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Abstract .  Practical parallelizations of multi-phased low-level image- 
processing algorithms may require working in batch mode. The features 
of a common processing model, employing a pipeline of processor farms, 
are described. A simple exemplar, the Karhfinen-Lo~ve transform, is pro- 
totyped on a network of processors running a real-time operating sys- 
tem. The design trade-offs for this and similar algorithms are indicated, 
when a general solution is sought. Eventual implementation on large- and 
fine- grained hardware is considered. The chosen exemplar is shown to 
have some features, such as strict sequencing and unbalanced processing 
phases, which militate against a comfortable parallelization. 

1 Introduction 
Many low-level image-processing (IP) algorithms, such as spatial filters, are 
completely localized in their da ta  references. If adjacent image data  are over- 
lapped at boundaries then at a small additional cost a data-farming program- 
ming paradigm can be employed, in which the only communication is between 
worker process and data  farmer. Using separability and/or  linearity, it is also 
possible to decompose other algorithms, such as orthogonal transforms, rather 
than employ a global access pattern.  If these latter algorithms are viewed as 
single-image library functions then a difficulty commonly arises because it is 
necessary to centralize between the data-farming phases. However, since IP is 
often in batch mode, it only requires a slight shift in perspective towards con- 
tinuous data  flows in order to realise that  effective parallelizations may occur if 
a pipeline is the normal form of processing. 

In this paper, this basic concept is applied to a Karh/inen-Lo~ve transform 
(KLT), which is generally engaged in batch mode. As a development environ- 
ment, we have used a network of microprocessors running the VxWorks real- 
time operating system [1]. Compared to other distributed environments, the 
VxWorks-based system is attractive for algorithm prototyping: because it is an 
isolated environment, because the thread structure is not superimposed on top of 
heavy-weight processes, and because event response times are optimized. Since 
the VxWorks system is not the final target parallel system, we are interested in 
the computational complexity rather than the performance on VxWorks. 
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2 T h e  V x W o r k s  R e a l - T i m e  K e r n e l  

VxWorks is intended as a Unix-like single-user operating system (O.S.) for real- 
time development work. The KLT program modules were written in 'C' and 
cross-compiled on a PC running the NextStep O.S. Once compiled, the modules 
are loaded and linked on a set of 68030 boards, each hosted by a PC. The 
68030 processors are connected by an Ethernet  LAN segment. For inter-processor 
communication, VxWorks includes a source-compatible BSD socket API. 1 Each 
program module consists of one or more threads, each of which can be spawned 
as required. Remote spawning is accomplished by providing an iterative server, 
which responds to requests over the LAN from the central farmer module. 

Priority-based scheduling of threads is employed on worker modules, giving 
priority to communication-handling threads. Messages are stored in circular buf- 
fers, with access by the communication threads regulated through semaphores. 2 
A message queue primitive is available in VxWorks which allows the application 
thread to r endezvous  with any communication thread. On the farmer module, 
the s e l e c t  socket call is employed in a way that  de-multiplexes work requests in 
a fair manner. A number of features enable the software structure to be reused, 
e.g. tagged messages, the selection of a streamed communication mode and a 
strict interface to application functions. 

3 T h e  K a r h i i n e n - L o ~ v e  T r a n s f o r m  

The KLT [2] is most widely used in applications such as multi-spectral analysis of 
satellite-gathered images [3] through the resulting spectral signature of imaged 
regions. Significant data  reductions are also achieved in the storage of satellite 
images if the multi-spectral set are transformed to KLT space. The KLT has 
recently been applied to the recognition of facial images [4]. Notice that  the size 
of the image set is potentially much larger in the latter two applications. 

Consider a sample set of real-valued images from an ensemble of images. 
Create vectors with the equivalent pixel taken from each of the images, i.e. if 
there are D images each of size M x N then form the column vectors Xk = 
( x i O ' x l " ' ~ 3 '  " " " ' X D-I~T~j j for k = 0,1, . . . ,  M N  - 1, i = 0,1, . . . ,  M - 1 and j = 
0, 1 , . . . ,  N - 1 (with superscript T representing the transpose). Calculate the 

1 ~ - . ~ M N - 1  sample mean vector: m x  = -~ z..,k=O Xk • Use a computational formula to 
create the sample covariance matrix: [Cx] _ _ ~ ( M N - ,  ~ )  = Ek=0 xkx -mxm . 
Form the eigenvector set: [Cx]uk = ,~kUk, k = O, 1 , . . . D  - 1 , where {Uk} 
are the eigenvectors with associated eigenvalue set {,~k}. The KLT kernel is 
a unitary matrix, [V], whose columns, {Uk} (arranged in descending order of 
eigenvalue amplitude), are used to transform each zero-meaned vector: Yk = 

[v]T(xk -- mx) • 

1 The VxWorks system is available in a tightly-coupled variant, by means of processors 
linked by a VME bus, but again sockets form the principal communication mode. 

2 The 68030 has two compare-and-swap instructions as well as support for cache 
management. 



817 

4 KLT Parallelization 

The time complexity of the operations is analysed as follows, where no distinc- 
tion is made between a multiplication and an add operation: form the mean vec- 
tor with O(MND) element-wise operations; calculate the set of outer products 

T. subtract matrices ~..~MN-1 T in O(MND 2) time; form mxmx,  and sum, z - , k = o  XkXk' 
to find [Cx]; and find the eigenvectors of [Cx] (the eigenvector calculation is 
O(D3)); convert the {Xk} to zero-mean form in O(MND); and form the {Yk} 
by O(MND 2) operations. Since the covariance matrix is generally too small to 
justify parallelization, the total parallelizable complexity is O (MND + M N D  2) , 
i.e. the eigenvectors are found sequentially. 

Consider the KLT as applied to a single image in one-off mode. One par- 
allelization method would be to send a cross-section through the images to 
each process, selecting the cross-section on the basis of image strips. In a first 
phase, the mean vector of each cross-section image strip is found and returned 
to a central farmer along with a partial vector sum, forming the strip matrix: 

X ' ~ ( M N - 1 ) / n  i i T [Ti] -- ~NN z - - ,k=0  Xk(Xk) , i = 1, 2 , . . .  n , for n strips. In a second phase, 
the farmer can find [V] from [C~], which is now broadcast so that for each strip 
the calculation of {y~} can go ahead. However, the duplication of sub-image 
distribution (once for the partial sums and once to compute the transform) 
is inefficient even though the duplication is strictly necessary if demand-based 
data-farming is employed. 

A possibility is to retain the data that are farmed out in the first phase at 
the worker processes. On a system with store-and-forward communication the 
first farming phase will have established an efficient distribution of the workload 
given the characteristics of the network. Therefore, the second phase will already 
have approximately the correct workload distribution. This is not a solution on 
a shared network of workstations as processor load and network load is time 
dependent. The solution is also not a general one since other two-phased low- 
level IP algorithms do not usually use the same data in both phases, though the 
time complexity can be similar. The method of finding a workload distribution 
by a demand-based method and then re-using the distribution for a static load- 
balance in subsequent independent runs may have general potential. 

An alternative static load-balancing scheme is to exchange partial results 
amongst the worker processes so that the calculation of matrix V can be rep- 
licated on each worker process. A suitable exchange algorithm for large-grained 
machines is available if the processors can be organized in a uni-ring. A second 
method of performing a KLT is to consider each image as a single vector formed 
by stacking rows. In [5], this scheme, whatever its merits for particular applica- 
tions, is shown to have the same time complexity but to be less flexible in regard 
to load-balancing. 

5 Pipeline Decomposit ions 
A simple pipeline can be formed by the sequence: covariance, eigenmatrix and 
image-transform modules. In a preliminary implementation of this pipeline on 
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the VxWorks-based system, both farmers were placed on the same processor 
(Fig. 1) since the same data are needed for forming the covariance matrix and for 
transforming to eigenspace. 3 In principle, double buffering of image sets allows 
loading of one image set to proceed while the previous image set is transformed. 
However, for a target VLSI implementation this implies a total buffer size of 
5 Mbytes and upwards would be needed for (say) 10 images of 512 × 512 size. 

................ _F._a~_.~ ................. 

I m a g e s  O u t  

1 . . . . . . . . . . . . . . . .  fl_ __a~___B. . . . . . . . . . . . . . . . . .  

Fig. 1. KLT Pipeline Partitioning 

The first pipeline stage can be further partitioned into calculation of the 
mean vector and calculation of the outer products, since the two calculations are 
independent and therefore can take place in parallel. Additionally, the second 
stage calculations can be split further between reducing the image set to zero- 
mean form and transforming the image set, though these calculations are not 
independent. However, the reduction to zero-mean form is independent of the 
eigenvector calculation and could take place in parallel with that calculation. 
These partitioning possibilities are shown in Fig. 2. Assume that the two farms 
in the first pipeline partition can be operated in parallel, by means of two farm- 
ers on the same processor feeding from a common buffer. Since the maximum 
time complexity of each stage of the new pipeline is reduced from O(MND + 
MND 2) to O(MND2), then the number of processors on any one farm that will 
reduce pipeline throughput is reduced. However, the bandwidth requirements are 
increased. Since both the components of the second partition are dependent on 
the completion of all the calculations on the first partition, the pipeline traversal 
latency will not be reduced by decomposing the image into smaller components. 

The pipeline of Fig. 2 is relevant as the basis of a VLSI scheme, possibly 
through a systolic array. For a large-grained parallelization, the arrangement of 
Fig. 1 but merging the eigenvector calculation into the work of the second farmer 
is practical. The scheduling regime on the processor hosting the two farmers is 
round-robin for fairness. Since the time complexity of both stages of the pipeline 

3 A worker module can also be placed on the same processor to soak up any spare 
processing capacity. 
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is the same it is now easily possible to scale the throughput in an incremental 
fashion. 

Stage one Stage two Stage three 

: Parallel Farms Usill the Same Data! I . ~ o . . ~ , ~  

i l ~  . . . .  t~ I co~=oli  y 

t I.:<..i to o,j 

Fig. 2. Alternative Partitioning of the KLT Pipeline 

6 C o n c l u s i o n  

The Karhiinen-Lo~ve Transform has been prototyped on a pipeline of parallel 
processor farms. A two-phased single farm arrangement is described, in one 
mode of which the initial workload distribution, arrived at by a demand-based 
method, is reused in a static load-balance. Two different pipeline decompositions 
are explored. To achieve a completely balanced pipeline for all but the largest 
of jobs will be prohibitive in practical terms. The simpler of the two pipelines is 
appropriate for large-grained applications, whereas a further decomposition may 
be relevant to fine-grained VLSI implementations. The strict sequencing in the 
KLT algorithm prevents attempts to improve the pipeline traversal latency. 
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