
Co-processor System Design for Fine-Grain
Message Handling in KUMP/D

Hiroshi Tomiyasu 1 , Shigeru Kusakabe 1 ,
Tetsuo Kawano l*, and Makoto Amamiya 1

Department of Intelligent Systems Graduate School of Information Science and
Electrical Engineering Kyushu University Kasuga, Fukuoka 816 Japan

Abs t r ac t . In parallel processing, fine-grain parallel processing is quite
effective solution for latency problem caused by remote memory accesses
and remote procedure calls. We have proposed a processor architec-
ture, called Datarol-II, that promotes efficient fine-grain multi-thread
execution by performing fast context switching among fine-grain concur-
rent processes. We are now building a prototype multi-media machine
KUMP/D (Kyushu University Multi-media Processor on Datarol-II) on
the basis of the fine-grain multi-threading architecture. In the design of
the KUMP/D, we used the commercial microprocessor for its processing
element, and designed a co-processor, called FMP(Fine-grain Message
Processor), for fine-grain message handling and communication control.
In this paper, we show the KUMP/D processor design and its perfor-
mance evaluation.

1 I n t r o d u c t i o n

In parallel processing, one of the most critical issues is the latency problem
caused by remote memory accesses and remote procedure calls. To solve this
problem, fine-grain parallel processing is quite effective. We have proposed a
processor architecture, called Datarol-II[7][2]. The Datarol-II architecture is an
evolution of the Datarol architecture[l] which surmounts drawbacks of dataflow
computat ion scheme, such as unnecessary data copy caused by-value data access
mechanism, increasing memory access by operand matching. The main idea of
the Datarol architecture is to extract a mult i- thread control program, called
Datarol, from a dataflow graph, to eliminate redundant flow controls in the
graph by introducing a by-reference data access concept.

The Datarol-II processor architecture is an optimized version of original
Datarol architecture. The Datarol-II executes fine-grain threads by means of
a program-counter-based execution pipeline with high-speed registers.

We are now building a prototype of multi- thread machine K U M P / D (Kyushu
University Multi-media Processor on Datarol - I I) [2]. In the design of the KUMP/D,
we used a commercial high speed microprocessor Pent ium rather than a com-
pletely new designed processor for its processing element.

By using a commercial high-end microprocessor, we can build a new machine
in a short design cycle that follows the mainstream of processor design technol-
ogy. Current commercially available microprocessors are designed as a single pro-
cessor or, at most, low-scale parallel processor, and they are tuned to offer very

* Currently, he is at NTT Software Laboratories.

780

high performance in internal sequential execution. However, their functions lack
in the high speed communication for supporting the higher-scale multi-thread
parallel processing. The key issue in designing a cost effective multi-threading
parallel machine is to develop a very simple high speed message handling and
communication control hardware device, or co-processor, which complements the
high speed internal execution by commercial microprocessor.

We design a new simple mechanism, FMD (Fine-grain Message Driven mech-
anism). A co-processor, FMP (Fine-grain Message Processor), is an external
hardware to realize efficient fine-grain message handling based on the FMD.
The FMP incorporates fine-grain data and synchronization messages into the
main computation minimally interrupting the core processor.

In the paper, we introduce the KUMP/D machine and its processing element
construction with Pentium and FMP, and discuss the feasibility of the design
from the viewpoint of cost/performance.

2 Overview of the K U M P / D

Fig. 1 shows an overview of the KUMP/D. Each processor element(PE) is based
on the Datarol-II architecture [7], which is especially designed for fine-grain
parallel processing. The PE construction is described in subsequent sections.

For the scalability, as the inter-PE network of the KUMP/D, we have chosen
a 2-D torus network[3], which is also suitable for mapping images on PEs. This
interconnection network is specialized for fine-grain message communication,
which includes parameter passing and result value returning. This network has
a deadlock-free structure based on its hierarchical packet buffers[4][12].

Since the interconnection network is not suitable for long I/O packet trans-
missions, KUMP/D has a specialized I/O network, which consists of serial links
connecting the PEs in a ring structure, for communication of long packets such
as video I /O packets and disk I/O packets[8]. One important feature of the I/O
network is that it supports a mechanism of the synchronization of each video
frame and process execution[12].

Interconnection Network------~

disk ~ - z ' - l ~ I '~ L~ - - I'

vO Network-----~l JJ

Fig. 1. Overview of the KUMP/D

781

3 F M D (F i n e - g r a i n M e s s a g e D r i v e n m e c h a n i s m)

The FMD (Fine-grain Message Driven mechanism) is a revised version of the
Datarol-II execution mechanism. The FMD is a message driven execution mecha-
nism, and an FMD message is simpler and more general than that of the Datarol-
II. Basic FMD message is an explicitly addressed remote memory write message
which also contains a continuation thread after its write operation. The FMD
uses a remote memory write message and a remote thread activation message.

Basic runtime model of the FMD is similar to that of the Datarol. A number
of function instances are created during program executions. A function instance
has a shared program code and private execution environment, which is called
an instance frame. A program code is split into threads. A thread is a code block
that is executed without any interrupts until its termination point. A context
switch may occur at the end of a thread. A context is realized as an instance
frame on memory.

By assuming the order of message sent to the same destination instance from
an instance is preserved, the FMD simplifies link-receive parameter passing of
the Datarol-II mechanism.

In the FMD, a caller instance sends messages which write argument da ta into
the callee instance frame, and the caller also sends a message which activates
the destination thread 2 as shown in Fig. 2.

In a function application, at first, a caller instance issues a message to get
a new instance frame. Second, the caller sends a message to the callee that has
newly obtained instance to activate initial thread. Then, the caller sends a set
of parameter data by link message to the callee. After the caller sends all the
data needed to an entry thread, the caller activate the entry thread by start
instruction.

Synchronizations of threads in an instance are realized by means of messages.
A thread that needs multiple inputs is activated after all the data arrived. In the
FMD, threads are repeatedly activated by messages along with the dependency,
and P E repeatedly executes activated thread during a program execution.

.......

! i

Fig. 2. Function invocation in FMD

P__m 't-----Y--T- 24 I 124x4
¢ I N°tj ?ec °°

~g ~l, ~ O ~ w o r k

 ocon y I
Cache M lorYll¢~M~3 ~ IOF [~' ':

l(256kbyte) 11(16 bvte)l[" ~ l I I

Fig. 3. Processor Element(PE)

2 We call such threads that are formally activated by receive messages in Datarol-II
"entry threads" in the FMD

782

4 F M P (F i n e - g r a i n M e s s a g e P r o c e s s o r)

The FMP is an implementation of the FMD mechanism, which assists fine-grain
message passing, thread synchronization, remote memory access, and instance
frame management.

The PE construction is shown in Fig. 3. When issuing a message, the CPU
writes a set of data to the FMP. Messages from the FMP to the CPU is written
to secondary cache, and the FMP starts a thread execution. In this thread, the
CPU gets these messages by explicitly inserted load instructions. To reduce bass
traffic, FMP has its own high speed memory called "FMP memory." In this
section, we describe main functions of the FMP.

4.1 Thread Synchronization Mechanism

In KUMP/D, we use a structure data called "SyncCell" for thread synchro-
nization. Each SyncCell has an instance frame address (frame), an instruction
pointer to starting thread address (IP), and a synchronization counter (count).
In function application, an initial thread gets SyncCells and initializes these
values.

Message passing among threads and thread synchronizations are operated
following way:

- A CPU sends arguments for the destination thread, and issues a SYNC FMP
instruction. The SYNC FMP instruction specifies the SyncCell number and
gives the FMP a synchronization point of a thread.

- When an FMP receives the SYNC message, the FMP decreases and checks
synchronization counter. If a synchronization has proved successful, then the
thread is activated.

- The FMP releases the SyncCell, and puts the instance frame address and
the starting thread address of active thread into the queue called "Thread
Queue."

- At the end point of each thread, a CPU gets a new active thread from Thread
Queue, and executes the thread.

4.2 Instance Frame Management

To reduce overhead for memory management, t h e K U MP /D uses fixed size in-
stance frames for small instances. The FMP has several frame stacks 3 These
frame stacks consist of pointers which point to the start addresses of free in-
stance frames. Instance frame allocation and release are implemented by these
stack operation.

When an application program requires a larger size instance frame, an in-
terruption is occurred, and a memory management routine supplies a required
frame.

3 Currently, the prototype of the KUMP/D supports four frame stacks.

783

5 F M P instruct ions

FMP instructions to issue a message are implemented as several kinds of memory
access instructions in CPU. In this section, we explain the FMP instructions and
FMP registers accessible from user programs, where FMP registers are internal
registers in FMP and are provided as an interface to CPU. (For more details,
see [2])

Table 1 shows a list of FMP instructions. In this table, Rs indicates a register
name of the CPU, FRa and FRs are register names of the FMP. When a CPU
issues an FMP instruction, the CPU sets a CPU register "Rs" and FMP registers
beforehand. Registers in square brackets mean value of the register.

Instruction Operand Function and Message Format Notes
<OP,ADDR,DATA>

FMP Register Operation
Rs SETFRA Set an FRa register

READFRA Rs Read an FRa register
SF.TFRS Rs Set an FRs register
READFRS Rs Read an Frs register

SyncCell Operation
ALLOCSCELL/Is, count !Get a SyncCell
SETSCELLIP Rs Set an Instruction Pointer(IP)

into the SyncCell

[Rs] =Frame
[Rs] =IP

LINK Rs, offset

RiLINK its, offset

START Rs

SYNC Rs
LSYNC Rs

Message Issue
i< SET, [ERa I +offset, [Rs I >

<SET,[FRa]+o f f set,([FRs],[Rs]) >

<START,[FRa],[Rs]>

<sYNc,[/~],->
<LSYNC,[FRa],[Rs]>

[Rs]=data
[FRa]=Instance Frame
[Rs]=o f f set
[FRa]=Instance Frame
[FRs]=SyncCell
[Rs] =IP
[FRa]=Instance Frame
[Rs]=SyncCell
[Rs]=data
[FRa]=SyncCeU

Othres
ALLOCFL Its Get an Instance Frame [Rs]=size
FREEFL Rs Release an Instance Frame [Rs]=size

Table 1. FMP instructions (for user program)

6 Performance Analysis

In this section, we evaluate the performance of the KUMP/D. To put it con-
cretely, we estimate the performance in sending/receiving messages for both the
KUMP/D and the Datarol-II. Because the message passing is the operations
very freaquently executed in fine-grain multi processing, evaluation of message
handling performance is very important. The Datarol-II processor is suitable
for performance comparison, since it has high speed hardware mechanism for
message handling[7].

784

6.1 P r e p a r a t o r y Ana lys i s

In a PE of the KUMP/D, since the CPU bus (memory bus) is used by FMP
instructions to issue a message as well as usual memory accesses, the memory
bus will easily be a bottleneck. In a PE of the Datarol-II, the potential bottleneck
is also access to Register Buffer(RB), which is used as cache memory in Datarol-
II[7]. Accordingly, we examine the capacity in handling messages (packets) for
three typical operations by focusing on the frequency of memory bus occupations.

(1) Funct ion invocat ion (f rame a l loca t ion and act ivat ion of initial th read) :
The call instruction of the Datarol-II PE corresponds to the following five
KUMP/D instructions which perform a frame allocation and an activation
of initial thread.
allocscell~
setscellip~ set SyncCell
allocfl ~ frame allocation
setfra start j initial thread activation

(2) Paramete r passing: In KUMP/D, a parameter passing uses following three
instructions, while two instructions (link and receive) are used in Datarol-II.

setfra 1 message for argument data
link J
start }

(3) Receiving
tions, while
allocscell~
setscellip~
setfra [
rlink
setfra [
lsync j

entry thread activation
result value: In KUMP/D, receiving a return value uses six instruc-
3 instructions (rlink, return and receive) are used in Datarol-II.

set SyncCell

rlink message

return message

Table 2 shows the number of memory bus cycles in the Datarol-II PE. In
the Datarol-II PE, a memory write (WD) occurs in FU to set continuation data.
When receiving a packet in CU, a memory read (RD) for continuation data and
a write for packet data (WD) occur. Table 3 shows the number of memory bus
cycles in the KUMP/D PE. In KUMP/D PE, CPU uses memory bus to issue
an FMP instruction (IK). FMP writes the contents of message to the memory
when received a message(Wg).

I I FCl c u I tot
(1) 1WD 1RDW1WD ilRD+2WD
(2)ilWD 1RD+IWD 1RD+2WD
(3) i2WD 2RD +2WD :2RD +4WD
Table 2. number of bus cycles

(Datarol-II)

I I FUI CU I total I
(1) 5!r 1WK 51K+lWK
(2) 3Ir]Wr 3Ig+IWK
(3) 6Ig 2WK 6Ir+2WK

Table 3. number of bus cycles
(KUMP/D)

785

Where, RD is the number of cycles used in read access from RB, and WD in
write access into RB. IK is the number of memory bus cycles used when CPU
issues an FMP instruction, and WK in write access into memory.

To compare KUMP/D with Datarol-II, we estimate the memory bus occupa-
tion time by using a clock rate of a KUMP/D PE (66 M Hz) a as a standard. A
PE of the K U M P / D executes with this shortest clock cycle, since FMP interface
to receive instructions from CPU can be built with simple logic.

We assume the external cache is an S-RAM with 15ns access time, and
memory access time of the KUMP/D (RK and WK) is 2-clock. On the other
hand, we assume the clock speed of the Datarol-II will be an half of Pentium,
since Datarol-II PE needs custom design. In Datarol-II PE, since one RB access
will be finished within a basic cycle, we assume RD = WD -~ 2 clocks.

Table 4 lists the number of clocks for three operations discussed above by
using this assumption. From this table, we can calculate that Datarol-II needs
32 clocks and the KUMP/D 46 clocks for a 2-arity function call with one result.
The K U M P / D PE uses the memory bus about 1.4 times more than Datarol-II
PE. If the access time of the memory bus dominates the execution time in PE,
the capacity for message handling of the KUMP/D is about 70% compared with
Datarol-II. Moreover, the number of instructions in K U M P / D is 17, while 8 in
Datarol-II.

[[Datarol-II KUMP/D!
(1) 6 12
(2) 6 8
(3) a2 16

Table 4. Total memory bus cycles. (All accesses are assumed as two clocks.)
As discussed above, regarding message handling, the performance of the

K U MP /D P E is assumed to be about 70% compared to Datarol-II processor
which runs at about half clock rate of the KUMP/D.

Since the increase of the clock speed-up of recent microprocessors pis so
rapid, the gap of clock rate between such microprocessors and custom-processors
will extend 5. Judging from this expectation, we can conclude that message
handling performance of the KUMP/D is almost the same as Datarol-II from
a practical point of view. In addition to that, K U MP /D PE has much higher
peak performance with fast clock rate and superscaler facility than that of the
Datarol-II.

6.2 P e r f o r m a n c e o f M e s s a g e H a n d l i n g

We use the behavior level simulations of the Datarol-II and K U M P / D for some
sample programs (see Fig. 4 and Fig. 5) to estimate the performance of PE. In

4 Current high-end microprocessors work at higher clock rate than 200 M Hz. However,
these processors do not achieve drastic speed up at bus cycles, therefore we can apply
these analysis of bus cycles for current microprocessors. If a new circuit technology
produces higher bus cycle, we will be able to achieve better performance for message
handling by designing the FMP for higher clock rate.

5 Even though we estimate that Datarol-II PE will work at half of the KUMP/D PE
(33MHz), it is hard to accomplish such a clock rate with custom design.

786

this simulation, we use hand compiled code. For Fibonacci(n) and Queen(n),
which are very fine-grain programs, elapsed time in Datarol-II is dominated
by the frequency of memory bus usage. When executing such programs on
KUMP/D, the memory bus will also be a bottleneck, since the memory bus
usage in KUMP/D is 1.4 times more than Datarol-II. These results agree well
with above estimates.

In larger problem size, i.e. n, on Fibonacci(n) , the reverse of performance
is caused by the difference of cache line filling mechanism. In order to reduce
the latency by cache miss hit, the Datarol-II processor has implicit loading
mechanism[7], which predicts next instance frame from the Thread Queue and
loads all cells of the frame. However, since the size of variables in Fibonacci(n)
is too small, this mechanism has overhead.

In Queen(n), which has a little longer threads and more variables, the dif-
ference of performances is smaller, there is no reverse of performance.

Since the frequency of message issues is smaller in practically used applica-
tions than these programs, the difference of performances will be smaller. Espe-
cially, in compute intensive applications, this approach of the KUMP/D will be
a reasonable solution.
× 103 [clOcks]

250

200

150

100

50

0

Ku.-,j /
9 11 13 lS

Pmblefn Size(n)
Fig. 4. Execution Time of

Fibonacci(n)
6.3 Per formance of the P r o t o t y p e

x io3 [cJocks]
S000
4S00
4O00
3500
3OOO
2S00
2OOO
1S00
1000
5OO

0 C 4

K U M P / D ~

~ n . ~ , Omal °MI

5 6 7 8
Problem Size(n)

Fig. 5. Execution Time of Queen(n)

In the prototype of the KUMP/D, we use a Pentium(66 M Hz) processor, and
the number of processor is 16.

Since the speed of an I/O serial link is about 33M bytes/sec, and there are
four serial lines, occupation rate by video data will be around 0.41. p

In this condition, Table 5 shows our performance predictions of the KUMP/D
for image processing by using hand compiled codes.

A P E of the KUMP/D will have enough performance for real time image
processing, except for extremely heavy application such as Ray-tracing.

In addition, to evaluate the balance of processor performance and inter con-
nection network, we predict a FFT program on the 16 processor system. Since
image mapping to each PE is completely free by using External Video Controller,
we can perform FFT by nearest neighbor communications. In this configuration,
the prototype of the KUMP/D will perform 512 × 512 point 2D FFT in 5 video
frames(NTSC).

787

Even in the prototype of the KUMP/D, this system will have enough per-
formance to perform real time image processing in NTSC video image. We will
achieve higher performance easily by increasing the number of PEs and perfor-
mance improvement of core processor.

7

IProblem
Ray-tracing

IPerformance
1 M [polygon/sec]
10 to 20 [objects/frame]

Polygon rendering 60 to 80 k [polygon/sec]
Canny filter 3.7 k [pixel/frame]
Region Segmentationi21.6 k [pixel/frame]

Table 5. Performance of PE
Related Work

In the design of an architecture, cost and performance trade-off should always
be taken into account considering the current and future trends of the VLSI
and microprocessor technology. One direction of multi-threading architecture
research is to find a way to implement a cost effective machine still preserving
the dataflow concept. Our research is on this direction, and several machine
architectures were designed[7][2].

However, these architectures required special hardware designs, and could
not get the benefit of the commercially available microprocessor technology.

Other projects like at MIT[10], ETL[ll], and others[5] took the similar ap-
proach, and they shared the same problem. Our FMD approach is an attempt to
use a off-the-shelf microprocessor for developing the fine-grain multi-threading
architecture. In addition to using the off-the-shelf microprocessor, we considered
two important points for the design of a massively parallel machine. One point is
that the architecture should be tuned to efficient data/message communication,
since communication is dominant in massively parallel computations. Another
point is that the dataflow concept, whether it is in fine level or in coarse level,
is quite natural as a parallel processing model.

Current commercially available microprocessors are designed as a single pro-
cessor or, at most, low-scale parallel processor, and they are tuned to offer very
high performance in internal sequential execution. However, their functions lack
in the high speed communication for supporting the higher-scale multi-thread
parallel processing. The key issue in desgining a cost effective multi-threading
parallel machine is to develop a very simple high speed message handling and
communication control hardware device, or co-processor, which complements the
high speed internal execution done by commercial microprocessor.

*T[9] at MIT and EARTH[6] is on the similar approach. Different point of
*T and EARTH from our approach is that these architectures use commercial
microprocessors for both the internal execution and the communication and
synchronization control. Since these architectures use the general purpose mi-
croprocessor for communication and synchronization control, message handling
and synchronization functions have to be implemented in software. This causes
an imbalance between the internal execution and the external communication
control, and declines the performance in fine-grain multi-threading.

788

8 Conclusion
In this paper, we gave a co-processor design of the KUMP/D , and showed per-
formance evaluation of the KUMP/D PE. We designed this architecture using a
commercial high-end microprocessor and a external co-processor FMP which is
a very simple high speed message handling and communication control hardware
device. The KUMP/D PE has the same performance of fine-grain parallel pro-
cessing as a custom designed Datarol-II PE, which works at half the rate of the
KUMP/D clock speed. Since KUMP/D CPU itself has quadruple performance
compared with Datarol-II PE, KUMP/D PE will achieve better performance
than Datarol-II PE in practically used applications.

We can build a high-performance fine-grain multi-thread machine in a short
term that follows the mainstream of processor design technology, because this
approach solves a problem in special hardware design such as expensive devel-
opment cost.

The K U M P / D efficiently handles asynchronous fine-grain parallel processes
and has high throughput and high flexibility necessary for the next generation
multi-media applications, which require complex computer vision and computer
graphics algorithms.

References

1. M. Amamiya, and R. Taniguchi, "Dataroh A Massively Parallel Architecture for
Functional Language," Proc. SPDP, pp. 726-735 (1990).

2. M. Amamiya, T. Kawano, H. Tomiyasu and S. Kusakabe,"A Practical Processor
Design For Multithreading," Proc. of the Sixth Symposium on Frontiers of Mass-
sively Parallel Computing, pp.23-32, 1996.

3. W. J. Dally "Performance Analysis of k-ary n-cube Interconnection Networks,"
IEEE Transactions on Computer, Vol. 39, No. 6, pp. 775-785 (1990).

4. I. S. Gopal, "Prevention of Store-and-Forward Deadlock in Computer Networks,
"IEEE Transactions on Communications, Vol. COM-33, No. 12, pp. 1258-1264
(1985).

5. V. G. Grafe and J. E. Hoch, "The Epsilon-2 Multiprocessor System," Journal of
Parallel and Distributed Computing, Vol.10, No.4, pp.309-318, 1990.

6. H. H. J. Hum, G. R. Gao, et.al., "A Design Study of EARTH Multiprocessors,"
Proc. 8th IEEE International Conference on Parallel Architecture and Compilation
Techniques (PACT'95), pp.59-68, 1995.

7. T. Kawano, S. Kusakabe, R. Taniguchi, and M. Amamiya, "Fine-grain Multi-
thread Processor Architecture for Massively Parallel Processin," Proc. of
HPCA'95(First IEEE Symposium on High-Performance Computer Architecture),
pp.308-317, 1995.

8. A. L. Narasimha, Reddy and James C. Wyllie, "I/O Issues in a Multimedia System,
" IEEE COMPUTER, pp. 69-74 (1994).

9. R. S. Nikhil, G. M. Papadopoulos and Arvind, "*T: A Multithread Massively
Parallel Architecture," Proc. 19th ISCA, pp.156-167, 1992.

10. G. M. Papadopoulos and D. E. Culler, "Monsoon: an Explicit Token-Store Archi-
tecture," Proc. 17th , pp.82-91, 1999.

11. S. Sakai, Y. Yamaguchi, K. Hiraki, and T.Yuba, "An Architecture of a Dataflow
Single Chip Processor," Proc. 16th ISCA, pp.46-53, 1989.

12. H. Tomiyasu, T. Kawano, R. Taniguchi and M. Amamiya, "KUMP/D: the Kyushu
University Multi-medea Processor," Proc. Computer Architectures for Machine
Perception '95, pp.367-374, (1995).

