
Allocating Lifetimes to Queues in Software
Pipelined Architectures

Marcio M. Fernandes I , Josep Llosa 2, Nigel Topham 1

1 Edinburgh University, UK
2 Universitat Polit~cnica de Catalunya, Spain

Abs t r ac t . Software pipelining is an effective technique for increasing
the throughput of loops in superscalar or VLIW machines, however it
generates high register pressure, which in some cases requires the in-
troduction of spill code into the schedule. Large multi-ported register
files present significant problems in the construction of scalable VLIW
systems, which has lead us to investigate architectures in which part of
the register file is replaced by queues. We believe that this organization
has distinct advantages in terms of hardware complexity, silicon area,
instruction name space, and scalability. Queues also represent a natural
mechanism for communication between clusters of functional units in a
partitioned VLIW system. In this paper we present an overview of this
approach, along with some experimental results suggesting it as being a
feasible organization.

1 I n t r o d u c t i o n

Instruction-level parallelism (ILP) is a family of processor and compiler design
techniques tha t speed up program execution by causing individual machine op-
erations to execute in parallel. Decisions about which operations should be
executed in a given cycle and a given functional unit can be taken either at
compile t ime or at run time, depending on the architecture model in use. In
Very long Instruction Word (VLIW) machines the compiler provides information
as to which operations are independent of one another, so the hardware knows
without further checking which operations can execute concurrently.

The scheduling of operations plays a major role in achieving near opt imal
performance from an ILP machine. One of the scheduling schemes that can be
employed is software pipelining, with the objective of initiating successive loop
iterations before prior iterations had completed [2]. Modulo scheduling is a
class of software pipelining algori thms in which all loop iterations have the same
schedule of operations [9]. Most software pipelining schemes assume an archi-
tectural model in which ari thmetic operations are all register-register operations

0 This work has been supported by research grants from Capes (Brazil), British Coun-
cil and Ministry of Education of Spain under Acciones Integradas grant no. 1016,
and also UK EPSRC under grant no. K19723

1 Department of Computer Science, mmf, npt@dcs.ed.ac.uk
2 Department d'Arquitectura de Computadors, josepll@ac.upc.es

106Y

and data is transferred between registers and memory using load and store in-
structions. The lifetime of a value is the time span from the reservation of a
register to hold the value up to the last moment when the value is used. Life-
times often exceed the initiation interval, which means multiple live values from
a single instruction must coexist. Early designs proposed alternative register file
organizations to deal with the problem. The Polycyclic architecture ([9]) uses
a delay element, implemented as a queue with shift capabilities between every
pair of communicating functional units, often resulting in a full cross-bar. This
queue organization facilitates write operations by means of a write pointer and
compacting non-empty locations, however it requires a book-keeping function to
determine the exact address of a value being read. The Cydra 5 architecture
([12]) relies on a large number of registers and provides a mechanism to perform a
sort of register renaming, which also helps to avoid code size explosion, a scheme
called rotating register file. It requires a bank of registers between every pair of
communicating functional units, which also leads to a full cross-bar. In addition
to the problem of overlapped lifetimes, advances in technology have increased
the parallelism available in a microprocessor through a larger number of func-
tional units, which in turn increases register pressure dramatically [7], requiring
once again new register file organizations. Assuming that a single register file
is not able to support the high register pressure generated by modulo scheduled
loops for large numbers of functional units, we believe that some sort of register
file partitioning might be a reasonable alternative. Thus, a processor composed
of clusters of functional units and private register files could be used as a starting
point for a new hardware scheme. However, simply reorganizin'g the processor
in this way can not guarantee a solution for the whole problem as inter-cluster
communication delays can impose a severe performance penalty: . To effectively
take advantage of this concept a more elaborated register file organization and
scheduling mechanism should be employed.

In a modulo scheduled loop the register values used to hold data referring to
the same operation in different loop iterations have the same lifetime, but with
the start times offset by the initiation interval. Therefore, if two computations
produce values with lifetimes of equal length, and their start times are different,
then the production order of their respective values will exactly match the con-
sumption order of the values. Under this condition the computations can name a
shared queue as the common destination for their result values. Thus, sets of life-
times of the same length could be stored in the same queue, simplifying register
access and reducing register name pressure. Further investigations have shown
that this constraint can be relaxed under certain strictly defined conditions to
permit lifetimes of different lengths to share the same output queue.

We are currently investigating the possibility of designing a scalable VLIW
architecture comprising clusters of functional units and private register files im-
plemented as queue structures, which in turn may also be used for inter-cluster
communication. As the number of queues will be finite the code partitioning and
scheduling process will involve an element of que.e allocation similar in some ways
to conventional register allocation. Overall, we believe that the use of queues has

1068

distinct advantages in terms of hardware complexity, silicon area, name space,
and scalability. This paper presents the current status of our research, together
with some of our initial experimental results and conclusions.

2 U s i n g Q u e u e s t o O r g a n i z e R e g i s t e r F i l e s

We show in [4] that the register file area needed to store enough registers and
to provide sufficient access to those registers in a software pipelined loop is
proportional to the cube of the number of functional units. This result clearly
shows that is impractical to rely on a large mult i-port register file to hold live
values in a VLIW machine using modulo scheduling techniques if scalability
of parallelism is the goal. It may even be the case that a shared mult i-ported
register file is not the most area-efficient storage scheme for the moderate degrees
of ILP found in superscalar microprocessors.

This paper proposes a parti t ioned register file in which individually address-
able registers are replaced by queues. In terms of similarities with other systems
we understand that it resembles the Polycyclic machine only in which concerns
writing values to a queue. The rotat ing register file employed by the Cydra
5 architecture could be viewed as a queue organization in which every distinct
lifetime is allocated to a distinct queue, however that would require an unaccept-
able number of machine resources. The remainder of this paper is devoted to
demonstrat ing that queues can reduce the register pressure generated by mod-
ulo scheduled loops in a VLIW machine, incorporating the following advantages
over conventional organizations:

- H a r d w a r e c o m p l e x i t y a n d s i l i c o n area: The access to a queue of registers is
simpler than the access to a conventional register file as there is no need to
select the register to be read or written to. Instead a value is always written
on the last position in the queue and read from the first position, which can
be controlled by means of two pointers. We expect that this organization
might reduce the hardware complexity, and consequently the silicon area
required.

- N a m e S p a c e : We show in [4] that the number of registers required by a
modulo scheduled loop is proportional to the number of functional units and
to the pipelining degree, which increases the pressure on the name space
as the machine scales up. In our queue register file model a data value is
not allocated to a specific register location but instead to a specific queue,
which implies that the name space problem is shifted from distinct register
locations to distinct queues. We have found through experimental analysis
that using a queue register file may reduce dramatical ly the pressure on the
name space, as shown in Sect. 4.

- R e g i s t e r A l l o c a t i o n : The problem of register allocation, either considering a
conventional register file [10] or a part i t ioned one [6] has been pointed out
by several authors as being a non trivial task. We have developed a simple
and efficient strategy to allocate da ta values to queues that we understand
as being simpler than most of the techniques described in the literature.

1069

- Code Generat ion: Kernel-Only code is a scheme that avoids code size ex-
plosion [11], which may be implemented if a queue register file is used along
with support for predicate execution.

- In t e r -C lus t e r Communica t ion: It is well known that the efficiency of the
inter-cluster communication system is a major issue to be addressed when
designing clustered architectures. We believe that register queues may be
used for this purpose, implementing a sort of asynchronous communication
between clusters, with no need of extra instructions to move data values.

a) DDG for tile loop being scheduled b) Schedule of 3 Successive Iterations

Iteration 1
~ Cycle

0 A
1 B
2 C

*Operation Latency: g F

Load/Store: 2 cycles 9
Add: 1 cycle 10
Muh 4 cycles 11 @ ,2

13

Iteration 2
us L/S ~r MUL
A Iteration 3

B u s t a ~o~ ML'I
E C A

D B
E iC

ID
E

F

Consumption
I

c) Storage Queue for Values Produced by Operations A and B
(Xiv = Value Produced by Operation X of Iteration i)

Alv Blv A2v B2v A3v B3v Productmn
J

c) Productions and Consumpaons Cycle by Cycle

Cycle 0 , 1 2 1 3 1 4 1 5 F 6 1 7
V.Jue Protiucea Alvl Blv I A2vl B2vl A3vt B3vl -,,, ,,, ,,,, ,,,, -,,, ,,,,

C Cycle Operation 0 1 C 2 1 D l C : D 2 C3 D 3 3

F i g u r e 1. Allocating Registers to a Queue

To illustrate some of the ideas presented in this section we take the data
dependence graph (ddg) of a given innermost loop (Fig. la) and the corresponding
modulo schedule for 3 successive loop iterations (Fig. lb). Assuming that a
queue register file is being used, Fig. lc shows the data flow in one of the storage
queues, which contain values produced by successive executions of operations
A and B. It can be seen that the production order of such values matches the
consumption order required by operations C and D, i.e., the first element in the
queue is always the value required by the next operation to be executed.

1070

3 Queue Compatibi l i ty Condit ion

The ability to minimize the number of queues required by a modulo scheduled
loop is critical to the use of a queue register file. We have developed a condition
to check if two lifetime values can share the same storage queue. We also show
how this condition can be evaluated through a simple and practical compile-time
test. Due to space limitations we have ommited the theorem proof, which can
be found in a technical report ([4]).

In a modulo-scheduled loop each computation generates a new value every
Initiation Interval (II) cycles. Each value has a fixed lifetime which begins at
some start-point and terminates at some end-point within the schedule.

Definition 3.1 (L i f e t i m e s) . On each iteration of a loop every computation a
produces a new value which exists over a period defined by the pair
(Sa, Sa + La - 1), where Sa is the start-point and S~ ÷ La - 1 is the end-point
of that value. We say that L~ is the lifetime of computation a.

D e f i n i t i o n 3.2 (Q - c o m p a t i b i l i t y) . Let two computations a and b have start-
points S~ and SD, and have lifetimes L~ and Lb such that L~ >_ Lb. The values
produced by a and b can share the same destination queue if the relative order
in which they produce values is identical to the relative order in which those
values are consumed by their successor computations, and their start-points are
different.

It is now necessary to formulate a simple way of determining the compatibility
of any pair of computations. We do this by formulating a proposition which
encapsulates our definition of Q-compatibility and then we prove that there exists
a simple relationship between lifetimes, start-points and Initiation Interval which
can be used in a scheduler to determine Q-compatibility. We now formulate a
proposition based on Definition 3.2 which provides us with a formal criteria for
queue compatibility.

Proposition 3.3. The two computations a and b are Q-compatible if, and only
if:

Vi,j_>0 : al > bj ~ a i + L a > b j+Lb (1)
A ai < bj ~ a i + L a < b j+Lb (2)
A ai • bj (3)

This proposition, although an accurate formulation of Definition 3.2, can-
not be used directly when scheduling a loop as it contains universal quantifiers.
These imply a large, possibly unbounded, search space for i and j. The fol-
lowing theorem defines an alternative, and computationally efficient, test for
Q-compatibility.

T h e o r e m 3.4 (E x a c t C o m p a t i b i l i t y Tes t :) . Two computations a and b, with
start-times Sa and Sb, and lifetimes La and Lb such that La > L5,
are Q-compatible if and only if La - Lb < ($6 --Sa) mocl II .

1071

4 Experimental Evaluation

In order to obtain quantitative data regarding modulo scheduled loops for a
hypothetical VLIW machine, an experimental scheduling framework has been
built. The basic algorithm used in this framework is Iteratwe Modulo Schedul-
ing (IMS) [8]. The scheduler assumes the existence of a simple VLIW machine,
comprising of some fully pipelined functional units connected to either a multi-
ported register file (RF) or a register file organized by means of queues (QRF).
Three machines configurations have been considered, as shown in Table 1.

To evaluate the effectiveness of queues as an alternative to conventional re-
gisters all eligible innermost loops from the Perfect Club Benchmark were sched-
uled, totalling 1258 loops. The optimizations and data dependence analysis were
performed by the ICTINEO compiler [1], which supplied the input data set used
by our framework. Due to space limitations we only briefly present some of the
experimental results obtained, which can be found in [4].

Functional Operation Issue Number of functional units
unit type latency rate machine A machine B machine C
load/store 2 1 / - 2 2 4
add/subtract 1 1 / - 1 2 4
multiply 4 1/~ 1 2 4

T a b l e 1. Functional units for three target machine configurations

N u m b e r o f Q u e u e s R e q u i r e d The graphics presented in Fig. 2 shows the
fraction of loops, from the set of 1258 loops considered, that can be scheduled
employing only a given number of queues. The results show that with a fixed
number of 32 queues it is possible to schedule most of the loops regardless the
number of functional units, suggesting that number as being the size of the name
space required, which is considerably smaller than that required by conventional
register file organizations. It also shows a tolerable increase in the required num-
ber of queues as more functional units are used, suggesting that the scalability
of the model is not constrained by this resource.

N u m b e r o f S t o r a g e P o s i t i o n s R e q u i r e d In Fig. 3 it is shown the total
number of queue positions required to schedule a given fraction of the loops.
It can be seen that it is possible to schedule over 90% of all the loops using
no more than 64 queue positions. It may be worth at this point to make a
rough comparison between this figures and the register requirements when using
a conventional register file organization. Similar analyses performed by other
groups [7, 3, 5] found that it is possible to schedule around 90% of all the
loops with 32 registers, which may suggest that their schemes are more efficient
regarding this aspect. In spite of our beliefs that the possibly lower complexity
of a queue register file may compensate this difference, we are currently working
in a number of alternatives to improve this figure.

1072

Number of Queues - 4/6/12 FUs Number of Storage PoslUons- 4/6/12 FUs

//
• [/

~. ~ p, Jqulmd. ~ - i LI~3 - . ~..~:--,,. "

4RJs - a , eF~s 4 - 12FUs ~ 4F~s - - - SPJS ~ " 12FUS

Figure 2. Number of Queues Required Figure 3. Queue Capacity Required

Loops t h a t Benefi t f rom G r e a t e r Para l le l i sm We found that significant
speedups can be attained for around 70% of the loops when more functional
units are employed, which justify the use of aggressive hardware configurations.
In most of the cases the number of extra queues required for that falls between
0 and 15, which we understand as being a good prospect in terms of scalability.

5 C o n c l u s i o n s

We have investigated alternative register file organizations to address the high
register pressure generated by a modulo scheduled loop. A register file organized
by means of queues has been considered, and a number of quantitative data re-
garding machine resources was obtained from a preliminary evaluation. We have
observed that the number of distinct queues required to schedule the benchmark
loops is around 32 for configurations up to 12 functional units, which is less than
other schemes reported in the literature. We have found that the total number
of bits of queue storage is larger than that required by a conventional register
file but we believe that the silicon area requirements will remain significantly
lower. The smM1 differences found between machine resources required by dis-
tinct number of functional units suggests that there is an advantage in terms of
scalability, which is not the case of systems that relies on conventional register
files or cross-bar organizations.

1073

We are currently working in a number of improvements on the proposed
model, including loop unrolling to maximize functional units utilization, intro-
duction of copy operations to deal with the problem of simultaneous writes of
the same value to distinct queues, allocation of loop invariant and a hardware
complexity model for the queue register file. We are also working on a new
machine model organized by means of clusters composed of functional units and
a private register file, which in turn communicate among each other through
a bidirectional ring of queues. Finally, an enhanced machine model should be
employed in the near future, increasing the level of details and assuming a finite
number of machine resources, which may lead to the use of other techniques like
graph coloring and the introduction of spill code.

R e f e r e n c e s

1. E. Ayguad~, C. Barrado, J. Labarta, J. Llosa, D. Lopez, S. Moreno, D. Padua,
E. Riera, and M. Valero. Ictineo: Una herramienta para la investigacion en paralel-
ismo a nivel de instrucciones. In VI Jornadas de Paralelismo, July 199.5.

2. A. Charlesworth. An approach to scientific array processing: The architectural
design of the AP120B/FPS-164 family. Computer, 14(9), 1981.

3. A. Eichenberger, E. Davidson, and S. Abraham. Minimum register requirements
for a modulo schedule. In Proceedings of the MICRO-27 - The 27th Annual Inter-
national Symposium on Microarchitecture, November 1994.

4. Marcio M. Fernandes, Josep Llosa, and Nigel Topham. Using queues for register file
organization in VLIW architectures. Technical Report ECS-CSG-29-97, Edinburgh
University, February 1997.

5. R. Huff. Lifetime-sensitive modulo scheduling. In Proceedings of the S IGPLAN'93
- Conference on Programming Language Design and Implementation, 1993.

6. J. Janssen and H. Corporaal. Partitioned register file for TTAs. In Proceedings of
the MICRO-28 - The 28th Annual International Symposium on Microarchitecture,
November 1995.

7. J. Llosa, M. Valero, E. Ayguad~, and J. Labarta. Register requirements of pipelined
loops and their effect on performance. In 2nd International Workshop on Massive
Parallelism: Hardware, Software and Applications, October 1994.

8. B. Rau. Iterative modulo scheduling. The International Journal of Parallel Pro-
cessing, February 1996.

9. B. Rau and C. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. In 14th Annual
Workshop on Microprogramming, October 1981.

10. B. Rau, M. Lee, P. Tirumalai, and M. Schlansker. Register allocation for soft-
ware pipelined loops. In Proceedings of the A C M SIGPLAN'92 - Conference on
Programming Language Design and Implementation, June 1992.

11. B. Rau and P. Tirumalai M. Schlansker. Code generation schema for modulo
scheduled loops. In Proceedings of the MICRO-25 - The 25th Annual International
Symposium on Microarchitecture, December 1992.

12. B. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 departmental supercomputer.
Computer, January 1989.

