
On the Embedding of Ref inements of
2-dimensional Grids*

F. d'Amore 1, L. Becchetti 1, S.L. Bezrukov 2, A. Marchetti-Spaccamela 1,
M. Ottaviani 1, R. Preis 2, M. RSttger 2, and U.-P. Schroeder 2

1 Dipartimento di Informatica e Sistemistica, Universit~ di Roma "La Sapienza",
Via Salaria 113, 1-00198 Roma~ Italy

2 Fachbereich Mathematik/Informatik, Universit£t-GH Paderborn, Fiirstenallee 11,
D-33102 Paderborn, Germany

Abst rac t . We consider the problem of constructing embeddings of 2-
dimensional FEM graphs into grids. Our goal is to minimize the edge-
congestion and dilation and optimize the load. We introduce some heuris-
tics, analyze their performance, and present experimental results com-
paring the heuristics with the methods based on the usage of standard
graph partitioning libraries.

1 I n t r o d u c t i o n

We consider the problem to embed large scale FEM graphs for the solution of
partial differential equations into massively parallel computing systems. Roughly
speaking, solving such equations with respect to a function F, say in two dimen-
sions, requires to partit ion the domain of F into simple polygons (e.g. triangles
or rectangles). Afterwards the value of the function F is computed in the nodes
of the obtained partition. It turns out that accuracy requirements are not con-
stant in the considered region but might vary considerably. This may lead to a
parti t ion of the area into polygons where the polygons sizes can be essentially
different.

Such a partit ion can be viewed as a planar graph G whose nodes and edges
correspond to the nodes and the sides of the polygons respectively. Each node
represents a task for a processing element of the multiprocessor computing sys-
tem. In order to minimize the running time the tasks have to be uniformly dis-
t r ibuted among the processing elements. Furthermore, since the FEM requires
to solve for each node x a difference equation involving x and its adjacent nodes,
an information flow between the processing elements is caused which should also
be minimized. These demands on the mapping can be expressed in the terms of
graph embedding.

* This work was supported by the DFG-Sonderforschungsbereich 376 "Massive Par-
allelit£t: Algorithmen, Entwurfsmethoden, Anwendungen", the EC ESPRIT Long
Term Research Project 20244 "ALCOM-IT" and the DFG Graduate Center "Paral-
lele Rechnernetze in der Produktionstechnik", GRK 124/2-96.

951

Let G = (V,E) and H = (V' ,E ') be finite graphs. An embedding of the
guest graph G into the host graph H is a function f : V ~ V ~ together with
a routing scheme Rf which assigns to each edge e = {Vl,V2} E E a path in H
from f(vl) to f(v2). The congestion of an edge e' E E' is the number of paths
in {Ri(e)] e E E} containing e'. The edge-congestion of an embedding is the
maximum congestion of the edges of E ~. The dilation of an edge e E E is the
length of the path Rf(e), the dilation o] an embedding is the maximum length
of the paths in {R~(e) l e E E}.

Many papers in the literature study the embedding of graphs with the goal
to minimize both load and communication costs. However, most papers assume
that either G is given or it belongs to a rather restricted class of graphs whose
structural properties are exploited (see [MS] for an overview). A large amount
of literature deals with the problem of finding a partitioning of a graph into
k clusters of approximately the same size. Here the aim is to minimize the
number of cut edges connecting nodes that belong to different clusters [DH,PSL].
In [DMT] the authors analyze the cost of implementing multigrid methods using
parallel architectures. The multigrid methods define a hierarchy of graphs that
need to be embedded which consist of the original fine grid and successively
coarser grids. However, the authors did not consider the communication/load
tradeoff of the embedding.

In this paper we examine the case where the host graph H representing the
computing system is a grid (e.g. Intel Paragon and Parsytec GC are commercial
grid-based systems), and study the embedding of quasi grids into H with the aim
of minimizing the load, the dilation, and the edge-congestion. The quasi grid is
defined as follows. Let R be a rectangular area on the 2-dimensional plane with
sides parallel to the coordinate axes. By splitting this area with x - 2 horizontal
and y - 2 vertical lines we get a x × y grid with (x - 1)- (y - 1) rectangular cells.
Now for a cell C we define a cell refinement operation. The operation consists
of splitting C into 4 subcells with one vertical and one horizontal line passing
through the center of C. This results in a graph which has 5 new nodes and
4 new edges as shown with the thin lines in Fig. l(a). Note that each edge of
the original cell is now partitioned into 2 new edges. If two cells of the original
graph which have to be refined have a common edge, we create the new node
in their common edge just once (cf. Fig. l(b)). The new subcells obtained after
the cell refinement operation are allowed to be further refined. Applying the cell
refinement operation a number of times we obtain a quasi grid S (cf. Fig. 2).

(~) (b)

Fig. 1. (a) Refinement of a single cell and (b) of two neighboring cells.

952

Since the embedding problem is computationally hard [BU], we are inter-
ested in approximation algorithms. In Sect. 2, we introduce several heuristics
and analyze them from the worst case point of view. We also present the results
of preliminary experiments with the heuristics. In order to obtain fair results we
compare the performance of the proposed heuristics with respect to the solution
obtained by means of libraries for partitioning; these libraries exploit sophisti-
cated algorithms that partit ion the nodes of a graph into clusters in order to
minimize the load and the number of cut edges.

2 Algorithms

In this section we briefly present five heuristics for embedding a quasi grid S
with m nodes into a nh x nv grid P and analyze their performance. Let LH(s , P)
denote the load provided by heuristic H. A lower bound on the load is given by
Lard(S, P) = [m/(nh . nv)] and we define RH(S, P) := LH(s , P) /Lavg(s , P).

Heuristic Tile1: This and the next two heuristics are based on partitioning
the quasi grid S into boxes that correspond to the structure of the grid P. To
describe Tile1 we first introduce two orderings Ch and Cv of the nodes of S. We
consider the nodes of S as points (x, y) on the plane, assuming that the origin
of the coordinate system is the leftmost and bottommost node of S and its axes
are parallel to the segments of S. For the nodes (Xl, Yl), (x2, Y2) of S we say that
(x l ,y l) <¢h (x2,y2) iffyl < Y2, or if yl = Y2 then Xl < x2. Similarly, we say that
(x l ,y l) <¢v (x2,y2) i ffxl < x2, or if xl = x2 then Yl < Y2. Now we partit ion the
nodes into nh sets A1, ..., Anh. Ai consists of m~ w.r.t Cv consecutive nodes of S,
with [m/nhJ <_ m} < [m/nhT, i = 1, ..., nh. Moreover, the nodes are partit ioned
into nv sets B1, ..., Bn~ where By consists of my w.r.t. Ch consecutive nodes of
S, with [m/nvJ <_ m j <_ [m/nv], j = 1, ..., n~. The embedding defined by Tile1
is the following: The nodes of Cij = Ai n Bj are mapped onto the node Pij of P,
with i = 1, ..., nh and j = 1, ..., n~. (cf. Fig. 2(a)).
This heuristic is first of all designed to provide a small dilation and edge-
congestion. It guarantees that the total load of each column (row) of the grid P
is the same up to one. However, the loads of single processors can be essentially
different.

P r o p o s i t i o n 1. RTilel (S ,P) <_ min{nh,nv} .

The first step of Ti le2 partitions the nodes in the same way as Tile1. Then
J consecutive nodes of each set Ai, i = 1, ..., nh, is partitioned into sets Cij of m i

J < [m~/n~ 7 and j = 1, ..., n~ (cf. Fig. 2(b)). Ai (w.r.t. Ch), where [m~/nvJ < m i _

P r o p o s i t i o n 2. RT{~e2(S, P) = 1.

The heuristic Ti le3 involves an integer parameter d and uses the heuristic
Tile2 as a subroutine. First of all we partition the nodes of P into clusters Ckl:

Ckl = {Pij I (k - 1)d + 1 < i < kd, (l - 1)d + 1 < j < Id},

953

l T i

i : i

,-- 5 - 1 t ' :

"i i : - - I i -_ ' - i - - - i I I 1--'
:ii I:I I i[1 /

- - i r i - } - { i l I il _ i J
I l : - T ' - - " } - - J - } : { - - } 1
/ i! il i _ lil I /

', ", ' I ' , " I , I J
,, ",, ,, ~ I ]

' ,_ . ' , ,,
i i ii ,,
iI ,:
i I I (a)

Fig. 2. The exemplified heuristics Tile1
the 4 x 4 grid.

;] i
', ,, ,,
r

:I ', :i
....... ~-:I, ', "

~t~:~t:i "'*
. : - t i :*I: "

[1 "', " + : - - - - T . r t r - r r -~
/ J "-~. . _ ' , I + . I /
/] : [I!I I',I /
i- "-"--t i::- ;I i

, ; : j.I i __,
s : ~ _ i '

iI s~ :
' , I " '

: (b i

(a) and Tile2 (b), where the guest graph is

with k = 1, ..., rnh/d] and 1 = 1, ..., rnv/dU. Furthermore, we partit ion the nodes
of the quasi grid S into [nh/d] • [nv /d 1 blocks Bkl and map the nodes of Bkl
onto the processors of the cluster Ckl using heuristic Tile2. The use of heuristic
Tile3 supposes that the unrefined quasi grid (that is, the grid obtained from S
by considering its coarsest subgrid) coincides with, or is a subgraph of, P; if this
is not the case a pre-embedding step is carried out. Details will be given in the
full version of the paper.

The aim of the P a c - M a n heuristic is to group nodes of S into nh "nv clusters
in such a way that nodes of the same cluster lie as close to each other as possible.
Under this approach we measure the nearness as the length of the shortest path
between the corresponding nodes in S. We start by choosing randomly nh • n~
seed-points of S. Then each seed-point tries in parallel to occupy nodes in its
neighborhood; it stops when there is no node so that the already occupied area
remains connected. Depending on the accrued clustering a new seed-point for the
next iteration is computed. Namely, the center of each cluster is chosen as the
seed-point for the next iteration. The algorithm terminates when all seed-points
remain unchanged. Since there is no guarantee that this heuristic produces a
balanced load, we have integrated a global load balancing step as post-processing.
This step guarantees a totally balanced load without loss of the compactness of
the previously computed clusters.

Heuristic K o h o n e n : We adapt Kohonen's self-organizing maps [K] to com-
pute an embedding that preserves topological relations between the nodes of the
refinement. The general Kohonen process maps points of an euclidean space to
adaptive elements called neurons in such a way that points of the space which
are close to each other are mapped onto neurons which are close to each other.
We represent the nodes of S as points of the 2-dimensional euclidean plane

954

E 2 and the grid P as the neural network. The Kohonen heuristic first assigns
to each node v of P a point p(v) E E 2 uniformly distributed in the rectangle
R = {(x,y) E E 2 I 1 <_ x <_ nh, 1 <_ y <_ nv}; let M denote the set of the
chosen points. The heuristic proceeds by repeatedly relocating points as follows:
randomly choose a node w of S, compute a point n(w) E M that is closest to w
and then move all points p(v) E M in the direction of w. At-this the movement
of each point p(v) is inversely proportional to the euclidean distance between
p(v) and n(w); the intensity of the movements decreases in time in order to
guarantee the convergence. The process terminates after a certain number of
iterations. The final embedding is given by the partition of the rectangle R into
clusters {C(u)] u E M} induced by the Voronoi-diagram of the points of M.
Since this algorithm generates an embedding which minimizes the communica-
tion costs (see [RMS]) but does not care about a balanced load, we additionally
apply a partial load balancing procedure after an initial convergence phase ev-
ery 300 iteration steps. In this procedure we compute the local load gradient of
every node of the grid P by comparing the loads of all its neighbors. After that,
for each node v of P, we move the point p(v) in the direction of the local load
gradient.

3 P a r t i t i o n i n g T o o l s

Graph partitioning problems arise in many different applications, which leads
to many heuristics based on different ideas. In general, graph partitioning can
be viewed as an embedding of the guest graph into a complete graph, i.e., the
load balance and the cut size are the major cost measures. Most applications
require the load balance to be optimal, i.e., the number of nodes in each part
differ at most by one. The goal is to minimize the cut size of the partition. The
problem of constructing such a partition is known to be NP-complete even in
the case of partitioning into two parts of the same size. Efficient heuristics have
been designed in the last decades to construct partitions with very low cut sizes.
Although they are based on some reasonable arguments for a low cut size, there
is no guarantee that a method works well for all kinds of graphs.

Partitions with low cut sizes might be very useful for our embedding problem.
In several previous studies (e.g. [BB,DMM]), graph partitioning was used in
a first step to partition the graph in as many clusters as there are nodes in
the host graph. A second step then performs the one-to-one embedding of the
cluster-graph into the host graph. This two step strategy integrates the powerful
partitioning methods into the embedding problem.

The efficiency of heuristics strongly depends on the implementation details.
Several libraries like Jostle ([WCE]) by Walshaw, Metis ([KK]) by Karypis and
Kumar, Scotch ([PR]) by Pellegrini or Party ([PD]) by Preis and Diekmann
exist to solve the partitioning problem. A library like Scotch also encounters the
embedding problem, but the cost function takes into account only the total sum
of the dilation of all edges and not the maximum dilation or maximum edge-
congestion. In a first approach, we use these libraries to compute good partitions

955

of our graphs and compare the resulting loads and cut sizes to those heuristics
described above.

4 T e s t s

In this section we will present some experimental results of the mentioned meth-
ods on two test graphs shown in Fig. 3. Both of them are subgraphs of the
previously defined quasi grids.

(a) (b)

Fig. 3. (a) Graph biplane (21,701 nodes and 42,038 edges) and (b) graph shock (36,476
nodes and 71,290 edges).

The embedding is performed on an 8 × 8 grid as the host graph and the
values for dilation, edge-congestion, load, and cut size are presented. A routing
scheme for the edge-congestion is calculated in a sequential order for each path.
To decide on a single path, the X/Y and the Y/X paths are considered and we
choose the one with the lowest occuring edge-congestion along the path.

Our main cost criteria are the dilation and the edge-congestion which are
shown in Fig. 4, (a) and (b). The results show that Tile1 and Tile3 have a very
low dilation and that all Tile-heuristics have a low edge-congestion. Please note
that the partitioning methods Pac-Man, Party, Jostle, and Metis are performing
an embedding into a complete host graph. At this stage, we used the identical
embedding on the grid to see how the dilation and congestion will be without
optimization of the embedding. The maximum load, the cut edges and the CPU
running times (sec) on a SUN Sparc20 workstation of the methods are shown
in Fig. 4, (c), (d) and (e), respectively. A value of 100% refers to an optimal
load balance. This or a just slightly unbalanced load is only guaranteed by the

9 5 6

3,5

3.0

2.5

2.0

1.5 - -

1.0

0.5

[] Dilation ~-
m |

... i ... 7 .0 :0.0
5.0
4.0

. ~ , 3.0
2.0

(b)
3.0
2.5

2.0
. "1.8

"i.O

0.5

a. ~ m

(d)

® ® ® = g ~"

g.O

4.0

a. ~ m

(c)
7.0

6.0

5,0

4,0

3.0

2.0

1.0

(e)

Fig. 4. Performances of tested algorithms: (a) Dilation, (b) edge-congestion, (c) max-
imum load, (d) cut size and (e) CPU time.

methods Tile2, Jostle, Metis, Scotch, Party, and Pac-Mau. In case of Tile1 and
Tile3, the small values of the dilation imply high unbalance of the load.

The high values for the load for the heuristics Tile1, Tile3, and Kohonen
are compensated by low cut sizes. In comparison with the other methods, Party
seems to perform slightly better than the others. In general, the partitioning li-
braries produce a balanced load and very low cut sizes. This is a strong argument
to integrate them in a two-step strategy for solving the embedding problem.

5 C o n c l u s i o n

In this paper several heuristics for the off-line mapping of refinements of 2-
dimensional grids are presented. They were all tested with two benchmark graphs

957

considering a wide set of parameters. According to the results of the exper-
iments, the Tile-heuristics seem to guarantee a good trade-off between load
and dilation/edge-congestion and, in comparison with other partitioning tools,
PARTY seems to provide good results with respect to cut-size and load.

Although the Kohonen method does not provide very promising results, being
applied for the static embedding considered so far, it seems to be more suitable
for dynamic embeddings than the other considered methods. This method can
explore the already computed embedding to react on local changes of the guest
graph without completely recomputing the whole embedding.

As to future work, we are going to modify and improve some of the presented
heuristics and also to study the dynamic version of the problem. As to more
theoretical aspects, we are completing the analytical study of our heuristics.
One of the most interesting aspects is the trade-off existing between the different
metrics considered, in particular between load, dilation, and edge-congestion, for
which we already gained some preliminary results.

References

[BB]

[BU]

[DMM]

[DH]

[DMT]

[K]

[KK]

[MS]

[PD]

[PSL]

[PR]

[RMS]

[WCE]

M.J. Berger and S.H. Bokhari, A Partitioning Strategy for Nonuniform Prob-
lems on Multiprocessors, IEEE Trans. on Comp., C-36 (5), 570-580, 1987.
S.L. Bezrukov and W. Unger, On Refinement of 2-Dimensional Grids, Preprint,
1995.
R. Diekmann, D. Meyer and B. Monien, Parallel Decomposition of Unstruc-
tured FEM-Meshes, Proc. of Irregular 95, LNCS 980, 199-215, 1995.
W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs,
IBM J. Res. Develop. 17, 1973, 420-425.
S.E. Dorward, L.R. Matheson and R.E. Tarjan, Toward efficient unstructured
multigrid preproeessing, Proc. of Irregular 96, LNCS 1117, 1996, 105-118.
T. Kohonen, Self-Organization and Associative Memory, 3rd edition, Springer
Verlag, Berlin 1989.
G. Karypis and V. Kumar, A fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs, Tech. Rep. 95-035, Dept. of Computer Science,
U. of Minnesota, 1995.
B. Monien and I.H. Sudborough, Embedding one Intereonnection Network in
Another, Computing Suppl., 7~ 1990, 257-282.
R. Preis and R. Diekmann, The PARTY Partitioning-Library User Guide -
Version 1.1, Tech. Rep. TR-RSFB-96-024, U. Paderborn, 1996.
A. Pothen, H.D. Simon and K.-P. Liou, Partitioning sparse matrices with eigen-
vectors of graphs, SIAM J. Matrix Anal. Appl.,ll, 1990, 430-452.
F. Pellegrini and J. Roman, SCOTCH: A Software Package for Static Mapping
by Dual Reeursive Bipartitioning of Process and Architecture Graphs, Proc. of
HPCN, 1996, 493-498.
H. Ritter, T. Martinetz and K. Schulten, Neural Computation and Self-
Organizing Maps, Addison Wesley, 1991.
C. Walshaw, M. Cross and M.G. Everett, A Localized Algorithm for Optimizing
Unstructured Mesh Partitions, Int. J. Supercomputer Appl., 9, 1995, 280-295.

