
Karh/inen-Lo ve Transform: An Exercise in
Simple Image-Processing Parallel Pipelines

Martin Fleury, Andy C. Downton and Adrian F. Clark

Department of Electronic Systems Engineering, University of Essex, Wivenhoe Park,
Colchester, CO4 4SQ, U.K
tel: +44 - 1206 - 872795

fax: +44 - 1206 - 872900

e-mail fleum@essex.ac.uk

Abstract . Practical parallelizations of multi-phased low-level image-
processing algorithms may require working in batch mode. The features
of a common processing model, employing a pipeline of processor farms,
are described. A simple exemplar, the Karhfinen-Lo~ve transform, is pro-
totyped on a network of processors running a real-time operating sys-
tem. The design trade-offs for this and similar algorithms are indicated,
when a general solution is sought. Eventual implementation on large- and
fine- grained hardware is considered. The chosen exemplar is shown to
have some features, such as strict sequencing and unbalanced processing
phases, which militate against a comfortable parallelization.

1 Introduction
Many low-level image-processing (IP) algorithms, such as spatial filters, are
completely localized in their da ta references. If adjacent image data are over-
lapped at boundaries then at a small additional cost a data-farming program-
ming paradigm can be employed, in which the only communication is between
worker process and data farmer. Using separability and/or linearity, it is also
possible to decompose other algorithms, such as orthogonal transforms, rather
than employ a global access pattern. If these latter algorithms are viewed as
single-image library functions then a difficulty commonly arises because it is
necessary to centralize between the data-farming phases. However, since IP is
often in batch mode, it only requires a slight shift in perspective towards con-
tinuous data flows in order to realise that effective parallelizations may occur if
a pipeline is the normal form of processing.

In this paper, this basic concept is applied to a Karh/inen-Lo~ve transform
(KLT), which is generally engaged in batch mode. As a development environ-
ment, we have used a network of microprocessors running the VxWorks real-
time operating system [1]. Compared to other distributed environments, the
VxWorks-based system is attractive for algorithm prototyping: because it is an
isolated environment, because the thread structure is not superimposed on top of
heavy-weight processes, and because event response times are optimized. Since
the VxWorks system is not the final target parallel system, we are interested in
the computational complexity rather than the performance on VxWorks.

816

2 T h e V x W o r k s R e a l - T i m e K e r n e l

VxWorks is intended as a Unix-like single-user operating system (O.S.) for real-
time development work. The KLT program modules were written in 'C' and
cross-compiled on a PC running the NextStep O.S. Once compiled, the modules
are loaded and linked on a set of 68030 boards, each hosted by a PC. The
68030 processors are connected by an Ethernet LAN segment. For inter-processor
communication, VxWorks includes a source-compatible BSD socket API. 1 Each
program module consists of one or more threads, each of which can be spawned
as required. Remote spawning is accomplished by providing an iterative server,
which responds to requests over the LAN from the central farmer module.

Priority-based scheduling of threads is employed on worker modules, giving
priority to communication-handling threads. Messages are stored in circular buf-
fers, with access by the communication threads regulated through semaphores. 2
A message queue primitive is available in VxWorks which allows the application
thread to r endezvous with any communication thread. On the farmer module,
the s e l e c t socket call is employed in a way that de-multiplexes work requests in
a fair manner. A number of features enable the software structure to be reused,
e.g. tagged messages, the selection of a streamed communication mode and a
strict interface to application functions.

3 T h e K a r h i i n e n - L o ~ v e T r a n s f o r m

The KLT [2] is most widely used in applications such as multi-spectral analysis of
satellite-gathered images [3] through the resulting spectral signature of imaged
regions. Significant data reductions are also achieved in the storage of satellite
images if the multi-spectral set are transformed to KLT space. The KLT has
recently been applied to the recognition of facial images [4]. Notice that the size
of the image set is potentially much larger in the latter two applications.

Consider a sample set of real-valued images from an ensemble of images.
Create vectors with the equivalent pixel taken from each of the images, i.e. if
there are D images each of size M x N then form the column vectors Xk =
(x i O ' x l " ' ~ 3 ' " " " ' X D-I~T~j j for k = 0,1, . . . , M N - 1, i = 0,1, . . . , M - 1 and j =
0, 1 , . . . , N - 1 (with superscript T representing the transpose). Calculate the

1 ~ - . ~ M N - 1 sample mean vector: m x = -~ z..,k=O Xk • Use a computational formula to
create the sample covariance matrix: [Cx] _ _ ~ (M N - , ~) = Ek=0 xkx -mxm .
Form the eigenvector set: [Cx]uk = ,~kUk, k = O, 1 , . . . D - 1 , where {Uk}
are the eigenvectors with associated eigenvalue set {,~k}. The KLT kernel is
a unitary matrix, [V], whose columns, {Uk} (arranged in descending order of
eigenvalue amplitude), are used to transform each zero-meaned vector: Yk =

[v]T(xk -- mx) •

1 The VxWorks system is available in a tightly-coupled variant, by means of processors
linked by a VME bus, but again sockets form the principal communication mode.

2 The 68030 has two compare-and-swap instructions as well as support for cache
management.

817

4 KLT Parallelization

The time complexity of the operations is analysed as follows, where no distinc-
tion is made between a multiplication and an add operation: form the mean vec-
tor with O(MND) element-wise operations; calculate the set of outer products

T. subtract matrices ~..~MN-1 T in O(MND 2) time; form mxmx, and sum, z - , k = o XkXk'
to find [Cx]; and find the eigenvectors of [Cx] (the eigenvector calculation is
O(D3)); convert the {Xk} to zero-mean form in O(MND); and form the {Yk}
by O(MND 2) operations. Since the covariance matrix is generally too small to
justify parallelization, the total parallelizable complexity is O (MND + M N D 2) ,
i.e. the eigenvectors are found sequentially.

Consider the KLT as applied to a single image in one-off mode. One par-
allelization method would be to send a cross-section through the images to
each process, selecting the cross-section on the basis of image strips. In a first
phase, the mean vector of each cross-section image strip is found and returned
to a central farmer along with a partial vector sum, forming the strip matrix:

X ' ~ (M N - 1) / n i i T [Ti] -- ~NN z - - ,k=0 Xk(Xk) , i = 1, 2 , . . . n , for n strips. In a second phase,
the farmer can find [V] from [C~], which is now broadcast so that for each strip
the calculation of {y~} can go ahead. However, the duplication of sub-image
distribution (once for the partial sums and once to compute the transform)
is inefficient even though the duplication is strictly necessary if demand-based
data-farming is employed.

A possibility is to retain the data that are farmed out in the first phase at
the worker processes. On a system with store-and-forward communication the
first farming phase will have established an efficient distribution of the workload
given the characteristics of the network. Therefore, the second phase will already
have approximately the correct workload distribution. This is not a solution on
a shared network of workstations as processor load and network load is time
dependent. The solution is also not a general one since other two-phased low-
level IP algorithms do not usually use the same data in both phases, though the
time complexity can be similar. The method of finding a workload distribution
by a demand-based method and then re-using the distribution for a static load-
balance in subsequent independent runs may have general potential.

An alternative static load-balancing scheme is to exchange partial results
amongst the worker processes so that the calculation of matrix V can be rep-
licated on each worker process. A suitable exchange algorithm for large-grained
machines is available if the processors can be organized in a uni-ring. A second
method of performing a KLT is to consider each image as a single vector formed
by stacking rows. In [5], this scheme, whatever its merits for particular applica-
tions, is shown to have the same time complexity but to be less flexible in regard
to load-balancing.

5 Pipeline Decomposit ions
A simple pipeline can be formed by the sequence: covariance, eigenmatrix and
image-transform modules. In a preliminary implementation of this pipeline on

818

the VxWorks-based system, both farmers were placed on the same processor
(Fig. 1) since the same data are needed for forming the covariance matrix and for
transforming to eigenspace. 3 In principle, double buffering of image sets allows
loading of one image set to proceed while the previous image set is transformed.
However, for a target VLSI implementation this implies a total buffer size of
5 Mbytes and upwards would be needed for (say) 10 images of 512 × 512 size.

................ _F._a~_.~

I m a g e s O u t

1 fl_ __a~___B.

Fig. 1. KLT Pipeline Partitioning

The first pipeline stage can be further partitioned into calculation of the
mean vector and calculation of the outer products, since the two calculations are
independent and therefore can take place in parallel. Additionally, the second
stage calculations can be split further between reducing the image set to zero-
mean form and transforming the image set, though these calculations are not
independent. However, the reduction to zero-mean form is independent of the
eigenvector calculation and could take place in parallel with that calculation.
These partitioning possibilities are shown in Fig. 2. Assume that the two farms
in the first pipeline partition can be operated in parallel, by means of two farm-
ers on the same processor feeding from a common buffer. Since the maximum
time complexity of each stage of the new pipeline is reduced from O(MND +
MND 2) to O(MND2), then the number of processors on any one farm that will
reduce pipeline throughput is reduced. However, the bandwidth requirements are
increased. Since both the components of the second partition are dependent on
the completion of all the calculations on the first partition, the pipeline traversal
latency will not be reduced by decomposing the image into smaller components.

The pipeline of Fig. 2 is relevant as the basis of a VLSI scheme, possibly
through a systolic array. For a large-grained parallelization, the arrangement of
Fig. 1 but merging the eigenvector calculation into the work of the second farmer
is practical. The scheduling regime on the processor hosting the two farmers is
round-robin for fairness. Since the time complexity of both stages of the pipeline

3 A worker module can also be placed on the same processor to soak up any spare
processing capacity.

819

is the same it is now easily possible to scale the throughput in an incremental
fashion.

Stage one Stage two Stage three

: Parallel Farms Usill the Same Data! I . ~ o . . ~ , ~

i l ~ t~ I co~=oli y

t I.:<..i to o,j

Fig. 2. Alternative Partitioning of the KLT Pipeline

6 C o n c l u s i o n

The Karhiinen-Lo~ve Transform has been prototyped on a pipeline of parallel
processor farms. A two-phased single farm arrangement is described, in one
mode of which the initial workload distribution, arrived at by a demand-based
method, is reused in a static load-balance. Two different pipeline decompositions
are explored. To achieve a completely balanced pipeline for all but the largest
of jobs will be prohibitive in practical terms. The simpler of the two pipelines is
appropriate for large-grained applications, whereas a further decomposition may
be relevant to fine-grained VLSI implementations. The strict sequencing in the
KLT algorithm prevents attempts to improve the pipeline traversal latency.

A c k n o w l e d g e m e n t
This work is being carried out under EPSRC research contract GR/K40277
'Portable software tools for embedded signal processing applications' as part
of the EPSRC Portable Software Tools for Parallel Architectures directed pro-
gramme.

R e f e r e n c e s

1. Wind River Systems, Inc., 1010, Atlantic Avenue, Almeda, CA. VxWorks Program-
reef's Guide, 1993. Version 5.1.

2. J. J. Gerbrands. On the relationship between SVD, KLT and PCA. Pattern Recog-
nition, 14(1-6):375-381, 1981.

3. P. J. Ready and P. A. Wintz. Information extraction, SNR improvement and data
compression in multispectral imagery. IEEE Trans. on Comms., 31(10):1123-1130,
1973.

4. M. Kirby and L. Sirovich. Application of the Karhunen-Lo~ve procedure for the
characterization of human faces. IEEE Trans. PAMI, 12(1):103-108, 1990.

5. M. Fleury. E]flcient Parallel Image-Processing Software. PhD thesis, University of
Essex, 1996.

