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A b s t r a c t .  In a distributed-computing environment, it is important to 
ensure that the processor workloads are adequately balanced. Among 
numerous load-balancing algorithms, a unique approach d u e  to  Das and 
Prasad defines a symmetric broadcast network (SBN) that provides a 
robust communication pattern among the processors in a topology-inde- 
pendent manner. In this paper, we propose and analyze three novel SBN- 
based load-balancing algorithms, and implement them o n  a n  SP2. A 
thorough experimental study with Poisson-distributed synthetic loads 
demonstrates that these algorithms are very effective in balancing system 
load while minimizing processor idle time. They also compare favorably 
with several other existing load-balancing techniques. 

1 Introduct ion 

To maximize the performance of a mult icomputer  system, it is essential to evenly 
distribute the load among the processors. In other words, it is desirable to pre- 
vent, if possible, the condition where one processor is overloaded with a backlog 
of jobs while another processor is lightly loaded or idle. The load-balancing prob- 
lem is closely related to scheduling and resource allocation, and can be static or 
dynamic.  A static allocation [8] relates to decisions made at compile time, and 
compile-t ime programming tools are necessary to adequately est imate the re- 
quired resources. Dynamic algorithms [1, 5, 6, 7] allocate/reallocate resources at 
run t ime based on one or more system parameters.  Determining which parame-  
ters to mainta in  and how to broadcast them are important  design considerations. 

In this paper, we consider general-purpose dis tr ibuted-memory parallel com- 
puters in which processors (or nodes) are connected by a point-to-point network 
topology. These nodes communicate with one another using message passing. 
Responsibility for load balancing is decentralized, or spread among the nodes. 
Processor workload is determined by the length of the local job queue. The net- 
work is assumed to be homogeneous and that  any job can be processed by any 
node. However, jobs cannot be rerouted once execution begins. 

Recently, Das et. al. [3, 4] have suggested a different approach to dynamic 
load balancing, by introducing a logical topology-independent communicat ion 
pat tern  called symmetr ic  broadcast network (SBN). We refine this approach 
and propose three novel and efficient load-balancing algorithms, one of which 
is adapted for use on the hypercube architecture. Based on their operational 
characteristics, our SBN-based algorithms can be classified (e.g. [9]) as: 
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Adapt ive:  performance is adapted to the average number of queued jobs; 
Symmet r i ca l ly  ini t ia ted:  senders and receivers can initiate load balancing; 
S t a b l e :  the network is not burdened with excessive load-balancing traffic; 
Effective: system performance is not degraded when the algorithms operate. 

The three proposed algorithms are implemented on an IBM SP2, using the 
Message-Passing Interface (MPI). Performance is analyzed based on simulation 
using Poisson-distributed synthetic loads under various metrics: total number 
of jobs transferred, total completion time, message traffic per node, and maxi- 
mum variance in node idle time. Empirical results of our extensive experiments 
demonstrate that the load balancing achieved by the SBN approach is superior 
to several other existing techniques such as Random [5], Gradient [7], Receiver 
Initiated [6], Sender Initiated [6], and Adaptive Contracting [6]. 

2 G e n e r a l  C h a r a c t e r i s t i c s  o f  S B N s  
A symmetric broadcast network (SBN) defines a communication pattern (logical 
or physical) among the P processors in a multicomputer system. An SBN of 
dimension d _> 0, denoted as SBN(d), is a d+l-stage interconnection network 
with P=2 d processors in each stage. It is constructed recursively as follows: 
• A single node forms the basis network SBN(0). 
• For d > 0, SBN(d) is obtained from a pair of SBN(d- 1)s by adding a commu- 

nication stage in the front and extra interprocessor links as follows: (a) node 
i in stage 0, is connected to node j=( i÷P/2)  rood P in stage 1; and (b) node 
j in stage 1 is connected to the node in stage 2 that was the stage 0 successor 
of node i in SBN(d-  1). 

An example of how an SBN(2) is formed from two SBN(1)s is shown in Fig. 1. 

Stage 0 Stage 1 Stage 0 Stage 1 Stage 2 

Fig. 1. Construction of an SBN(2) from apair of SBN(1)s 

The SBN approach defines unique communication patterns among the nodes 
in the network. For any node at stage 0 as the source, there are logP stages 
of communication with each node appearing exactly once. The successors and 
predecessors for each node are uniquely defined by specifying the originating 
node and the communication stage. 

As an example, consider the communication pattern for SBN(3) shown in 
Fig. 2 that is used for messages originating from node 0. In general, if n~ is the 
corresponding node in the communication pattern for messages originating from 
node z, then n~ = n~ ® z, where @ is the exclusive-OR operator. Thus, all SBN 
communication patterns can be derived from the template corresponding to the 
one with node 0 as the root. The predecessor and successors to node n~ are: 
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Fig. 2. An example of load balancing using the standard SBN algorithm 

Predecessor: (n~ - 2 d-s) V 2 d-8+1, where V is the inclusive-OR operator, 
Successor 1: n~ + 2 d-s-1 for 0 < s < d, 
Successor 2: n~ - 2 d-s-1 for 1 < s < d. 

Figure 2 illustrates a possible SBN communication pattern, but many others 
can be easily derived based on network topology and application requirements. 
In [2], the SBN approach was adapted for use on the hypercube using a modified 
binomial spanning tree to ensure that  all successor and predecessor nodes at any 
communication stage are adjacent nodes in the hypercube. 

All SBN algorithms adapt their behavior to the system load. Under heavy 
(light) loads, the balancing activity is primarily initiated by processors that  are 
lightly (heavily) loaded. This activity is controlled by two system thresholds: 
NinTh and llaxTh, the minimum and maximum system load levels. The system 
load level SysLL is the average number of jobs queued per processor. If a proces- 
sor has a queue length qLen below MinTh, a message is initiated to begin load 
balancing. If QLen is larger than NaxTh, extra jobs are distributed through the 
network. If this distribution overloads other processors, load balancing is trig- 
gered. Algorithm behavior is affected by the values chosen for NinTh and llaxTh. 
For instance, MinTh must be large enough so that sufficient jobs can be received 
before a lightly-loaded processor becomes idle; however, it should not be too big 
so as to initiate unnecessary load balancing. If NaxTh is too small, it will cause 
an excessive number of job distributions. If it is too large, jobs will not be ade- 
quately distributed under light system loads. Moreover, once there is sufficient 
load in the network, very little load-balancing activity should be required. 

Two types of messages are processed in the SBN approach. The first type 
are balancing messages that  indicate unbalanced system load. These messages 
originate from an unbalanced node and are then routed through the SBN. As 
these balancing messages pass through the network, the cumulative total of 
queued jobs is computed to obtain Sy.%L. The second type of messages is for 
job distribution and used for two purposes. First, they are used to route the 
current SysLL through the network. Each node, upon receipt of such a message, 
updates its est imate-of the average number of jobs queued per node in the 
network. The system thresholds, ltinTh and NaxTh, are also updated. Second, 
job distribution messages are used to pass excess jobs from one node to another. 
This action can occur whenever a node has more jobs than its MaxTh. It can also 
be in response to a predecessor's need for jobs. This need is embedded in the 
load-balance messages as well as in the distribution messages that  respond to 
these operations. To reduce message traffic, a node does not initiate additional 
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load-balancing activity until all previous messages that have passed through the 
node have been completely processed. 

3 S B N - B a s e d  L o a d - B a l a n c i n g  A l g o r i t h m s  

3.1 S t anda rd  SBN Algor i thm 
In the standard SBN algorithm, load-balancing messages are routed through the 
SBN from the source to the processors in the last stage. Messages are then routed 
back toward the original source with the total number of jobs in the system. The 
originating node thus has an accurate value of SysLL. Distribution messages are 
then sent to all nodes along with the SysLL. All nodes then update their local 
SysLL, MinTh, and MaxTh. Excess jobs are routed as part of this distribution to 
balance the system load. In addition, if a processor has qLen less than SysLL, 
the need for jobs is indicated during the distribution process. Successor nodes 
respond by routing back an appropriate number of excess jobs. 

To illustrate the processing involved in a load-balancing operation, consider 
the SBN(3) in Fig. 2(a). The id and qLen for each node are shown. For example, 
node 6 has three jobs queued, indicated as Q3. The initial values of SysLL, MinTh, 
and MaxTh at node 0 are 4, 2, and 6, respectively (indicated as L4, m2, and M6). 
After a load-balancing request is sent through the SBN and then routed back to 
node 0, these values are updated to 8, 2, and 24, respectively, using: 

SysLL = [TotalJobsQueued / P], 
MinTh = min (MinTh, SysLL--I), 
HaxTh = SysLL ~- 2 [SysLL / MinThJ. 

Note that when load balancing is initiated, node 4 distributes half of its qLen, 
i.e., [3/2J job, back to node 0. This is shown by the arrow in Fig. 2(a). 

Distribution messages are then used to route excess jobs to the successor 
nodes or to indicate a need for jobs if the local QLen is less than SysLL. Jobs 
are routed back to the predecessor nodes when appropriate. Figure 2(b) shows 
the result of this distribution. The arrows indicate jobs routed between nodes. 
To load balance P processors, a total of 3P -3  messages have to be processed. 

3.2 Hypercube Variant 
The SBN approach can be adapted for implementation on a hypercube topol- 
ogy, using the modified binomial spanning tree. A complete description of this 
hypercube variant is given in [2]. It operates in a manner similar to the standard 
SBN algorithm with the following differences: 
• SysLL is computed when all balance messages arrive at the final node in the 

network. This is possible because there is a unique final node for every origi- 
nating node. Distribution messages are then routed back to complete the load 
balancing. Since there are P - I + P - 1  interconnections in the modified bino- 
mial spanning tree, a load-balancing operation requires 3 P - 4  messages. 

• Nodes in the SBN need to gather all balancing messages from their predecessors 
before routing the updated SysLL to the successors. 

• The network topology is such that the number of predecessor and successor 
nodes vary at the different stages of communication. 
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3.3 Heuristic SBN Algorithm 
Both previous algorithms process a large number of messages to accurately main- 
tain SysLL. The heuristic version attempts to reduce the amount of processing 
by terminating load-balancing operations as soon as enough jobs are found that  
can be distributed. In general, this strategy reduces the number of messages; 
although, O(P) messages are needed in the worst case. 

In the heuristic SBN algorithm, a processor estimates SysLL by averaging 
QLen for the processors through which the balance message has passed. An ap- 
propriate number of jobs are then returned to the predecessor nodes as follows: 

ExJobs = ~" 0 if {~Len < 3 
[ [qLen / 2] otherwise. 

If ExJobs = 0 or if SysLL > 2 when ExJobs = 1, the balance message is for- 
warded to the next stage. Otherwise, the load balancing is terminated. 

Job distribution is also performed differently in the heuristic SBN algorithm. 
For example, consider an SBN(3) that has a processor with NaxTh = 15 and 
QLen = 24. The number of jobs to be distributed is computed by dividing {~Len 
by the total number of stages. Thus, six jobs are distributed in this case. SysLL is 
then set to 24-6=18.  The processor that receives these jobs divides the number 
of jobs received by the remaining number of stages and adds the result to the 
SysLL stored at that  node. 

A significant advantage of the heuristic algorithm is that the balance mes- 
sages do not have to be gathered until SysLL can be estimated. This reduces the 
interdependencies associated with the communication. If a particular processor 
fails, load balancing can still be accomplished for the remaining processors. 

4 Exper imenta l  Results  
The three SBN-based load-balancing algorithms have been implemented using 
MPI and tested with synthetically-generated workloads on the SP2 located at 
NASA Ames Research Center. The simulation program spawns the appropriate 
number of child processes and creates the desired network. The list of all process 
ids and an initial distribution of jobs is routed through the network. 

In addition to the initial load, each node dynamically generates additional 
jobs during 10 job creation cycles. The number of jobs generated at each node 
during each cycle follows a Poisson distribution. By changing the parameter ,~, 
both heavy and light system load conditions are dynamically simulated. Jobs 
are processed by "spinning" for the designated time period. The simulation ter- 
minates when all jobs have been processed. Three test runs are reported here: 
H e a v y  S y s t e m  Load  (cf. Fig. 3): Initially, 10 jobs per node are randomly 

distributed throughout the network. Jobs generated during execution are more 
than that  the network can process. Job duration averages one second. 

T r a n s i t i o n  f r o m  H e a v y  to  L igh t  S y s t e m  L o a d  (cf. Fig. 4): Fifty jobs mul- 
tiplied by the number of processors are distributed to a small subset of nodes 
as an initial load. A light load of jobs is generated as the load-balancing algo- 
rithms proceed. Job duration averages two seconds. Note that  the initial load 
imbalance also needs to be corrected. 
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Fig. 3. Heavy system load 

Li gh t  S y s t e m  L o a d  (ef. Fig. 5): A small number of jobs are initially dis- 
tributed to a small subset of nodes. A light load of jobs are created as the 
load-balancing algorithms operate. 

The data and line charts in Figs. 3-5 measure the performance of the various 
load-balancing algorithms on an SP2, using the following variables: 
M e s s a g e  Traff ic  C o m p a r i s o n  by  Node :  Measures the maximum total num- 

ber of load-balancing messages that  were sent by any one of the nodes. 
Total  J o b s  T r a n s f e r r e d :  Measures the total number of job transfers that  

occurred from one node to another. 
M a x i m u m  V a r i a n e e  b y  N o d e  in Id le  T i m e :  Measures the difference in 

processing time between the most busy node and the least busy node. 
Total  T ime  to Complete:  Measures the total amount of elapsed time in sec- 

onds before all jobs are fully processed. 
As expected, the program with no load balancing (nobal) performs by far 

the worst. The Random (random) algorithm, although significantly reducing the 
idle time, is less effective than the remaining algorithms. The Sender Initiated 
(sender) algorithm balances the load more evenly than random; however, the 
Receiver Initiated (receiver) algorithm does better only when the system load is 
light. For light to moderate loads, receiver generates more network traffic because 
all nodes poll neighbors to find jobs they can process. To overcome this deficien- 
cy, a time delay of one second has been introduced after a polling operation at 
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Fig. 4. Transition from heavy to light system load 

the cost of increasing the idle time. At heavy system loads, sender can cause job 
thrashing. This has been overcome by reducing the number of job transfers that 
are done at high load levels; however, it can cause one or more nodes to remain 
lightly loaded. The Gradient (gradient) algorithm balances the load quite well 
without any of the above deficiencies. Unfortunately, lightly-loaded nodes can 
sometimes receive too many messages from overloaded nodes. Also significant 
communication is required to update neighbor node information, often resulting 
in excessive network traffic. The Adaptive Contracting (aewn) algorithm per- 
forms the best in periods of heavy system loads. However, as is true for gradient, 
the system traffic and the number of jobs migrated increase. 

Both the standard SBN (sbn) algorithm and its hypercube variant (cube) are 
able to balance the system load more evenly than others. Their performance 
characteristics are very similar. Both require less message traffic than gradient 
but cause a higher number of job migrations, especially in light system loads. 
The heuristic SBN algorithm (sbz) performs well in minimizing idle time in 
light system loads. Although its performance during periods of heavy loads is 
relatively good, it does not balance the system load as well as cube or sbn. 
This is because its estimate of SysLL is not necessarily accurate. For light loads, 
sbz transfers more jobs than the other algorithms; however, it requires fewer 
messages than gradient, sbn, or cube. Overall, the empirical results demonstrate 
that the SBN-based approach to dynamic load balancing is an effective one. 



944 

91000 

78000- 

65000- 

52000- 

39000- 

26000 

13000- 

0 
600- 

480- 

360" 

240- 

120- 

0 
2 

Message Traffic Comparison by Node/1 
I I  --.x- nobal [ [ 

random / [ 
--V-- receiver / I 
- -~ sender / [ 
---0- gradient / [ 
- '-0-- a c w n  / 

/ / I  

4 8 1'6 3'2 64 
Number of processors 

42000 

36000- 

30000- 

24000- 

18000- 

12000- 

6000- 

600 t Total Time to C ~  

480 

360 t ,~...~'~" ,- 

240 . - 

120 

01 . . . .  
2 4 8 16 32 64 

Number of processors 

Fig. 5. Light system load 

References  
1. Cybenko, G.: Dynamic load balancing for distributed-memory multiprocessors. J. 

Parallel Distrib. Comput. 7 (1989) 279-301 
2. Das, S., Harvey, D., Biswas, R.: Adaptive load-balancing algorithms using sym- 

metric broadcast networks, NASA Ames Research Center Technical Report NAS- 
9%014 (1997) 

3. Das, S., Prasad, S.: Implementing task ready queues in a multiprocessing environ- 
ment. International Conference on Parallel Computing (1990) 132-140 

4. Das, S., Yang, C., Leung, N.: Implementation of load balancing in multiprocessor 
systems using a symmetric broadcast network. International Conference of Parallel 
and Distributed Systems (1992) 589-596 

5. Eager, D., Lazowska, E., Zahorjan, J.: Adaptive load sharing in homogeneous dis- 
tributed systems. IEEE Trans. on Soft. Engrg. 12 (1986) 662-675 

6. Eager, D., Lazowska, E., Zahorjan, J.: A comparison of receiver-initiated and 
sender-initiated adaptive load sharing. Perf. Eval. 6 (1986) 53-68 

7. Lin, F., Keller, R.: The gradient model load balancing method. IEEE Trans. on 
Soft. Engrg. 13 (1987) 32-38 

8. Sarkar, V., Hennessy, J.: Compile-time partitioning and scheduling of parallel pro- 
grams. Scheduling and Load Balancing in Parallel and Distributed Systems (1995) 
61-70 

9. Shivaratri, N., Krueger, P., Singhal, M.: Load distributing for locally distributed 
systems. Computer 25 (1992) 33-44 


