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Abs t rac t .  In distributed implementations of logic programming, data 
structures are spread among different nodes and unification involves 
sending and receiving messages to access them. Traditional implementa- 
tions make remote data structures accessible to other processes by send- 
ing messages which carry either the overall data structure (infinite-level 
copying) or only remote references to these data structures (zero-level 
copying). These fixed policies can be far from optimal on various classes 
of programs and may induce substantial overhead. The purpose of this 
paper is to present an implementation scheme for distributed logic pro- 
gramming which consists of tailoring the copying level to each procedure. 
The scheme is based on a consumption specification which describes the 
way the procedure "consumes" its arguments locally. The consumption 
specification (or an approximation of it) can be automatically obtained 
through a static analysis inspired by traditional type analyses. The paper 
also describes a high-level distributed implementation that uses the con- 
sumption specification to avoid unnecessary copying and to request data 
structures globally. Experimental results for a network of workstations 
show the potential of the approach. 

1 I n t r o d u c t i o n  

In distributed implementations of logic programming, dat a structures are spread 
among different nodes and unification involves sending and receiving messages 
to access them. Traditional implementations make remote data  structures ac- 
cessible to other processes by sending messages which carry either the overall 
data  structure (infinite-level copying) or only remote references to these data  
structures (zero-level copying). An intermediate approach is possible in some 
systems, where data  structures are copied up to a certain level. For instance, an 
approach based on replication of data is used in [4], where each message carries 
the infinite-level copying of each argument of the goal to be solved. Ichiyoshi 
et al. [12] introduced the copying level concept in the implementation of the 
KL1 language on the MultiPSI machine where a fixed level of copying can be 
"a-priori" used for data structures. 
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It should be clear that any fixed policy can be far from optimal and may in- 
duce substantial overhead on various class of programs. A high copying level may 
cause overhead due to the transmission of unnecessary information; a low copy- 
ing level might cause, instead, further messages to be exchanged for accessing a 
remote structure in order to perform unification (remote dereferencing). 

The purpose of this paper is to present a novel implementation scheme that, 
informally speaking, tailors the copying level to each argument of each procedure 
in the distributed program. The scheme is based on a consumption specification 
which describes how a procedure "consumes" its arguments locally. The im- 
plementation uses this specification to improve both the sending of arguments 
to goal processes and the remote dereferencing phase possibly occurring during 
clause head unification. The copying phase is improved by avoiding the copy of 
subterms that are not used by the called procedure. The remote dereferencing 
phase is improved by requesting, from a remote node, entire subterms instead 
of accessing them piece by piece, thus reducing the amount of communication. 
Consumption specifications are expressed in terms of a simple generalization of 
tree-grammars [5] (or type graphs [8, 17]). Consumption specifications (or ap- 
proximations of them) can be obtained automatically through a static analysis 
inspired by traditional type analyses, making the approach fully transparent for 
programmers. 

The paper also describes a high-level implementation of the scheme based 
on attributed variables following the lines suggested by [7]. The implementation 
uses a blackboard for communication. Experimental results show the potential 
of this approach. 

2 Consumption-based Distributed Unification 

In our distributed model, a number of concurrent processes cooperate in solving 
the query. Processes communicate via message passing, since data structures can 
be spread over different nodes of the underlying architecture. In the following we 
focus our discussion on the implementation of distributed unification. The main 
difference between distributed and sequential implementations of unification is 
that the first demands message management for data exchange. 

The put phase in the standard Warren Abstract Machine (WAM) [1, 18] 
loads the arguments in the registers but, in a distributed implementation, the 
put phase consists of preparing a message to be sent to the process responsible 
for executing the goal. For a given argument, this message preparation phase 
works as follows. If the argument is an atomic value, the value is included in 
the message. If the argument is an unbound variable, a remote reference to this 
variable is created and inserted in the message. If the argument is a structure, 
different policies can be found in the literature [9, 15, 16, 12]: 

- the argument is copied in its entirety in the message; this is called infinite- 
level copying; 

- a remote reference to the structure is included in the message; this is called 
zero-level copying; 
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- the structure is copied in the message up to a certain level with remote 
references to the rest of the structure; this is called k-level copying. 

Following the adopted policy of copying, the arguments are packed in the message 
that is sent to the remote node responsible for the procedure execution. 

The standard WAM get phase is also modified in the distributed case. In 
particular, before performing the head unification, the remote process executes a 
message reception phase to extract the arguments from the message. In addition, 
for efficiency reasons discussed later, the message may not contain all the nec- 
essary information needed for unification and therefore some remote references 
may be encountered when extracting the arguments from the message. In this 
case, it might be necessary to request to the appropriate remote processes the 
needed data structures. This task, i.e., requesting the value of a remote refer- 
ence to a process, is known as remote dereferencing and is performed by using 
message-passing. Also, when performing remote dereferencing, it is possible to 
follow several policies of copying. In particular, it is possible to request either 
all the referenced data structure or only a part of it. The two solutions (and any 
intermediate case) have the same advantages and inconvenients of the policies 
described for the message preparation phase. 

None of the previously described strategies (infinite-level copying, zero-level 
copying, or k-level copying) is the most appropriate for all programs. Infinite- 
level copying has the problem of sending too much information, i.e., copying 
terms that are not used. Zero-level copying has the problem of sending many 
small messages, increasing the communication between processes. K-level copy- 
ing combines the advantages and inconvenients of zero- and infinite-level copying. 
In addition, the choice of the copying policy depends not only on the structure 
of the application, but also on the architecture type (in particular, the commu- 
nication cost), since it affects the cost of the various operations. An analysis of 
the architectural factor in the choice of the copying policies may be found in [2]. 

The mMn contribution of this paper is to present a novel implementation 
scheme that, informally speaking, tailors the copying and dereferencing level 
to each argument of each procedure in the distributed program. Consider the 
traditional Prolog program for list concatenation [13]: 

append( [] ,L ,L) .  
append( [F I T], S, [FIR] ) :-  append(T, S ,it). 

and the top-level goal top :-  append(LongList,  L i s t ,  Res) where LongList 
is a long list of complex data structures, append/3 needs the spine of the list 
for the first argument but does not need to inspect the elements of the list. It 
also may not need to inspect its second and third arguments. As a consequence, 
the top-level goal should be compiled to prepare a message containing a copy of 
the spine of the list with a remote reference to its various elements for the first 
argument. Remote references to the two other arguments must be included in 
the message as well. This makes sure that the message preparation phase copies 
only what is really needed by append/3 and that append/3 is executed without 
requiring any remote dereferencing. An infinite-level policy would copy the whole 
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list and thus potentially many irrelevant structures, while zero-level copying 
would require to dereference the remote list element by element, introducing 
notable communication cost. We are interested in driving unification by the 
minimM level needed for term inspection, which we cM1 consumption. 

2.1 The  C o n s u m p t i o n  Specif icat ion 

In order to specify how a procedure minimally "consumes" its arguments, our 
implementation makes use of a consumption specification. Consumption speci- 
fications are simple enough to be provided by programmers but we also show 
in Section 4 how to automatically obtain them (or an approximation of them) 
through a static analysis inspired by traditional type analyses, making the ap- 
proach transparent to programmers. In practice, a consumption specification 
describes a superset of the type of the procedure, as it will be clear in Section 4. 

A consumption specification is expressed as a tree grammar [5] extended with 
an additional terminal Remote. This additional terminal simply specifies zero- 
level copying. The rest of the specification identifies what part of the term is 
consumed locally by the predicate. For instance, the consumption specification 
for append/3 is append (T1, T2, T3) where 

T1 ::= [] t cons(Remote,T1). 
T2 ::= Remote. 
T3 ::= Remote. 

It specifies that append/3 consumes the spine of the first argument and that 
the two other arguments are not consumed. Consumption specifications can be 
rather complex. The consumption specification for the program 

p r o c e s s ( [ ] ) .  
p r o c e s s ( [ s ( D ) l R ] )  :-  

p rocess (R) .  
p rocess ( [c (D)  lR]) : -  

p rocess (R) .  

is given by process(T)  where 

W ::= [] ] cons(T1,T). 
TI ::= s(Remote) I c(Remote). 

It specifies that p rocess /1  consumes all the elements of the list but limited to 
the main functor of each element. 

Consumption specifications are expressive enough to associate different level 
of copying not only with each procedure argument but also with distinct subtrees 
of a given argument. 
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2.2 Exploiting the Consumption Specification 
The consumption specification is exploited in the distributed implementation 
during message preparation, message reception, and remote dereferencing. 

During message preparation, consumption specifications are used to include 
in the message only those parts of the data structures consumed by the called 
procedure. For instance, a call to append/3 requires for each argument a copy 
instruction which inserts in the message the appropriate part of the argument. In 
case of a term t with consumption specification T : := [] I cons(Remote,T), 
the copy instruction inserts inside the message only the spine of the list, i.e., 
only the reference to each element of the list. 

When receiving a message the consumption specification is used to request 
the remote data structures that are necessary for the procedure to execute locally. 
The main interest of consumption specifications in this context is the ability of 
requesting the needed data structures globally instead of element by element. 
Note also that these data structures are requested at the procedure level before 
executing any clause. 

3 A H i g h - l e v e l  I m p l e m e n t a t i o n  

To experimentally verify our approach, we implemented a distributed logic lan- 
guage on top of SICStus Prolog [14] using the Linda library and attributed 
variables. 

Attributed variables. Our high-level implementation was inspired by [7] and 
uses attributed variables to implement the communication variables, i.e., the 
variables occurring in a remote goal. Attributed variables introduced by Le 
Houitouze [11] are variables associated with an attribute (i.e., a term) and unifi- 
cation of these variables can be specified by programmers. Our high-level imple- 
mentation attaches an attribute rein(Process,  Id,  Bound,Type) where the pair 
(Process ,  Id) uniquely identifies a communication variable, Bound specifies if 
the variable is bound or unbound and Type is the type associated with the 
variable. 

The blackboard structure. The message sending is achieved by writing the mes- 
sage onto a blackboard implemented via the Linda library. There is a server 
process which handles the blackboard. Prolog client processes can write (using 
o u t / l ) ,  read (using rd/1),  and remove (using i n / l )  data (i.e., Prolog terms) 
to and from the blackboard. Partial bindings of the communication variables 
(determined by the consumption specification) are inserted in a message and 
posted on the Linda blackboard. 

The consumption specification. The consumption specification is represented by 
Prolog facts of the kind t y p e ( t , t e r m )  .. The copy of terms in their blackboard 
representation is performed until a terminal remote is reached, thus avoiding 
unnecessary communication overhead. Notice that the consumption specification 
is also used for run-time type checking when constructing the message. 
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Message preparation. Consider the preparation of a message containing the vari- 
able X, associated with the consumption specification T described in the previous 
paragraph. Assume that X is bound to the list [c ( [1,2 . . . . .  200] ) ]. In this case, 
the element of the list is copied but copying is limited to the main functor. A 
new communication variable Xl is created and locally bound to [1,2 . . . . .  200]. 
Only the structure [c(Xl)] is then posted into the blackboard. In fact, the 
message inserted in the blackboard contains the binding for the variable X: 

msg_binding (rem(l, 2, bound, t), [c (rem(l, 3, bound, list) )] ) 

where the pair (1,2) identifies X and the pair (1,3) identifies Xl. 

Message reception. After receiving a message, the argument values are extracted 
in order to perform head unification and goal evaluation. This implies the build- 
ing of a local structure starting from the blackboard representation of the ar- 
guments contained in the message. A new local structure [c(X2)] is created, 
where X2 is a new attribute variable with the same identifier of Xl. Notice that, 
during the head unification, some parts of the data structure may not be lo- 
cally present. In this case, remote dereferencing is automatically raised by the 
unification of attribute variables. For instance, assume that g( [c([11.3 )] ) is 
the head of the clause. This implies the unification of the attribute variable X2 
with [11-3. Therefore the unification handler ( i .e . ,verify_at tr /3)  is called and 
a request for a remote dereferencing of X2 is sent to the appropriate process. 

4 S t a t i c  A n a l y s i s  

In this section, we sketch how the consumption specification can be obtained 
by a static analysis enhancing traditional type analyses. We convey the main 
ideas behind the approach. Recall that the consumption specification describes 
a superset of the type of the procedure. Consider the list concatenation code. A 
goal-independent type analysis produces the result: 

append(T,Any,Any) where T ::= [] I cons(Any,T). 

which is essentially the consumption specification we showed previously (replace 
Any by Remote). These type analyses have been investigated extensively in the 
literature (e.g., [6, 8, 17]). Type analysis of logic languages, and Prolog in partic- 
ular, is of primary importance for high performance compilers. In the sequential 
case, type analysis has been applied in order to improve indexing, to specialize 
unification and to produce more efficient code for built-in predicates. 

We exploit type analysis to automatically obtain the consumption specifi- 
cation. To this purpose, we can profitably use a system like GAIA [17], where 
type analysis is based on abstract interpretation [3] and type graphs [8]. The 
appealing feature of GAIA is its good trade-off between accuracy and efficiency 
and the ease with which type analysis can be combined with other analyses that 
can be useful in our case, such as, for instance, mode analysis. 

To obtain effective consumption specifications, it is necessary to refine the 
result of the type analysis. Consider the program 
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p([ ]  ). q ( [ ] ) .  
p ( [FITa])  : -  q(Ta),  q( [F[Ta])  : -  q(Ta).  

The standard analysis, and GAIA in particular, would produce the results p(T) 
and q(T) where T ::= [] I cons(Any,T). ,  which are superset of the types of 
the procedures. 

Notice that an efficient implementation of distributed unification should not 
send the whole list to p / l ,  but only its first cons cell with arguments which are 
remote references to the head and tail of the list. In this respect, the consumption 
specification for p/1 is p(T1) whereTl: :=[] [ cons(Remote,Remote). .  This 
consumption specification is a larger superset of the type (i.e., what the analysis 
would return if the goal q(Ta) is omitted in the clause for p / i ) .  To determine 
the consumption specification from the type, traditional type analyses should 
be enhanced by annotating each functor with the predicate in which it occurs. 
Then, the widening operator for type graphs [17] is applied only for types related 
to the same predicate. 

When enhanced in this way, the type analysis for the above program now 
determines the results p(T1) and q(T2) where 

T1 ::= lip I consp(Any,T2). 
T2 ::= []q I consq(Any,T2). 

From these results, it is not difficult to obtain the consumption specification 
for p / l ,  since the type T1 now indicates that p only accesses the first cons cell 
locally. To this purpose, it suffices to substitute each occurrence of Any with 
Remote  in type T1 and any reference to other types (e.g., T2) with Remote as 
well, thus obtaining the consumption specification for p and q: 

T1 ::= [] Icons(Remote,Remote). 
T2 ::= [] ] cons(Remote,T2). 

5 Experimental  Results 

This section presents the experimental results obtained by running some ex- 
ample programs on the system described in Section 3. These results give some 
indication of the practical usefulness of the consumption specification approach. 
Obviously, the high-level implementation cannot achieve the performance of a 
specific abstract machine. For this reason, in [10] we sketched a low-level im- 
plementation based on the WAM, suitably extended in order to perform the 
distributed unification driven by the consumption specification. 

To compare the consumption specification approach with traditional copying 
policies, we executed each program with different policies of copying. In particu- 
lar, we compared both zero- and infinite-level copying policies with the "optimal" 
policy driven by the consumption specification determined by the static analysis 
sketched in Section 4. All programs have been executed with the same granular- 
ity of execution, i.e., we allocated each procedure onto a different node, although 
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in some cases this is not the best possible allocation strategy (we are not inter- 
ested in obtaining the maximal performance, but only in the comparison of the 
different solutions for copying the arguments). Tables 6.1-6.4 show the results 
obtained by running the examples on a network of SUN workstations (Sparcsta- 
tion2) connected over an Ethernet network. The results are presented in terms 
of complexity of the data structures involved. All the presented programs work 
on lists and are executed with lists of different length. 

As a first benchmark, consider the append/3 program. We have considered 
for this program both zero- and infinite-level copying and the consumption spec- 
ification requiring to send the spine of the list for the first argument and a remote 
reference for both the second and third arguments of the goal. Table 6.1 shows 
the results obtained with the first two arguments being lists of 10, 30, and 50 
integer elements. Times are in milliseconds. As shown in Table 6.1, the gain 
achieved with the consumption specification approach increases with the length 
of the lists. 

lengthlzero-level copy (0) c~-level copy (c~)consumption copy (c)l" O/clc¢/e 
10 122 56 24 5.08 2.33 
30: 365 80 32 11.40 2.50 
50 585 112 40 14.62 2.80 

Table 6.1:append/3 with lists of integers 

Table 6.2 shows the timings of the usual r eve r se /2  [13] program with zero-, 
infinite-level copying, and the consumption specification described in Section 2. 
Benchmarks have been executed with a list of 10 elements each one being, on 
its turn, a list of 10, 30, 50 integer values. Zero-level copying is very inefficient 
on this benchmark, because it requires a remote dereference for each element 
of the list, i.e., 10 remote dereference requests for all cases, c~-level induces to 
copy the list twice from the top-level goal to reverse /2  and from reve r se /2  to 
reverseAcc/3. 

Zengthizero-level copy (0)  -level copy consumption copy (c)l O/clc~/c 
I0 1020 240 208 4.90 1.15 
30 1123 544 496 2.27 1.09 
50 1210 800 568 2.13 1.40 

Table 6 .2 : reverse /2  with one list of lists of increasing size 

Tables 6.3 and 6.4 show the results of the keyso r t / 2  and qu i ckso r t / 2  pro- 
grams [13]. keyso r t / 2  is a variant of qu icksor t /2 ,  and sorts a list of strings 
on the basis of the first character of each string. The results reported in Table 
6.3 are obtained by sorting a list of 10 strings, each one of increasing length 
(i.e., 10, 30, 50 characters), and by adopting zero-, infinite-level copying and the 
copying policy driven by the consumption specification, that for keyso r t / 2  is 
keysort (T1 ,T1 ) where 
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T1 : := [] [ cons(T2,T1). 
T2 : := c o n s ( c h a r , R e m o t e ) .  

It specifies that k e y s o r t / 2  consumes the first character of each string. The 
s p l i t / 4  procedure in k e y s o r t / 2  splits the list of strings on the basis of the first 
character of first string and its consumption specification is s p l i t  (T2, T1, T1, T1 ) 
which requires to send to s p l i t / 4  only the first character of the first argument 
and the first character of each (nested) string for the other arguments. 

I lengthlzero-level copy (0)c~-level copy (oo)consumption copy (c)l O/cl~/c 
10 4710 1640 816 5.77 2.01 
30 4713 4184 832 i.66 5.02 
50 4816 7360 848 i.67 8.68 

Table 6 .3 :keyso r t / 2  with one list of strings of increasing size 

Finally, Table 6.4 shows the results obtained by executing the q u i c k s o r t / 2  
program on a list of 10 characters. Differently from keysor t /2 ,  for this program 
the consumption specification requires to send to s p l i t / 4  the whole string. 

I lengthlzero-level copy (O) loo-level copy (oo)lconsumption copy (c) l O/c Ioo/c I 
I 101 6201 4801 38011.63 ] 1.26] 

Table 6 .4 :qu ickso r t / 2  with one list of 10 characters 

6 C o n c l u s i o n s  

Traditional distributed implementations of logic programming make remote data 
structures accessible to other processes by sending messages which carry the over- 
all data structures or only remote references to these data structures. These fixed 
policies can be far from optimal on various classes of programs and may induce 
substantial overhead. This paper has presented an implementation scheme for 
distributed logic programming which consists of tailoring the copying level for 
each argument of procedures. The scheme is based on a consumption specifica- 
tion which describes the way each procedure "consumes" its arguments locally. 
The implementation scheme uses the consumption specification to avoid unneces- 
sary copying and to request data structures globally. Moreover, the consumption 
specification (or an approximation of it) can be automatically obtained through 
a static analysis inspired by type analysis, as shown in Section 4. 

The paper has also described a high-level implementation of the scheme, built 
on top of SICStus Prolog by using both the attributed variable and the Linda 
libraries. The results obtained with some example programs running on a net- 
work of workstations show the viability of the approach. The system is flexible 
with respect to the copying specification, and has been used to test different 
copying policies for the goal arguments. In particular, it showed an effective per- 
formance improvement when adopting the consumption specification obtained 
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by the static analysis of the program. This is a high-level implementat ion suit- 
able for giving the idea of the usefulness of the technique. A significant gain 
in te rm of performances could be achieved by a low-level implementat ion,  by 
pushing the implementat ion of critical operations down to C~ at WAM level. 
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