space in
a deadlock-free manner; since we are interested in tiling the data (file) space, we
need another abstraction which captures the precise relations between individual
data points (array elements).

We begin by observing that an r-dimensional array defines an r-dimensional
polyhedron. The vectors that define the relations between data points are called
chain vectors [7]. Let us consider again the assignment statement given by (1). A
chain vector c for this reference pair can be defined as c = (Ai + a) - (Bi + b) =
(A - B)i + (a - b) [7]. It should be emphasized that the chain vectors, in general,
can span different arrays, i.e. if B[i] is needed in computing A[i, j] then there is
a chain vector from B[i] to A[i, j] for all i and j .

R e l a t i o n B e t w e e n R e u s e V e c t o r s a n d C h a i n V e c t o r s

In statement (1), suppose that there is a reuse between two iterations it and
i2. Let dj denote a data point (an array element) in the data space (array X).
Without loss of generality, we assume a flow dependence from il to i2 caused by
the data point dl .

d l = A i l + a = B i 2 + b d 2 = B i l + b d 3 = A i 2 + a

603

We can define the reuse vector r = i2 - il. On the other hand, there are two
different chain vectors involved in this computat ion:

cl -- d l - d 2 = (All + a) - (Bil + b) c2 = d3 - d l = (Ai2 + a) - (Bi2 + b)

Taking the difference between c2 and c 1 ~ we get the following relation among r,
cl and c2.

c2 - cl = (A - B)(i2 - il) ~ c2 - el = (A - B) r (2)

The rest of the paper concentrates on a special case where A = B. In this case
All + a = Ai2 + b , and Ar = a - b . On the other hand, c = (Ail + a) - (Ail + b) =
(Ai2 + a) - (Ai2 + b) = a - b. We now have the following important relation:

e = (3)

If r E 7), we call c an effective chain vector, and denote it by u. In other words,
an effective chain vector is a chain vector implied by a flow dependence. The
chain matrix C is a matr ix, each column of which is a chain vector. On the other
hand, the effective chain matrix l~ C C is a chain matrix, each column of which
is an effective chain vector. It is easy to see tha t

/4 = AT) (4)

3 T r a n s f o r m a t i o n s

In this section, we present some results in order to demonstrate the effect of loop
and da ta t ransformations on chain vectors. The proofs of the theorems can be
found in [4].

T h e o r e m 1. Any unimodular transformation [11] T o] iteration space does not
change U.

Some recent research [5] has concentrated on da ta space transformations.
The work on this area can be divided into two categories as described below.

The approaches with fixed storage layout for all arrays In this approach, the
da ta space is t ransformed using linear non-singular t ransformation matrices;
but the t ransformed space of each array is stored on disk in a fixed storage
order. [5] has applied this technique to in-core programs. Let y be a linear non-
singular da ta t ransformation matrix. Omit t ing the shift-type transformations,
the da ta t ransformation denoted by Y is applied in two steps (1) The original
reference mat r ix A is t ransformed to YA, and (2) The da ta layout on the disk is
also t ransformed by using y , and the array declaration s ta tements are changed
accordingly.

T h e o r e m 2. If C is the original chain matrix, after the data transformation y
(as defined above), :PC is the new chain matrix; but 7) remains unaffected by y .

604

The approaches with different storage layouts for different arrays This tech-
nique assigns different disk layouts for different out-of-core arrays, if doing so
promotes the spatial locality on disks. In this scheme, linear non-singular data
transformation matrix]3 is applied only to the data space.

Theorem 3. The linear non-singular data transformation matrix • (as defined
above) does not change the chain matrix g.

4 An Application: Data Space Tiling for Out-of-Core
Computations
Let N be the dimensionality of the data space, K be the dimensionality of the
iteration space, and M be the number of columns of the effective chain matrix U.
A data tile can be succinctly described by one of two ways. Let Pd be an N × N
matrix, each column of which corresponds to tile boundary in that dimension.
It can be shown that the columns of Pd constitute an extreme vector set for
the effective chain matrix U. The other way to define a tile is an N × N matrix
Hd, each column of which is a vector perpendicular to the tile boundary along
that dimension. The relation between Pd and ~ d is ~Pd : ~-~d 1 [3, 8]. In the rest
of the paper, Pd and ~'~d are called tiling matrices. The factors that determine
shape and size of a data tile are as follows:

Computation Constraint In order to reduce the extra overhead, the compu-
tation of data tiles should be atomic; that is, there should not be an effective
chain vector cycle between any two neighboring data tiles. Tile shapes that cause
effective chain vector cycles are called illegal tiles. As an example, for the data
space shown in Figure I:(A), the tiles (1) and (2) are legal, whereas the tile (3)
is illegal. The grid intersections on the figure represent the data points (array
elements), and the arrows represent the effective chain vectors. Two example
effective chain vectors that lead to illegality for the tile (3) are shown as dashed
lines.

For the mathematical interpretation, let hl,h2,.. . . ,hN be the rows of the ~'~d
matrix and Ul,U2,....,u M be the columns of the effective chain matrix U. The
computation constraint can be stated as follows:

hi .u j _> 0 (5)

for i = 1,2,... ,N and j = 1,2, . . . ,M. This inequality has also been used by [3],
[8] and [1] for iteration space tiling.

I / O Constraint The I /O cost of a tile is determined by the number of disk
accesses (I/O calls) required to read it from disk. Without loss of generality, we
assume column-major layout of out-of-core data on disk. Under this assumption,
in order to minimize the I /O cost of a data tile, the number of (sub)-column
accesses should be minimized. In Figure I:(A), tile (1) and tile (2) have the same
computation volume (6 data points); however I /O cost (number of sub-columns)
of tile (1) is 3 while that of tile (2) is 2.

605

C o m m u n i c a t i o n C o n s t r a i n t The communication volume of a tile is the num-
ber of chain vectors (effective or not) going from one tile to the others. This vol-
ume may be reduced if the set of extreme vectors for chain vectors (i.e. columns
of Pd) is a subset of the chain vectors. Consider Figure I:(B) for two legal tiles.
The tile (1) leads to 5 communications whereas the tile (2) leads to 4 commu-
nications. However, the tile (1) needs only 2 I /O calls while the tile (2) needs 3
I /O calls.

(A) (B)

Fig. 1. Two different data spaces with different data tile shapes.

Minimal Neighborhood Constraint For any data tile, the tile size along each
dimension must be larger than the magnitude of the maximum of the correspond-
ing components of chain vectors. This will ensure that all the communicating
tiles will be neighbors. This constraint prevents us to choose column tiles which
otherwise would be optimal from the I /O perspective.

M e m o r y C o n s t r a i n t The computation volume of a data tile is the number of
data points (array elements) it contains and is equal to Idet(Pd)l. The computa-
tion volume can not be larger than the size of the memory of a compute node.
We can state this constraint as M > V~, where M is the size of the memory of
a single processor (compute node) and V~ is the computation volume.

4.1 Determining Tile Parameters

Table 1 presents some notation used in the rest of this paper. The overall cost
of a data tile considering send communication and disk read costs only can be
defined as follows:

%o,t = 7) +Tm + % (6)

~Cf vm

7": ~ " %
"T~

606

Table 1. Notation.

[Symbol[Definition
overall cost of a da ta tile
I /O cost of a da ta tile
communicat ion cost of a da ta tile
computat ion cost of a da ta tile
computat ion volume of a da ta tile
communicat ion volume of a da ta tile
I /O s ta r tup cost
communicat ion s tar tup cost
cost of accessing an element from disk
cost of communicat ing an element
cost of computing an element
number of I /O calls to read a da ta tile
max imum message length of machine
number of processors (machine size)

Notice that we have assumed each data tile needs communication. The op-
timization problem is to find a ~)d (~ / d) such that the Tcost will be minimized
under the constraints Vw < M and Pd-lbt >_ O. Since this optimization problem
is difficult to solve; we make a simple assumption in order to find a fast heuristic:
We assume that Vu E U is lexicographically positive.

T h e o r e m 4 . In an N-dimensional data space, if Vu C Ll is lexicographicaUy
positive, it is always possible to find a tiling matrix Pd of the form

r 1 0 0 . . . ° i] 0 | - e l 1 0 . . - 0 0
" ~ d :] ..0. --e.2...1. : : : 01 (s)

L 0 0 e N - 1

where ei >_ 0 so that Pd-lLt >_ O.

Proof: Trivial. For sufficiently large ei values, Pd-lU _> 0 can always be satisfied.El
This form of Pd defines specific data tile shapes on the data space with a

computation volume (Vw) of 1. In order to increase the computation volume,
these tiles should be re-scaled. Let Pl and P2 denote the columns of Pd for the
two-dimensional case. Re-scaling Pl by ¢ and P2 by q0 results in the following
Pd:

Let us now impose our constraints on this specific type of re-scaled Pa.

- C o m p u t a t i o n Const ra in t : e _> max(max(-u2Juli) , 1), (ul~ ¢ O) where
f \

(U l i ~ is t h e i th effective chain vector. u i
\ U 2 i /

607

- I / O Cons tra in t : ¢ should be minimized.
2 C o m m u n i c a t i o n Co ns t r a in t : ~-~4=1 c~v/----1 2 - ~k=l (7-ld)i,kgkj should be min-

imized as this expression is a measure of communication volume of a data
tile in two-dimensional data space [8].

- Minima l Ne ighborhood Cons t ra in t : ¢ > max([ct/D and ~ k max([c2j[)

where cj = (clJ ~ is the jth chain vector°
\ c2~ /

- M e m o r y Cons t r a in t : ¢~ < M where M is the memory size of a compute
node°

Our proposed heuristic is as follows:

Step 1: Using I / O Cons t ra in t and Min ima l Ne ighborhood C o n s t r a i n t
determine ¢.

Step 2: Using M e m o r y Cons t ra in t and Min imal Ne ighborhood Con-
s t ra in t determine ~.

Step 3: Using C o m p u t a t i o n C o n s t r a i n t and C o m m u n i c a t i o n C o n s t r a i n t
determine e.

4.2 Schedul ing of D a t a Ti les for D i s t r i b u t e d - M e m o r y M a c h i n e s

The data tile shape determined in the previous section by using the chain vec-
tors is I/O oriented. Since I/O cost (7)) is the dominating term in the overall
cost expression given by equation (7); this tile is optimal from the I/O point
of view and can be used effectively for uniprocessors. A large number of loop
nests compiled by parallelizing compilers for massively parallel processors have
data dependences requiring inter-processor communication within the loop nest.
Since the data tiles defined by parameters (¢, T) found in the previous sec-
tion do not consider the issues like load balance and distribution of out-of-core
data across processors, they are not necessarily optimal for distributed-memory
multicomputers. In order to balance the I/O, communication and parallelism
requirements, the tile parameters (¢, T) should be chosen such that the total
execution time of the nest will be minimized. The previous research on iteration
space tiling considered the different types of dependence vectors, and for each
type, the appropriate tile parameters were determined for rectangular tiles [6].
Instead, we take a different approach: We first fix the generic tile shape as in
the previous section considering all possible chain vectors in the computation,
and then tile the rectangular data (file) space on disk with parallelepiped data
tiles. The desired scheduling scheme should minimize the inter-node communi-
cation and processor idle time. In two-dimensional case, the tiles along Pl or P2
direction can be allocated to a single processor. If the tiles are scheduled along
the Pl direction, then the optimal tiling parameters are ~ = ~ and ¢ = py~.
On the other hand, if the tiles are scheduled along the P2 direction, the optimal

values are ~ ~ ~ and ¢ ~ y ~ We refer the interested reader to

[4] for details.

608

5 Conc lus ions

The difficulty of efficiently handling out-of-core data limits the performance of
supercomputers as well as the enormous potential of parallel machines. Unfortu-
nately, most of the compiler techniques for optimizing locality are iteration space
oriented and do not consider the efficient handling of out-of-core data on disks.
In this paper, we discussed the necessity of a data space oriented approach for
disk optimization, and used an extended version of the concept of chain vectors
introduced in [7].

References

1. P. Boulet, A. Darte, T. Risset and Y. Robert. (Pen)-ultimate tiling? Technical Re-
port 93-36, Ecola Normale Superieure de Lyon, France, November 1993.

2. D. Gannon, W. Jalby and K. Gallivan. Strategies for Cache and Local Memory
Management by Global Program Transformations, Journal of Parallel and Dis-
tributed Computing, 5:587-616, 1988.

3. F. Irigoin and R. Triolet. Supernode Partitioning. Proc. 15th Annual ACM Symp.
Principles of Programming Languages, pages 319-329, San Diego, CA, January
1988.

4. M. Kandemir, A. Choudhary, and J. Ramanujam. Optimization of out-of-core com-
putations using chain vectors. CPDC Technical Report, Northwestern University,
June 1997.

5. M. F. P. O'Boyle and P. M. W. Knijnenburg. Non-singular Data Transformations:
Definition, Validity, Applications. In Proc. 6th Workshop on Compilers for Parallel
Computers, Aachen, Germany, 1996.

6. H. Ohta, Y. Salto, M. Kainaga and H. Ono. Optimal Tile Size Adjustment in Com-
piling General DO-ACROSS Loop Nests. In Proc. International Conference on
Supercomputing, Barcelona, July 1995.

7. J. Ramanujam and P. Sadayappan. A Methodology for Parallelizing Programs for
Multicomputers and Complex Memory Multiprocessors. In Proceedings of Super-
computing 89j pp. 637-646, November 1989.

8. J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaces for
Multicomputers. Journal of Parallel and Distributed Computing, 16(2):108-120,
October 1992.

9. A. Schrijver. Theory of Linear and Integer Programming, Wiley-Interscience series
in Discrete Mathematics and Optimization, John Wiley and Sons, 1986.

10. M. Wolf and M. Lam. A data Locality Optimizing Algorithm. in Proc. ACM SIG-
PLAN 91 Conf.Programming Language Design and Implementation, pages 30-44,
June 1991.

11. M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley,
CA, 1996.

