
Design of Novel Load-Balancing Algori thms
with Implementat ions on an IBM SP2

Sajal K. Das 1, Daniel J. Harvey 1, and Rupak Biswas 2

1 CS Dept., University of North Texas, Denton, TX 76203, USA
2 NASA Ames Research Center, Moffett Field, CA 94035, USA

A b s t r a c t . In a distributed-computing environment, it is important to
ensure that the processor workloads are adequately balanced. Among
numerous load-balancing algorithms, a unique approach d u e to Das and
Prasad defines a symmetric broadcast network (SBN) that provides a
robust communication pattern among the processors in a topology-inde-
pendent manner. In this paper, we propose and analyze three novel SBN-
based load-balancing algorithms, and implement them o n a n SP2. A
thorough experimental study with Poisson-distributed synthetic loads
demonstrates that these algorithms are very effective in balancing system
load while minimizing processor idle time. They also compare favorably
with several other existing load-balancing techniques.

1 Introduct ion

To maximize the performance of a mult icomputer system, it is essential to evenly
distribute the load among the processors. In other words, it is desirable to pre-
vent, if possible, the condition where one processor is overloaded with a backlog
of jobs while another processor is lightly loaded or idle. The load-balancing prob-
lem is closely related to scheduling and resource allocation, and can be static or
dynamic. A static allocation [8] relates to decisions made at compile time, and
compile-t ime programming tools are necessary to adequately est imate the re-
quired resources. Dynamic algorithms [1, 5, 6, 7] allocate/reallocate resources at
run t ime based on one or more system parameters. Determining which parame-
ters to mainta in and how to broadcast them are important design considerations.

In this paper, we consider general-purpose dis tr ibuted-memory parallel com-
puters in which processors (or nodes) are connected by a point-to-point network
topology. These nodes communicate with one another using message passing.
Responsibility for load balancing is decentralized, or spread among the nodes.
Processor workload is determined by the length of the local job queue. The net-
work is assumed to be homogeneous and that any job can be processed by any
node. However, jobs cannot be rerouted once execution begins.

Recently, Das et. al. [3, 4] have suggested a different approach to dynamic
load balancing, by introducing a logical topology-independent communicat ion
pat tern called symmetr ic broadcast network (SBN). We refine this approach
and propose three novel and efficient load-balancing algorithms, one of which
is adapted for use on the hypercube architecture. Based on their operational
characteristics, our SBN-based algorithms can be classified (e.g. [9]) as:

938

Adapt ive: performance is adapted to the average number of queued jobs;
Symmet r i ca l ly ini t ia ted: senders and receivers can initiate load balancing;
S t a b l e : the network is not burdened with excessive load-balancing traffic;
Effective: system performance is not degraded when the algorithms operate.

The three proposed algorithms are implemented on an IBM SP2, using the
Message-Passing Interface (MPI). Performance is analyzed based on simulation
using Poisson-distributed synthetic loads under various metrics: total number
of jobs transferred, total completion time, message traffic per node, and maxi-
mum variance in node idle time. Empirical results of our extensive experiments
demonstrate that the load balancing achieved by the SBN approach is superior
to several other existing techniques such as Random [5], Gradient [7], Receiver
Initiated [6], Sender Initiated [6], and Adaptive Contracting [6].

2 G e n e r a l C h a r a c t e r i s t i c s o f S B N s
A symmetric broadcast network (SBN) defines a communication pattern (logical
or physical) among the P processors in a multicomputer system. An SBN of
dimension d _> 0, denoted as SBN(d), is a d+l-stage interconnection network
with P=2 d processors in each stage. It is constructed recursively as follows:
• A single node forms the basis network SBN(0).
• For d > 0, SBN(d) is obtained from a pair of SBN(d- 1)s by adding a commu-

nication stage in the front and extra interprocessor links as follows: (a) node
i in stage 0, is connected to node j=(i÷P/2) rood P in stage 1; and (b) node
j in stage 1 is connected to the node in stage 2 that was the stage 0 successor
of node i in SBN(d- 1).

An example of how an SBN(2) is formed from two SBN(1)s is shown in Fig. 1.

Stage 0 Stage 1 Stage 0 Stage 1 Stage 2

Fig. 1. Construction of an SBN(2) from apair of SBN(1)s

The SBN approach defines unique communication patterns among the nodes
in the network. For any node at stage 0 as the source, there are logP stages
of communication with each node appearing exactly once. The successors and
predecessors for each node are uniquely defined by specifying the originating
node and the communication stage.

As an example, consider the communication pattern for SBN(3) shown in
Fig. 2 that is used for messages originating from node 0. In general, if n~ is the
corresponding node in the communication pattern for messages originating from
node z, then n~ = n~ ® z, where @ is the exclusive-OR operator. Thus, all SBN
communication patterns can be derived from the template corresponding to the
one with node 0 as the root. The predecessor and successors to node n~ are:

939

~ Q14

Q1 1 QA 3 ~ ~""(3~Q7

~ Q 1 5

M26 (a) ~ " ~ Q 1 6

Q6 Q8

m2 10- ~ o)~
M24 (b) ~ '~ , . .~ .) Q8

Fig. 2. An example of load balancing using the standard SBN algorithm

Predecessor: (n~ - 2 d-s) V 2 d-8+1, where V is the inclusive-OR operator,
Successor 1: n~ + 2 d-s-1 for 0 < s < d,
Successor 2: n~ - 2 d-s-1 for 1 < s < d.

Figure 2 illustrates a possible SBN communication pattern, but many others
can be easily derived based on network topology and application requirements.
In [2], the SBN approach was adapted for use on the hypercube using a modified
binomial spanning tree to ensure that all successor and predecessor nodes at any
communication stage are adjacent nodes in the hypercube.

All SBN algorithms adapt their behavior to the system load. Under heavy
(light) loads, the balancing activity is primarily initiated by processors that are
lightly (heavily) loaded. This activity is controlled by two system thresholds:
NinTh and llaxTh, the minimum and maximum system load levels. The system
load level SysLL is the average number of jobs queued per processor. If a proces-
sor has a queue length qLen below MinTh, a message is initiated to begin load
balancing. If QLen is larger than NaxTh, extra jobs are distributed through the
network. If this distribution overloads other processors, load balancing is trig-
gered. Algorithm behavior is affected by the values chosen for NinTh and llaxTh.
For instance, MinTh must be large enough so that sufficient jobs can be received
before a lightly-loaded processor becomes idle; however, it should not be too big
so as to initiate unnecessary load balancing. If NaxTh is too small, it will cause
an excessive number of job distributions. If it is too large, jobs will not be ade-
quately distributed under light system loads. Moreover, once there is sufficient
load in the network, very little load-balancing activity should be required.

Two types of messages are processed in the SBN approach. The first type
are balancing messages that indicate unbalanced system load. These messages
originate from an unbalanced node and are then routed through the SBN. As
these balancing messages pass through the network, the cumulative total of
queued jobs is computed to obtain Sy.%L. The second type of messages is for
job distribution and used for two purposes. First, they are used to route the
current SysLL through the network. Each node, upon receipt of such a message,
updates its est imate-of the average number of jobs queued per node in the
network. The system thresholds, ltinTh and NaxTh, are also updated. Second,
job distribution messages are used to pass excess jobs from one node to another.
This action can occur whenever a node has more jobs than its MaxTh. It can also
be in response to a predecessor's need for jobs. This need is embedded in the
load-balance messages as well as in the distribution messages that respond to
these operations. To reduce message traffic, a node does not initiate additional

940

load-balancing activity until all previous messages that have passed through the
node have been completely processed.

3 S B N - B a s e d L o a d - B a l a n c i n g A l g o r i t h m s

3.1 S t anda rd SBN Algor i thm
In the standard SBN algorithm, load-balancing messages are routed through the
SBN from the source to the processors in the last stage. Messages are then routed
back toward the original source with the total number of jobs in the system. The
originating node thus has an accurate value of SysLL. Distribution messages are
then sent to all nodes along with the SysLL. All nodes then update their local
SysLL, MinTh, and MaxTh. Excess jobs are routed as part of this distribution to
balance the system load. In addition, if a processor has qLen less than SysLL,
the need for jobs is indicated during the distribution process. Successor nodes
respond by routing back an appropriate number of excess jobs.

To illustrate the processing involved in a load-balancing operation, consider
the SBN(3) in Fig. 2(a). The id and qLen for each node are shown. For example,
node 6 has three jobs queued, indicated as Q3. The initial values of SysLL, MinTh,
and MaxTh at node 0 are 4, 2, and 6, respectively (indicated as L4, m2, and M6).
After a load-balancing request is sent through the SBN and then routed back to
node 0, these values are updated to 8, 2, and 24, respectively, using:

SysLL = [TotalJobsQueued / P],
MinTh = min (MinTh, SysLL--I),
HaxTh = SysLL ~- 2 [SysLL / MinThJ.

Note that when load balancing is initiated, node 4 distributes half of its qLen,
i.e., [3/2J job, back to node 0. This is shown by the arrow in Fig. 2(a).

Distribution messages are then used to route excess jobs to the successor
nodes or to indicate a need for jobs if the local QLen is less than SysLL. Jobs
are routed back to the predecessor nodes when appropriate. Figure 2(b) shows
the result of this distribution. The arrows indicate jobs routed between nodes.
To load balance P processors, a total of 3P -3 messages have to be processed.

3.2 Hypercube Variant
The SBN approach can be adapted for implementation on a hypercube topol-
ogy, using the modified binomial spanning tree. A complete description of this
hypercube variant is given in [2]. It operates in a manner similar to the standard
SBN algorithm with the following differences:
• SysLL is computed when all balance messages arrive at the final node in the

network. This is possible because there is a unique final node for every origi-
nating node. Distribution messages are then routed back to complete the load
balancing. Since there are P - I + P - 1 interconnections in the modified bino-
mial spanning tree, a load-balancing operation requires 3 P - 4 messages.

• Nodes in the SBN need to gather all balancing messages from their predecessors
before routing the updated SysLL to the successors.

• The network topology is such that the number of predecessor and successor
nodes vary at the different stages of communication.

941

3.3 Heuristic SBN Algorithm
Both previous algorithms process a large number of messages to accurately main-
tain SysLL. The heuristic version attempts to reduce the amount of processing
by terminating load-balancing operations as soon as enough jobs are found that
can be distributed. In general, this strategy reduces the number of messages;
although, O(P) messages are needed in the worst case.

In the heuristic SBN algorithm, a processor estimates SysLL by averaging
QLen for the processors through which the balance message has passed. An ap-
propriate number of jobs are then returned to the predecessor nodes as follows:

ExJobs = ~" 0 if {~Len < 3
[[qLen / 2] otherwise.

If ExJobs = 0 or if SysLL > 2 when ExJobs = 1, the balance message is for-
warded to the next stage. Otherwise, the load balancing is terminated.

Job distribution is also performed differently in the heuristic SBN algorithm.
For example, consider an SBN(3) that has a processor with NaxTh = 15 and
QLen = 24. The number of jobs to be distributed is computed by dividing {~Len
by the total number of stages. Thus, six jobs are distributed in this case. SysLL is
then set to 24-6=18. The processor that receives these jobs divides the number
of jobs received by the remaining number of stages and adds the result to the
SysLL stored at that node.

A significant advantage of the heuristic algorithm is that the balance mes-
sages do not have to be gathered until SysLL can be estimated. This reduces the
interdependencies associated with the communication. If a particular processor
fails, load balancing can still be accomplished for the remaining processors.

4 Exper imenta l Results
The three SBN-based load-balancing algorithms have been implemented using
MPI and tested with synthetically-generated workloads on the SP2 located at
NASA Ames Research Center. The simulation program spawns the appropriate
number of child processes and creates the desired network. The list of all process
ids and an initial distribution of jobs is routed through the network.

In addition to the initial load, each node dynamically generates additional
jobs during 10 job creation cycles. The number of jobs generated at each node
during each cycle follows a Poisson distribution. By changing the parameter ,~,
both heavy and light system load conditions are dynamically simulated. Jobs
are processed by "spinning" for the designated time period. The simulation ter-
minates when all jobs have been processed. Three test runs are reported here:
H e a v y S y s t e m Load (cf. Fig. 3): Initially, 10 jobs per node are randomly

distributed throughout the network. Jobs generated during execution are more
than that the network can process. Job duration averages one second.

T r a n s i t i o n f r o m H e a v y to L igh t S y s t e m L o a d (cf. Fig. 4): Fifty jobs mul-
tiplied by the number of processors are distributed to a small subset of nodes
as an initial load. A light load of jobs is generated as the load-balancing algo-
rithms proceed. Job duration averages two seconds. Note that the initial load
imbalance also needs to be corrected.

942

140000

120000-

100000-

80000-

60000-

40000-

20000-

400

320

2413

1613

80

Message Traffic Comparison by Node

nobal
random

---v- receiver
sender
gradient

--o- acwn
sbn
cube
sbz

Maximum Variance by Nodein Idle Time

4 8 16 32 64
Number ofprocessors

21000-

181300-

15000-

12000-

9000

6000-

3000-

400

3213

240

160

80

13
2

Total Jobs Transferred

8 16 32
Number of processors

64

Fig. 3. Heavy system load

Li gh t S y s t e m L o a d (ef. Fig. 5): A small number of jobs are initially dis-
tributed to a small subset of nodes. A light load of jobs are created as the
load-balancing algorithms operate.

The data and line charts in Figs. 3-5 measure the performance of the various
load-balancing algorithms on an SP2, using the following variables:
M e s s a g e Traff ic C o m p a r i s o n by Node : Measures the maximum total num-

ber of load-balancing messages that were sent by any one of the nodes.
Total J o b s T r a n s f e r r e d : Measures the total number of job transfers that

occurred from one node to another.
M a x i m u m V a r i a n e e b y N o d e in Id le T i m e : Measures the difference in

processing time between the most busy node and the least busy node.
Total T ime to Complete: Measures the total amount of elapsed time in sec-

onds before all jobs are fully processed.
As expected, the program with no load balancing (nobal) performs by far

the worst. The Random (random) algorithm, although significantly reducing the
idle time, is less effective than the remaining algorithms. The Sender Initiated
(sender) algorithm balances the load more evenly than random; however, the
Receiver Initiated (receiver) algorithm does better only when the system load is
light. For light to moderate loads, receiver generates more network traffic because
all nodes poll neighbors to find jobs they can process. To overcome this deficien-
cy, a time delay of one second has been introduced after a polling operation at

943

210000

180000

150000

120000

90000

60000

30000

0
1500

1200

900

600

300

0 ; ' -

Message Traffic Comparison by Node

---x- nobal j
- -~ random /

i - -~ ~e nC~leVer /
-.#- gradient /

sa~ wn /
cube /

-.-,t-- sbz / / ~

Maximum Variance by Node in Idle Time

2
,,r

8 1'6 32 64
Number of processors

56000

48000-

40000-

32000-

24000 -

16000-

8000

1500-

1200-

900

600-

300-

Total Jobs Transferred

E

Total Time to Complete

8 1'6 32 64
Number of processors

Fig. 4. Transition from heavy to light system load

the cost of increasing the idle time. At heavy system loads, sender can cause job
thrashing. This has been overcome by reducing the number of job transfers that
are done at high load levels; however, it can cause one or more nodes to remain
lightly loaded. The Gradient (gradient) algorithm balances the load quite well
without any of the above deficiencies. Unfortunately, lightly-loaded nodes can
sometimes receive too many messages from overloaded nodes. Also significant
communication is required to update neighbor node information, often resulting
in excessive network traffic. The Adaptive Contracting (aewn) algorithm per-
forms the best in periods of heavy system loads. However, as is true for gradient,
the system traffic and the number of jobs migrated increase.

Both the standard SBN (sbn) algorithm and its hypercube variant (cube) are
able to balance the system load more evenly than others. Their performance
characteristics are very similar. Both require less message traffic than gradient
but cause a higher number of job migrations, especially in light system loads.
The heuristic SBN algorithm (sbz) performs well in minimizing idle time in
light system loads. Although its performance during periods of heavy loads is
relatively good, it does not balance the system load as well as cube or sbn.
This is because its estimate of SysLL is not necessarily accurate. For light loads,
sbz transfers more jobs than the other algorithms; however, it requires fewer
messages than gradient, sbn, or cube. Overall, the empirical results demonstrate
that the SBN-based approach to dynamic load balancing is an effective one.

944

91000

78000-

65000-

52000-

39000-

26000

13000-

0
600-

480-

360"

240-

120-

0
2

Message Traffic Comparison by Node/1
I I --.x- nobal [[

random / [
--V-- receiver / I
- -~ sender / [
---0- gradient / [
- '-0-- a c w n /

/ / I

4 8 1'6 3'2 64
Number of processors

42000

36000-

30000-

24000-

18000-

12000-

6000-

600 t Total Time to C ~

480

360 t ,~...~'~" ,-

240 . -

120

01
2 4 8 16 32 64

Number of processors

Fig. 5. Light system load

References
1. Cybenko, G.: Dynamic load balancing for distributed-memory multiprocessors. J.

Parallel Distrib. Comput. 7 (1989) 279-301
2. Das, S., Harvey, D., Biswas, R.: Adaptive load-balancing algorithms using sym-

metric broadcast networks, NASA Ames Research Center Technical Report NAS-
9%014 (1997)

3. Das, S., Prasad, S.: Implementing task ready queues in a multiprocessing environ-
ment. International Conference on Parallel Computing (1990) 132-140

4. Das, S., Yang, C., Leung, N.: Implementation of load balancing in multiprocessor
systems using a symmetric broadcast network. International Conference of Parallel
and Distributed Systems (1992) 589-596

5. Eager, D., Lazowska, E., Zahorjan, J.: Adaptive load sharing in homogeneous dis-
tributed systems. IEEE Trans. on Soft. Engrg. 12 (1986) 662-675

6. Eager, D., Lazowska, E., Zahorjan, J.: A comparison of receiver-initiated and
sender-initiated adaptive load sharing. Perf. Eval. 6 (1986) 53-68

7. Lin, F., Keller, R.: The gradient model load balancing method. IEEE Trans. on
Soft. Engrg. 13 (1987) 32-38

8. Sarkar, V., Hennessy, J.: Compile-time partitioning and scheduling of parallel pro-
grams. Scheduling and Load Balancing in Parallel and Distributed Systems (1995)
61-70

9. Shivaratri, N., Krueger, P., Singhal, M.: Load distributing for locally distributed
systems. Computer 25 (1992) 33-44

