
Effectively Schedul ing  Parallel  Tasks and 
C o m m u n i c a t i o n s  on Ne tworks  of Worksta t ions  * 

Xing Du 1, Yingfei Dong 2, and Xiaodong Zhang I 

1 Department of Computer Science, College of William and Mary 
Williamsburg, VA 23187, USA 

2 Department of Computer Science, University of Minnesota 
Minneapolis, MN 55455, USA 

Abs t r ac t .  Coordinating parallel tasks and minimizing communication 
delays are two important issues for the design of scheduling policies on 
networks of workstations. We address the two issues by presenting a 
scheduling scheme, called self-coordinated local scheduling. It consists of 
two parts: computation scheduling and communication scheduling. The 
computation scheduler on each workstation schedules its parallel task 
and local user jobs independently based on a static power preservation 
in that workstation so that parallel tasks on different workstations are 
executed at the same pace to achieve a global coordination. To minimize 
the communication latency, each local scheduler uses a non-preemptive 
strategy to try to make communication activities complete as soon as 
possible. The scheduling scheme is evaluated by simulating the execu- 
tion of four NAS benchmark programs, and comparing it with a Unix 
based scheduling policy and the co-scheduling policy. Our experiments 
show that the power preservation in each workstation guarantees the 
performance of both parallel and local jobs. Furthermore, the commu- 
nication delay is reduced significantly by the communication scheduling 
compared with a spinning based scheme and a Unix based scheme. 

1 I n t r o d u c t i o n  

Networks of Workstations (NOWs) are cost-effective platforms for parallel com- 
putations.  Effectively scheduling parallel jobs on NOWs is very important .  How- 
ever, most  existing scheduling policies on mul t iprocessor /mul t icomputer  systems 
(e.g. [3] [7]) are not applicable because of the heterogeneous and non-dedicated 
features of NOWs [1]. In order to effectively manage the interaction between 
parallel jobs and user jobs and provide good performance to both  kinds of jobs, 
two issues must  be well addressed: how to coordinate the execution of tasks of 
a parallel job on different workstations (inter-processor coordination), and how 

* This work is supported in part by the National Science Foundation under grants 
CCR-9102854 and CCR-9400719, by the Air Force Office of Scientific Research under 
grant AFOSR-95-1-0215, and by the Office of Naval Research under grant ONR-95- 
1-1239. Xing Du is on leave from Computer Science Department, Nanjing University, 
Nanjing, P.R.China. 



888 

to manage the interaction between a parallel job and local user jobs on a work- 
station (intra-processor coordination). Co-scheduling policy [6] generally results 
in good parallel job performance [5] on multiprocessor systems, and is a good 
policy for inter-processor coordination. However it is hard to be effectively im- 
plemented on NOWs where the communication overheads are high. In addition, 
no intra-processor coordination is provided. 

We propose a scheduling scheme, called self-coordinated local scheduling based 
on the principle of co-scheduling. By preserving certain amount of computing 
power on each workstation, each local scheduler schedules independently the 
parallel task and local user jobs on its workstation. The coordination between 
parallel tasks running on different workstations is achieved, and the performance 
of both parallel and local jobs is guaranteed. To minimize the communication 
latency, the scheme uses a non-preemptive strategy to expedite the communica- 
tion. Simulation results of four NAS benchmark programs indicate that it is an 
effective approach to scheduling parallel and local user jobs on NOWs. 

2 S c h e d u l i n g  S c h e m e  

We propose a scheduling scheme, called self-coordinated local scheduling for bulk 
synchronous applications. It is composed of two parts: computation scheduling 
which is scheduling parallel tasks when they are in computational phases, and the 
other, communication scheduling for scheduling tasks when they are in commu- 
nication phases. A key issue in computation scheduling is to preserve a portion 
of power in each workstation for parallel tasks. We define the power weight of a 
workstation as its computing capability relative to the fastest workstation in a 
system. The value of the power weight is less than or equal to 1. Since the power 
weight is a relative ratio, it can also be represented by measured execution time. 
If T(App, M~) gives the execution time for executing program App on worksta- 
tion Mi, the power weight can be calculated by the measured execution times 
as follows: 

minm=l {T(App, M~) } 
Wi(App) = T(App, Mi) (1) 

where m is the number of workstations in a NOW. (For detailed information 
about the power weight, the interested reader may refer to [8].) Each workstation 
first calculates its own capable power weight for parallel jobs: 

Pl = Wi(1 - Rkernel(i) -- Ruser(i)) (2) 

where Wi is the power weight of workstation i, Rkern~t (i) is the percentage of 
power for the kernel in workstation i, and R~,ser(i) is the percentage of power for 
local user jobs in the workstation. We define the free power weight on workstation 
i, (i = 1, ..., m), as: 

Fi = 1 - Rk~r,~et (i) -- Ruser (i). (3) 
Then the preserved power weight for parallel jobs in each workstation is deter- 
mined by the minimum available power weight for parallel jobs among all the 
workstations: 

• m p = m~ni=lpi. (4) 



889 

The equivalent power preservation in each workstation for parallel tasks al- 
lows us to "simulate" co-scheduling in a virtual homogeneous system. The re- 
maining percentage of the power in a workstation can be used for local user 
jobs. 

Preserving the power in each workstation for parallel jobs does not guarantee 
coordination of parallel tasks because tasks need to be further locally scheduled 
in each workstation to ensure all the tasks will finish within a reasonable time 
period. This seems somewhat application dependent. Here we temporarily use 
an application program dependent parameter for the local scheduler, the size 
of parallel tasks, denoted by TS ,  which is measured by the number of floating 
point operations. For a given power of a workstation measured by the number of 
floating point operations per second, the time to finish a task on the relatively 
slowest workstation is 

T S  
ts - Pow(s)  × Fs'  (5) 

where Pow(s)  is the power of the slowest workstation, and Fs is the free power 
weight in the slowest workstation; and the time to finish a task on workstation 
i is T S  

ti - Paw(i)  × Fi '  (6) 

where Pow(i)  is the power of workstation i, and F~ is the free power weight of 
workstation i. If round-robin time-sharing fashion is used in the local scheduler 
of each workstation, the number of time slices used to finish a task on the slowest 
workstation is 

ts 
Nstice(S) = ~ ,  (7) 

where 5s is the length of a time slice in the slowest workstation; and the number 
of time slices used to finish a task of the same size on workstation i is 

t~ 
Ys,ice(i) = ~ ,  (8) 

where 5i is the length of a time slice in workstation i, and i = 1, ..., m. Since 
the slowest workstation is the bottleneck of parallel jobs, if all the tasks finish 
within the time period of ts in each loop, the performance would be optimal and 
equivalent to that  in a dedicated NOW using co-scheduling. However, within ts, 
there are ~ time slices available in workstation i, which is larger than N~tie~(i). 
This means that  all workstations except the slowest one have more time slices 
for additional processes. In order to make even distributions of time slices for 
parallel tasks and additional processes, we use (5), (6), (7) and (8) to quantify 
the time interval for a time slice assignment to a parallel task in workstation i, 
(i = 1, ..., m.). Therefore, if a time slice is given to the parallel task in workstation 

t, _- t__,_ the local scheduler will i within no less than a time quantum of &gs,o.(i) *~ ' 
ensure that  within t~, all the tasks in a local computation phase will finish. By 
(5) and (6), we further obtain 

ts Pow(i )  × Fi 
t~ - Paw(s)  × Fs (9) 



890 

The time quantum in (9) is architecture dependent rather than application pro- 
gram dependent. 

The scheduling scheme in the computational phase is as follows: 

1. Determine Pi, the available power weight for parallel jobs on workstation i 
based on its local user's decision. 

2. Broadcast Paw(i) and Fi to other local schedulers. 
3. Receive Paw and F from all other local schedulers. 
4. Decide the minimum available power weight based on (4), and the relatively 

slowest workstation s. 
5. The local scheduler in workstation i calculates its pace to assign a time slice 

to its parallel task by (9). 

The communication phase is another essential section of parallel jobs. It has 
different requirements for schedulers. A message-passing can only be performed 
when it obtains both the CPU and the network. If a communicating task is given 
more chance to obtain the CPU, it would have a better chance to complete the 
communication phase as soon as possible. This would also increase the possibil- 
ity of overlapping this communicating task with computational tasks on other 
workstations, and decrease the possibility of network contention. Motivated by 
this, we use such a scheduling scheme for communications: 

1. The local scheduler is notified that the parallel task has been in communi- 
cation phase (becomes a communicating task). 

2. Set a larger time slice for this communicating task. 
3. If the CPU is serving for a local user job, it does nothing until the local job 

finishes its time slice. 
4. When the communicating task acquires the CPU, if the network is available, 

the above larger time slice is given to it, otherwise, the scheduler gives a 
time slice to a local job immediately. 

5. The local scheduler is notified that the communicating task has finished its 
communication. 

6. The local scheduler resumes its power preservation scheme. 

Thus, the scheduler gives a larger time slice to a parallel task to complete 
the communication if the network is available, otherwise it is switched to pro- 
cess local user jobs. This would reduce unnecessary context switches and network 
contention. In the scheme, the CPU is switched to a local user job rather than to 
spin when the network is not available for the communication. This is because 
first, experiments reported in [4] indicate that an immediate switch strategy out- 
performs two-phase blocking strategy (spin and then switch) for coarse grained 
parallel jobs on relatively slow networks. Second, immediately yielding the CPU 
to other local sequential jobs increase the system utilization. Finally, if a spin 
is chosen, how long to spin is hard to determine because an optimal length is 
architecture- and application- dependent. The strategy of spin-until-it-gets seems 
to be an effective way, but it may lead to deadlocks. 



891 

3 S imula t ion  M e t h o d o l o g y  

We designed and developed a simulator to perform event-driven simulation. The 
structure of the simulator is illustrated in Figure 1. The effect of computation 
scheduling was event-driven simulated. The communication effect was evaluated 
by a network simulator which simulated an Ethernet of 10Mbps bandwidth. We 
selected Ethernet because it is a popular network used to connect workstations. 

Scheduling policies NOW parameters 

/ 
Local job events ----~ Simulator Results Parallel job events 

T ~ Communication events 
Network 
simulator 

Fig. 1. The simulator structure. 

The simulated heterogeneous NOW consisted of 7 types of Sun SPARCsta- 
tions with different computing powers. We measured the power weight of each 
workstation (Table 1) by running 4 benchmark programs discussed later. 

Table 1. The average power weight of 7 types Sun workstations. 
I $20-HS21 I S20-HSlll $5-85 I $20-50 I $5-70 I S10-30 I Classics I 
I A=I.0 I B=0.7901C=0.5621D=0.4611E=0.na61F=0.3741G=0.2391 

We selected four programs from the NAS parallel benchmarks [2]: EP (Em- 
barrassing Parallel), MG (Multigrid), IS (Integer Sort), and LU (LU decom- 
position). All of them follow the bulk synchronous model. The communication 
patterns of the 4 programs were classified into three types: all-to-all (IS, EP), 
neighbors (LU), and transpose (MG). The parallel job events were character- 
ized by their computation sizes, communication patterns, the number of bytes 
to send in each communication, communication starting time, process arrival 
time, etc. The local workloads were only characterized by their starting time 
and computation sizes. 

The scheduling policies in the simulator included a local scheduling scheme 
based on Unix (System V Release 4), co-scheduling using the matrix scheme in 
[6], and the self-coordinated local scheduling. 



892 

4 P e r f o r m a n c e  E v a l u a t i o n  

The performance evaluation was done by simulating the execution of the 4 pro- 
grams on NOWs with different workstation combinations. For space limitation, 
we only present results on 4 workstations of type B, C, F and G here. In the 
simulation, the following system parameters were used: the time slice was set 0.1 
second; and a context switch took 200 #s. EP was iterated 10 times to increase 
its synchronization activities. 

Table 2. The effect of varying the number of local jobs on the slowdowns of four 
programs using the self-coordinated local scheduling (coordinated) and local scheduling 
(loca 0 in comparisons with co-scheduling. 

# of local 
jobs 

EP IS MG LU 
coordinated I local coordinated I local coordinated I local coordinated I local 

1.1 1.31 1.32 2.05 1.22 1.89 1.34 2.0 
1.1 1.92 1.34 2.65 1.23 2.78 1.35 3.08 
1.1 2.56 1.36 3.51 1.25 3.84 1.37 4.19 
1.2 3.14 1.38 4.12 1.27 4.27 1.39 5.12 
1.2 3.90 1.39 4.98 1.28 5.01 1.40 6.03 

Table 2 presents the effect of varying the number of local user jobs on slow- 
down factors of the self-coordinated local scheduling and standard local schedul- 
ing. The slowdown is relative to the execution times of the four programs using 
co-scheduling on the corresponding dedicated NOW. The execution time of EP 
using self-coordinated local scheduling was very close to that using co-scheduling, 
differing by a factor of up to 1.2. The execution times of IS, MG and LU by 
self-coordinated local scheduling increased 22% to 34% in comparison with the 
times of co-scheduling when there was one local job. Besides scheduling skew 
and context switch overhead, there was another reason for the slowdown. The 
computation size of the three programs were dynamically changed as the pro- 
grams proceeded. When the execution time of a computation size was close to a 
time slice, the execution pace was not well coordinated, because the time frame 
in the relatively slowest workstation for the task, ts, in (5) became very small, 
and the scheduling became difficult in a tiny time space. However, with the 
increase of the number of local jobs, the slowdown of self-coordinated schedul- 
ing changed very slightly. In other words, the performance of parallel jobs was 
affected slightly by the change of local workload, and was guaranteed by the 
scheduling scheme. Meanwhile, the performance degradation of each local job 
was expected by the local user because he agreed to denote that amount of his 
workstation power to parallel jobs (see Step (1) in the scheme) and added the 
local workload by himself. 



893 

In contrast, when using local scheduling, the performance of parallel pro- 
grams degraded significantly. The degradation increased almost proportionally 
with the increase of the number of local jobs. For example, the performance of 
IS decreased by a factor of 498% when 5 local jobs were executed with it. 

Table  3. The 

Comput. 
1 17.0 
2 18.6 
3 19.2 
4 19.9 
5 19.9 

EP 
breakdown of the execution times for EP and IS. 

IS 
Comm. Sync. Switch Comput. Comm. Sync. Switch 
0.0007 2.88 0.06 28.3 6.42 4.29 0.09 
0.0007 1.52 0.07 32.5 6.42 2.79 0.13 
0.0007 0.89 0.08 33.8 6.42 1.37 0.15 
0.0007 0.23 0.10 34.9 6.42 0.38 0.17 
0.0007 0.23 0.10 34.9 6.42 0.37 0.18 

Table  4. The breakdown of the execution times for MG and LU. 
MG LU 

# Comput. Comm. Sync. Switch Comput. Comm. Sync. Switch 
1 64.3 2.5 8.9 0.2 61.1 1.2 8.5 0.2 
2 72.6 2.5 5.9 0.3 71.8 1.2 6.1 0.3 
3 75.2 2.5 3.0 0.3 76.1 1.2 3.2 0.3 
4 77.4 2.5 1.1 0.4 78.5 1.2 1.0 0.4 
5 77.4 2.5 1.1 0.4 78.5 1.2 1.0 0.4 

Table 3 and 4 list the breakdown of the execution times in simulated clock 
ticks for the four programs when the number of local jobs changes. The exe- 
cution time includes computat ion time, communication time, synchronization 
time, and context switch time. The communication time includes the startup 
time (software overhead) and message transmission time (network latency). The 
synchronization time is tha t  a workstation spends on waiting :~ a synchru2iza- 
tion point in a program or in a synchronous send/receivp protocol. 

We further evaluate the efficiency of the commuhmation scheduling, and com- 
pare it with two other policies. One is local scheduling, which means no special 
policy is used for scheduling communicating tasks. The other is either using the 
network if it is available or spinning for its turn. We call this policy, spinning 
scheduling. This policy may result in low system utilization, and deadlock if 
multiple parallel jobs are executed. Two communication patterns were studied, 
one is all-to-aU and the other is transpose which is from IS and MG respectively. 
Table 5 presents the communication delays for two types of patterns changing 
with the problem sizes. For both patterns,  our communication scheduling per- 
formed bet ter  than any of the two other schemes for different problem sizes. 



894 

Table 5. The communication delay of two types of communication patterns scheduled 
by the Spinning scheduling, the Self-coordinated scheduling and the Local scheduling. 

Communication Problem Communication delay 
pattern 

all-to-all 

transpose 

size 
2 4 

2 ~ 
2 TM 

32 

Spinning ] Coordinated T 
6.5 5.2 
4.0 4.0 
6.5 4.5 
8.0 6.3 

64 17.4 11.9 
128 35.0 12.6 

Local 
14.9 
13.1 
11.6 
10.4 
20.8 
18.1 

5 Current Work 

We propose a scheduling scheme for scheduling parallel tasks on non-dedicated 
NOWs. It guarantees the performance of both parallel and local jobs. The simu- 
lation results show its effectiveness. We are currently studying a way to preserve 
power in UNIX and how to effectively schedule a wider range of applications, and 
investigating adapting the communication scheduling in high speed networks. 

References 

1. R. H. Arpaci et al.: The interaction of parallel and sequential workloads on a 
network of workstations. Proceedings of ACM SIGMETRICS Conference, (1995) 

2. D. Bailey et al.: The NAS parallel benchmarks. International Journal of Super- 
computer Applications. 5(3) (1991) 63-73 

3. M.-S. Chen and K. G. Shin: Subcube allocation and task migration in hypercube 
multiprocessor. IEEE Transactions on Computers. C-39(9) (1990) 1146-1153 

4. A. C. Dusseau, R. H. Arpaci and D. E. Culler: Effective distributed scheduling of 
parallel workloads. Proceedings of ACM SIGMETRICS Conference, (1996) 

5. A. Gupta, A. Tucker, and S. Urushibara: The impact of operating system schedul- 
ing policies and synchronization methods on the performance of parallel applica- 
tions. Proceedings of ACM SIGMETRICS Conference. (1991) 120-132 

6. J. Ousterhout: Scheduling techniques for concurrent systems. Proceedings of the 
3rd International Conference on Distributed Computing Systems. October, (1982) 
22-30 

7. A. Tucker and A. Gupta: Process control and scheduling issues for multipro- 
grammed shared-memory multiprocessors. Proceedings of the 12th ACM Sym- 
posium on Operating Systems Principles. (1989) 159-166 

8. X. Zhang and Y. &ran: Modeling and characterizing parallel computing performance 
on heterogeneous NOW. Proceedings of the Seventh IEEE Symposium on Parallel 
and Distributed Processing. IEEE Computer Society Press, October, (1995) 25-34 


