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1 In troduct ion  

Predicting behaviour of materials when submitted to large strain is a fundamen- 
tal problem of mechanics. In general, numerical simulation is one of the more 
widely used prediction methods. The problem related to numerical predictions 
is twofold. First, we have to define a simple reliable model which describes the 
major aspects of the evolution of material. Secondly, we have to face the need 
for computational power which conventional computers do not provide. 

This paper deals with the problem of predicting the behaviour of polycrystals 
submitted to large strain. When polycrystalline metals are submitted to large 
strains associated with metal forming processes, such as rolling, extrusion, and 
forging, significant strain inhomogeneities occur at a grain scale. This is, first, due 
to the various crystallographic orientations of the grains, which induce a scatter 
of the flow stresses. However, two other factors can significantly affect the local 
behaviour of the aggregate: the aspect ratio of the grains (morphological texture) 
and the local distribution of the grains (topological texture). Such effects are not 
properly taken into account by the classical laws of mixture. In the present work, 
a new method was used to model the deformation of a polycrystal. It has been 
described elsewhere [4] and will be summarized in the next section. 

To meet the computational requirements this model is simulated on a dis- 
tributed memory parallel computer. 

2 Out l ine  of  the  m o d e l  

The aggregate is represented by a two dimensional wraparound array of grains 
(see figure 1) generated in a plane (xl, x2) by a Vorond/tessellation [3]. 

The material is assumed to be incompressible and power law viscoplastic, 
i.e. ~ri = k#  m where cri and ~i are the flow stress and strain rate of grain i, 
respectively, ki denotes the viscosity, and the strain rate sensitivity parameter 
m = 0.2 for all grains. The neighbourhood of each grain consists of the set of 
the n adjacent crystals (here, n ~ 6); it remains constant during straining. 

The aggregate is submitted to plane strain compression along axis x2, and 
elongates along xl.  For each overall strain step, all grains are considered in 
turn. The average viscosity of the neighbourhood of grain i is first calculated as: 
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k~ = E aiki .  The weighting coefficient ai is proportional to the length of the 
j=l  

n 

boundary between grains i and j ,  and E aj  = 1. 
j=l  

The strain rate of grain i is then derived as follows (it should be noted that  
the strain rate tensor reduces in the present case to a single component). The 
localization factor 51 is : 5i = (1 + aF)(1 - tanh ((b + cF) (Z i  - 1))) In 

1 + aF + ( -1  + dF) tanh ((b + eF)(Z~ - 1))" 
2. /~ i  

this equation F - ~ - + - ] ,  where hi is the aspect ratio of the grain, which is 

defined here as the ratio of the average intercepts of the grain parallel to the x2 
ki 

and Xl axes. Zi denotes the hardness ratio ~//, and a, b, c, d, and e are constants 

which have been determined numerically. The strain rate can then be written in 
51 

the form: gi - - - ~ o o  where g~ is the remote prescribed strain rate, and the 
< 5 i >  

average < 5i > is extended over all the grains of the aggregate (each 5i is weighted 
by the surface of the associated grain). The strain increment of each grain is 
then obtained as dei = ii dt. Finally, the overall viscosity of the polycrystal 
is : k -  < k i S s ' >  < 6i >'~ In this work, each hi was assumed to be strain dependent 

according to the classical equation: ki = [k~i - (k2i - koi) exp( - r ie i ) ]  1/2 where 
kol and k~i are the viscosity values for incipient straining (elastic limit), and at 
large strains (steady state), respectively, and ri is a dynamic recovery parameter. 

3 P a r a l l e l  s i m u l a t i o n  

In the previous section we presented the model of a polycrystal deformation. 
Now we deal with the parallelism of the model and the problems which arise 
when implementing it on a real parallel computer. 

It is obvious that  the model is inherently parallel and has a synchronous 
behavior; therefore it is well suited to be implemented on a parallel computer. 

However, it presents some pitfalls. This problem is similar to the graph par- 
tioning problem [2]. Indeed, the polycrystal aggregate can be viewed as a graph, 
the nodes corresponding to the grains and the edges corresponding to common 
edges of the grains. Optimal partioning algorithms are known to be very expen- 
sive; thus in this project, because our final goal is the simulation of continuous 
dynamic reerystallization, we decided a balanced partioning that fairly allocates 
the grains in the order their generation according to the Vorono'/tessellation. 

On the other hand, the computation of global variables requires gathering 
information disseminated throughout the network. In this work these global vari- 
ables are calculated according to a master/slave approach. Each slave processor 
computes the partial values of these variables on the basis of the grains it owns, 
then sends the result to the master processor. 
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Now let us examine the processing of a grain. It  consists in the computa t ion  
of : ki, k-~., Z i ,  ~i, < 5i >, el, the temporary  coordinates of each vertex V/, the 
final coordinates of all vertices, k and other global metrics of the aggregate. By 
gathering the information disseminated in the network, as described above, we 
obtain the following algorithms for each grain i and for the overall aggregate : 

Deform_grain( i )  
begin 

compute hi 
get neighbours' information k 3 
compute k~, ~i, ~ii 
get global information < (fi > 

end 

Deform_aggregate 
begin 

for all i in parallel do 
Deform_grain(i) 

end 

compute ei, ai and the temporary coordinates of each vertex W/z 
get the neighbours' coordinates of the common vertices W~ 
compute by the barycenter method the final coordinates Vii z of all vertices 
provide ki, ~i for the computation of k 

4 Implementation and results 

We implemented the simulation of our model on a T 8 0 5  TM t ransputer-based 
parallel machine. I t  consists of 16 transputers interconnected in a hypercube 
of dimension 4 (4 x 4 torus). This implementat ion uses the package D4414A 
of SGS - Thomson Microelectronics ANSI C Toolset [1] which incorporates a 
routing kernel. The performance of the simulation depends critically on the per- 
formance of this routing kernel. 

The simulation algorithm described in section 3 could be implemented as 
described. All the grains located on the same processor are simulated as a single 
sequential process. In this case it is common that,  when computing the s ta tus  
of some grains, the status of its neighbours is not yet available. This si tuation 
occurs when a grain has a neighbour located on a distant processor. Symmet -  
rically, the neighbour has also the same view. Thus each pair of such grains 
must  exchange their status. In order to avoid several exchanges of small mes- 
sages, each processor sends one message to each of the other processors which 
hold neighbors of its grains; each message contains the status of the grains on 
the originating processor which have neighbours located on the destination pro- 
cessor. The overall algorithm thus consists of as many  processes as processors, 
completely connected and exchanging through a small number  of vir tual  chan- 
nels at most two messages : the first for the values of viscosities and the second 
for the values of the temporary  coordinates. 

The initial mechanical characteristics of each grain are set randomly accord- 
ing to a uniform law (see figure 1). The overall rate strain ~ is constant while the 
local one ii varies with the viscosity, the aspect ratio and the neighbourhood of 
the grain. Figure 2 shows the final aggregate after 1000 deformation steps with 

-- 10 -3 on the aggregate in figure 1. 
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Fig. 1. An initial aggregate with 311 
grains; the grey-level indicates the 
magnitude of viscosity 

Fig. 2. The same aggregate after 1000 defor- 
mation steps, with ~ = 0.001; the grey-level 
indicates the magnitude of grain strain 

Size of aggregate 60 311 2134 3847 
Sequential time 0.143 0.743 5.100 12.242 

Parallel time 0.037510.083 0.448 1.017 
Speedup 3.82 8.89 11.36[ 12.04 

Fig. 3. Time execution (in seconds) and 
speedup for a single step deformation 

This simulation has permitted firstly to validate on larger-size aggregates of 
grains the material behaviour model described in section 2. Secondly, it allows 
us to obtain some new results about mechanical properties : only a very slight 
variation of the overall surface, has been obtained (0.02 %) and the three Hill 
maazrohomogeneity conditions are fulfilled. 

We can observe on figure 3 that the implementation strategy chosen is rea- 
sonably efficient. The speedup increases with the size of the aggregate. 

5 F u t u r e  w o r k  

This paper reported a parallel simulation of large-strain polycrystal deformation. 
A new model of deformation taking into account a large spectrum of deformation 
aspects (geometrical, topological and mechanical) was developed and validated. 

The model is presently being extended to take into account the occurrence of 
continuous dynamic recrystallization at large strains. For that  purpose, when a 

/ ,  

given grain i has reached some prescribed level of stored energy wi = ] dsi, 
o 

it is divided into new grains by a Vorono'f tessellation, in the same manner as 
for the original structure. 

The parallel simulation of continuous dynamic recrystallization requires dy- 
namic load balancing. The related study is in progress. 
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