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Abs t r ac t .  In general, scheduling models only consider message latency 
as the sole dominant communication parameter. However, in many par- 
allel systems, latency is negligible when compared to the CPU penalties 
associated with sending and receiving communication events. Our work 
considers a model in which this CPU penalty can also be a significant 
communication parameter. This paper focusses on analysing the effect of 
such a model on the scheduling of Full Binary Trees. We briefly describe 
a versatile, multi-stage scheduling approach that can be customised to 
classes of parallel systems according to their communication performance 
characteristics and which produces better makespans when compared 
with traditional techniques. 

1 I n t r o d u c t i o n  

It  is well known that  the scheduling problem is NP-complete in its general form 
and that  a number  of architectural and application-related characteristics have 
influenced the design of many  scheduling heuristics [7, 9, 11]. With  the develop- 
ment  of distributed memory  machines, more realistic models of parallel compu- 
tat ion have been proposed where communicat ion characteristics are represented. 
More recently however, the interface between a processor and the communica- 
tion network has been identified as a potential  bottleneck [5, 8]. Just  as machines 
continue to evolve and their characteristics change, so must  the models used to 
represent them. The scheduling model considered in this work defines not only 
the network delay or latency as a significant parameter ,  which has been given 
much attention previously, but also the overhead incurred when sending and 
receiving messages. This is not part  of the delay but rather a cost in the form of 
a CPU penalty incurred on processors when communicating. Many scheduling 
models (e.g. [7]) fall into the class of the linear communication model, adding the 
overhead to the delay cost either for simplicity or when considering dedicated 
processors are used to perform communication.  However, since the overhead is 
a blocking factor, the linear model may  not reflect reality. The CLAUD model [4] 
is adopted as a more realistic model because it defines impor tant  characteristics 
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of applications and target architectures such as: the existence of communication 
events as tasks; the overheads associated with the sending and receiving of a 
message (denoted by Ss and At, respectively); and the delay ~- which is incurred 
when a processor transmits a data item to an adjacent processor. 

In this work, an input application is represented by a directed acyclic graph 
(DAG) G = (V, E). The replication of tasks onto distinct processors is allowed, 
since task replication can be used to minimise communication costs in architec- 
tures with high communication costs [10]. The time that  the processor is blocked 
characterises a communication event and can also be regarded as a "task". The 
existence of these special tasks depends on the scheduling of the computation 
tasks of the application. In parallel architectures with high overheads, the num- 
ber of communication events can be reduced by bundling many small messages 
into fewer, larger ones through the clustering of tasks [1]. In this context, a 
cluster c of tasks is defined as a set of tasks of G, listed in accordance to their 
precedence relationship and with no communication oceuring while the tasks in 
c are being executed. Messages to be sent by tasks in c to tasks in an immediate 
successor cluster c' are bundled and sent together. The dependencies between 
clusters represent both the dependency inherited from the original DAG G and 
the communication between the distinct processors to which the clusters have 
been allocated. This dependency relation and the set of all clusters defined are 
represented by a DAG called a superdag. The vertices in the superdag, the super- 
tasks, correspond to clusters of tasks and the superedges are the communications 
between supertasks. 

This paper gives a brief description of a versatile task scheduling approach 
followed by a discussion on the merits of two alternative partitioning strategies 
for Full Binary Trees together with experimental results. 

2 A G e n e r a l  O v e r v i e w  o f  t h e  N e w  A p p r o a c h  

The multi-stage approach (MSA) [1] performs a series of transformations on the 
input DA G until its schedule on the target machine is finalised. MSA aims to pro- 
duce good schedules for general applications on a variety of target architectures, 
particularly those which have high communication overheads. The following sec- 
tions briefly describe this new approach, but a more detailed description of each 
of the two stages of MSA can be found in [1]. 

I)  Construct ing a 8uperdag - The first stage of MSA is comprised of two 
heuristics and produces a superdag with characteristics that are dependent on 
the target architecture and the input DAG. The first heuristic, the replication 
algorithm, adopts the replication principle (also used by Papadimitriou and Yan- 
nakakis [11]) to cluster tasks so that the number of communication events can 
be reduced. A cluster c is created by allocating vi to a virtual processor Pi and 
replicating 7 selected ancestors of v~ on to Pi, where 7 is the clustering factor. 
The 7 ancestors are chosen, to minimise the number of communication events, 
based on their value el(vi) which is the latest t ime at which task vi can start 
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without increasing the make@an of the resulting schedule. One advantage of us- 
ing el-values is an increase in the number of candidate tasks that  can be clustered 
with vi (there tends to be larger groups of tasks with the same el-value than 
with the same earliest start t ime as defined in [11]). The result of the replication 
algorithm is a schedule containing sets of clearly defined parallel clusters, each 
set being executed during a computational interval or band. Between any two 
bands there exists a communication interval where only communication event 
tasks are scheduled. 

Not all of the clusters produced by the replication algorithm may be needed 
in order to schedule the DAG G on the target machine. In order to select reason- 
ably good candidates, a set of rules has been implemented in the second heuristic 
(the superdag algorithm [1]). This algorithm aims to construct a superdag with 
a granularity that  matches the granularity of the target architecture. For each 
supertask, the immediate predecessors chosen are those which send the largest 
messages and have the smallest out degrees. These are necessary characteristics 
when the overhead is high. On the other hand, when the delay is the dominant 
communication parameter,  the rules are parameterised in such a way that  the 
immediate predecessors chosen are those which send the smallest messages. 

I I )  R e m a p p i n g  onto physical  processors - The superdag produced by the 
first stage will never contain more supertasks than the number of tasks in the 
original DAG. The number of supertasks may, of course, be greater than the 
number of available physical processors m, since the first stage of MSA does not 
take this parameter  into account but rather allocates each supertask to a distinct 
virtual processor. Thus, the second stage of MSA transforms the given superdag 
so it can be executed efficiently on a fully connected network of m processors. 
This is achieved by exploiting the degree of parallelism within the superdag, i.e. 
the parallel supertasks scheduled in the same computational interval. 

Given the schedule S and the superdag Gs = (Vs, Es),  the supertasks are 
clustered by merging parallel supertasks and remapping them on to physical 
processors, if the number of supertasks in that  band is greater than m. The 
merging is achieved in such a way that  the number of communication events is 
minimised, even though an increase in the length of messages may be necessary. 

3 S c h e d u l i n g  F u l l  B i n a r y  T r e e s  

The Pull Binary Tree Bn = (VB,EB) is a DAG with n tasks, in which the 
direction of the edges in EB are towards the unique sink in VB. In order to 
analyse the impact of the communication parameters on the scheduling of B,~, 
the layer and subtree partitions are each considered under the following models: 
the delay model (as described in [11]), where the communication cost is solely 
characterised by the communication delay T; and the CLAUD model, where the 
overheads As and )~ are also defined as communication parameters together with 
r (for brevity, whenever the overheads for sending and receiving are referred to 
as A, it means that  A~ = Ar = A). 
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3.1 T h e  layer p a r t i t i o n  

Based on the asymptotically optimal schedule of Papadimitriou and Yannaka- 
kis [11], Jung et al. [10] devised a scheduling strategy for Bn under the delay 
model by dividing it into layers. In order to incorporate the overhead ~, which 
is a blocking factor, the layer partition for B~ is formed by abstracting away 
knowledge of the communication parameters and making use of the clustering 
factor 7. Depending on the target model 7 may assume different values, i.e. it 
may be assigned to ,~, ~- or even some other characteristic of the input DAG. 

The tree B .  is parti t ioned into h = log~+2(n + 1) layers, producing subtrees 
(supertasks) each comprised of (7 + 1) tasks. The in-degree of each supertask 
(apart from the sources) is equal to 7 + 2 and therefore, the resulting superdag 
is a (7 + 2)-ary tree. Note also that  each superedge is associated with unit weight 
since only the respective sink task in each subtree sends data to an immediate 
successor supertask. 

The layer part i t ion and the delay model - Since all communications between 
each layer take place in parallel, the cost (which is 7) is constant irrespect- 
ive of the number of immediate predecessors allocated to distinct processors. 
Nevertheless, if more than one supertask from each layer is allocated to the 
same processor, then the computation time is increased. Therefore, the min- 
imum makespan h ( r  + 1) + (h - 1)7- is achieved when there are at least ~+1 ~--]- 2 
processors. 

The layer parti t ion and the C L A U D  m o d e l -  The supertasks at each layer 
are allocated to m processors with each supertask being allocated to the same 
processor as one of its immediate predecessors. Note that  the upper bound on the 
number of processors is the number of supertasks in layer h - 1, i.e. (7 + 2) h-1. 
The makespan of this schedule, proved in [1], is expressed by 

(v+l).E)=~ (~+2), + £.(7+1 ) + (/_1)[(7+2))~+T] + ~ ) ~  + (~+2)~-m 
where k = [logT+ 2 m] is the layer in which the number of supertasks equals the 
number of processors. 

3.2 T h e  subtree p a r t i t i o n  

There exist scheduling algorithms [7, 9, 12] which tend to allocate the critical 
path of a DAG to a single processor. When such algorithms are applied to B,~, 
the allocation may be "inefficient" if the target machine has high overheads and 
particularly when they are much greater than the execution costs of the tasks. 
The layer partit ion provides subtrees as clusters of tasks, producing a coarser 
DAG. However, depending on the value of ~, the number of communication 
events which are incurred can be high since a (7 + 2)-ary tree is produced. 

A partit ion for Bn is proposed in which the number of communication events 
is not dependent on the overhead parameter.  The parti t ion divides Bn vertically 
with each subtree being allocated to one of tile m processors. For the sake of 
clarity, let m = 2 k, for some k. The ~+1 2 sources of B~ are divided into m 
subsets so that  n__+A tasks are sources of rn subtrees and with each subtree being 2rn 
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allocated to a distinct processor. Each one of the m subtrees has its respective 
sink at level k = log m. The expression for the make@an of a schedule produced 
by this partit ioning strategy holds regardless of whether the communication 
cost is comprised of latency and/or  overheads [1]. The makespan of the subtree 
partition, also proved in [1], is ~ - 1 + (log m - 1)(2,~ + 7- + 1). 

4 E x p e r i m e n t a l  e v a l u a t i o n s  

MSA can produce a schedule for the Full Binary Tree which is equivalent to the 
subtree parti t ion if the clustering factor  7 has the value zero. For values other 
than zero, MSA produces the layer parti t ion [1]. In this section, an analysis~of 
the partitions discussed in this paper is carried out taking into account different 
target models. 

O v e r h e a d s  are the  o n l y  c o m m u n i c a t i o n  cos t s  - When executing the sub- 
tree partit ion on m processors, the number of communication events that  occur 
when two processors communicate is equal to two, regardless of the number of 
tasks, the value of A and the number of processors rn. On the other hand, in 
the layer parti t ion with 7 = )~, the binary tree is "transformed" into an (A + 2)- 
ary tree corresponding to the fact that  (A + 1) receiving events are carried out. 
Therefore, the higher the value of )~, the smaller the number of processors that  
can usefully be utilised to achieve the minimum make@an. 

Figure 1 compares the makespans of the two partitioning strategies for B~047. 
When ~ = 2, the layer parti t ion produces results very close to the subtree par- 
tition because of the low in-degree of each supertask. On the other hand, for 
larger overheads (e.g. when A = 30), the schedules provided by the layer parti- 
tion become worse when compared with those of the subtree partition. 

makesp~ x l0 3 

0 ,~ ,~ ,~ ~® ~ ~ £ ~  

Fig. 1. The makespans of the subtree 
(7 = 0) and layer ('~ = )t) partitions for 
B2o47 with r = O, when A = 2 and A = 30. 

i 1 

o 50 100 ISO 2~o 25o e s ~  

Fig. 2. The makespans of the subtree 
(7 -- 0) and layer (7 = r) partitions for 
B2o~7 with ,k _~ 0, when v = 6 and r = 30. 
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T h e  delay m o d e l  - In order to compare the subtree and the layer partitions 
under the delay model, suppose that  the number of available physical processors 
is at least ~ Thus, the higher v is, the smaller n (the number of tasks of Bn) T--~2 " 
must be so that the subtree partit ion produces a better schedule. The results 
confirm that  the layer partit ion does provide schedules with smaller makespans 

~+i (Figure 2 is an example than the subtree partition, particularly when m > 
for B2047). 

T h e  C L A U D  m o d e l  - Both communication parameters are now considered sig- 
nificant and two cases are given attention in the experiments. Firstly, when A > ~- 
(the overhead is dominant), the clustering of tasks as in the layer partit ion is not 
wise since the in degrees can be large. Regardless of the number of processors, 
the best approach is the subtree partition, as seen in Figure 3. In the second 
case, when ~ < r / 2  (the factor of two allows a full subtree to be clustered into a 
supertask), the delay is dominant and although for 7 = ~" the respective super- 
dug may have a high in degree, the values for ;~ are not high enough to hinder 
the benefits of partitioning B ,  into layers. The best results were achieved when 
m > ~--~n+l and 7 =  r for the layer partit ion (Figure 4). 
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Fig. 3. Makespans of the subtree (7 = 0 
corresponds to cO) and layer (7 =- 2, 6 cor- 
respond to c2 and c6, respectively) parti- 
tions for Bs~l, r = 1 and )~ = 6. 
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Fig. 4. Makespzms of the subtree ('~ -= 0 
corresponds to cO) and layer (~/--- 2, 6 cor- 
responds to c2 and c6, respectively) par- 
titions for Bszl, T = 6 and A --- 1. 

C o m p a r i n g  M S A  w i t h  o t h e r  h e u r i s t i c s  - In evaluating MSA and the layer 
and subtree partitions, two algorithms classified as list scheduling heuristics were 
implemented: Earliest Task First (ETF)  of Hwang et al. [9] and the Mapping 
Heuristic (MH) of Rewini et al. [6]. The sending and receiving overheads were 
incorporated in the cost function that  guides ETF.  MH incorporates the cost 
of sending a message into its cost function, therefore representing the linear 
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communication model. The schedules produced by MSA, ETF and MH were 
executed on a simulated machine, i.e. a tool capable of simulating the execution 
of given schedules on parallel machines with different characteristics. 

~ k e ~ p a a  x I0 3 mal~e~p~ | i 

0 1 !  . . . . . . . . . . . .  
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- -  Laver Partition - t~rediction ! 

9 1 9  

ro~esso~ essors 

Fig. 5. Makespans of MSA (the subtree Fig. 6. Makespans of MSA (the layer par- 
partition using 7 = 0) and ETF for B511, titian using 7 = r) and ETF for B~11, 
r =  1 and )~ =6 .  r =  6 and A = 1. 

The best results produced by the subtree and layer partitions for B51], are 
compared with ETF  (see Figures 5 and 6). When ~ > % it is better to set the 
parameter  7 to zero in the first stage of MSA (for the subtree partition). One 
of the problems with ETF is that  due to local decisions, when the number of 
available processors is smaller than the number of source tasks, the source tasks 
which do not belong to the same subtree may be allocated to the same processor, 
i.e. ETF  does not a t tempt  to minimise the number of communication events. The 
second case examines the situation in which ~ < r and where MSA is executed 
with 7 = v. In Figure 6, ETF ' s  results are close to the layer parti t ion of MSA, 
but only because the overheads are much smaller than the delay r .  The schedules 
generated by MSA and ETF for Bsll  were executed on the simulated machine 
considering a fully connected network. Both predictions are very accurate, but 
MSA gives better results than ETF for any number of processors. 

To compare MSA with MH, experiments are carried out with the significant 
communication parameters being ~s and T. For Bn, the sending event tasks will 
be executed in parallel irrespective of the partit ioning applied. Therefore, the 
best partitioning technique is the one that minimises the number of sending event 
tasks along the critical path of the corresponding superdag. In this case, the in 
degree of the (7+2) -a ry  tree produced by the layer parti t ion does not hinder the 
performance of the resulting schedule. First, experiments are performed with the 
delay T as the only significant parameter  (Figure 7). The best value of 7 is that  
which produces supertasks containing Full Binary Trees (verified experiment- 
ally [1]). Figure 8 shows the results for the CLAUD model where ~ and T are 
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significant. The times to completion of the simulation of MSA schedules are as 
predicted and therefore have been omit ted from the respective figures. In all of 
the cases considering the delay model and CLAUD model, MSA produces better  
results then Mtt. Also, in the case of MH, Figures 7 and 8 together show that  as 
the value of A~ increases, so does the difference between the simulated execution 
t ime and the predicted one. 
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Fig. 7. Makespans of MSA with 7 = 6 and 
MH, for Bsll with r = 6 and ~ = ~ = 0. 
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Fig. 8. Makespans of MSA with 3' = 6 
and MH, for B511 with r = 1, ~ = 10 
and )~r = 0. 

5 C o n c l u d i n g  R e m a r k s  

Jung el al. [10] showed tha t  the Full Binary Tree can be asymptot ical ly op- 
t imally scheduled without replication, given that  the target  model has a single 
communicat ion parameter  - the delay 7-. The layer part i t ion provides a mech- 
anism of transforming the input DAG onto a coarser one. However, when the 
blocking parameters  A~ and ,~ are considered, the parti t ioning of the Full Bin- 
ary Tree into layers produces supertasks with in degree > 2. In architectures 
with high overheads, the parallel execution of such superdags leads to a high 
communicat ion cost due to the sending and receiving events. The subtree parti- 
tioning is proposed to overcome this problem and is provided by MSA when 7, 
the clustering factor, is zero. 

Note that  ETF and MH do not provide schedules that  are completely un- 
reasonable. In fact, for the delay model, both ETF  and MH can provide bet ter  
results than MSA when there is a small number of available physical processors 
and v is very low. However, this is not true (under the delay model) for larger ~- 
and, particularly, for the CLAUD model. In the latter case, by adding the s tar tup 
overhead to the delay, ETF  and MH specify that  the s tar tup cost can also be 
overlapped with task computat ion.  This may  be unrealistic and consequently, 
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the execution times of the schedules may be much higher than their respective 
predictions. 

This paper  has evaluated the impact  of the delay and the overhead commu- 
nication parameters  on the schedules of a certain class of regular DA Gs, known as 
Full Binary Trees. Two types of parti t ions were analysed and the results showed 
that  the part i t ion which produced the best schedule depends on the character- 
istics of the target  model. Our multi-singe approach displayed its versatility by 
tuning the input parameters  that  guide the clustering of tasks and bundling of 
messages so that  a suitable schedule for the given underlying model is produced. 
An analysis of other regular structures, such as the diamond DAG and irregular 
graphs, and their parti t ioning strategies is described in [1]. 
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